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ABSTRACT
Recent trends in software engineering lean towards model-
centric development methodologies, a context in which the
UML plays a crucial role. To provide modellers with quan-
titative insights into their artifacts, the UML benefits from
a framework for software performance evaluation provided
by MARTE, the UML profile for model-driven development
of Real Time and Embedded Systems. MARTE offers a rich
semantics which is general enough to allow different quanti-
tative analysis techniques to act as underlying performance
engines. In the present paper we explore the use of the
stochastic process algebra PEPA as one such engine, provid-
ing a procedure to systematically map activity diagrams onto
PEPA models. Independent activity flows are translated into
sequential automata which co-ordinate at the synchronisa-
tion points expressed by fork and join nodes of the activity.
The PEPA performance model is interpreted against a Marko-
vian semantics which allows the calculation of performance
indices such as throughput and utilisation. We also discuss
the implementation of a new software tool powered by the pop-
ular Eclipse platform which implements the fully automatic
translation from MARTE-annotated UML activity diagrams to
PEPA models.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development—
Modeling methodologies; D.2.8 [Software Engineering]:
Metrics—performance measures

General Terms
Performance
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1. INTRODUCTION
In the past few years research in software engineering has

witnessed significant interest in the performance evaluation of
software models. This has become an even more compelling
and exciting issue as development practices shift towards
model-driven methodologies. At the core of the model-driven
development approach is the description of system functional-
ity using a platform independent model and the translation of
such models into concrete code by means of automated tools.

A role of premier importance in this context is played by
the UML, a potent formalism which allows static, behavioural,
and architectural modelling of software systems. A view of
particular interest for the purpose of software performance
engineering is the behavioural view, which describes the inter-
actions between the components of the system. Widely-used
means to represent the system dynamics are collaboration dia-
grams, use case diagrams, sequence diagrams, state machine
diagrams, and activity diagrams. In the present paper we shall
be concerned with the performance evaluation of annotated
UML activity diagrams.

The UML lacks semantics and notation for the specification
of time and performance-related indices of interest (see [28]).
Fortunately, such a framework has been supplied by SPT, the
standardised UML profile for Schedulability, Performance and
Time [23] and more recently by the profile for MARTE [25].
When its specification is finalised, the MARTE profile is
intended to supersede the SPT profile. Rather than provide
concrete techniques and tools, these profiles both establish a
framework which other parties can build upon. Their seman-
tics are general enough to allow many different techniques and
tools to be employed as performance evaluation engines, thus
effectively acting as a lingua franca for the purposes of perfor-
mance evaluation of UML models.

This paper is concerned with the use of the MARTE pro-
file for the performance evaluation of UML activity diagrams
with the PEPA stochastic process algebra [14]. As with all pro-
cess algebras, PEPA describes components that may cooperate
with each other to carry out some shared action. Unshared
actions are executed concurrently by the processes in the sys-
tem. In contrast to classical process algebras where time is
abstracted away, PEPA has timed activities, which allow per-
formance analysis to be carried out.

We present an algorithm which translates activity diagrams
annotated with MARTE stereotypes into PEPA descriptions.
At the core of this algorithm is the interpretation of indepen-
dent flows in the activity diagram as concurrent processes in
the underlying PEPA model. The processes synchronise at
the fork and join points in the activity, and decision branches



are interpreted non-deterministically. MARTE stereotypes are
applied to activity nodes to denote the amount of time taken by
that unit of computation. Depending on the modelling method-
ology adopted and the stage at which the model is being anal-
ysed, such values may be regarded as initial guess (early in
the development cycle) or measurements (from a prototype or
a fully-deployed system). In accordance with the MARTE pro-
file, performance metrics of interest to the modeller are also
specified as stereotype applications to nodes of the diagram.
The translation procedure is concretely applied to a running
example.

Our approach is supported by a software tool implemented
as a plug-in contribution to Rational Software Architect [17].
The tool takes a UML2 model instance compliant with the
meta-model implementation of the Eclipse UML2 Project [10]
and automatically extracts PEPA descriptions from activity
diagrams with the MARTE annotations. Performance mea-
sures are evaluated by the PEPA Eclipse Plug-in Project [29],
an Eclipse contribution for PEPA. Performance results are pre-
sented to the user as values for the output variables defined in
the original model.
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Figure 1: Workflow of the analysis process. UML activity dia-
grams are developed in Rational Software Architect. PEPA
models are extracted from these diagrams. A CTMC is gen-
erated from the PEPA model and solved for its steady-state
distribution. Performance results are calculated from this and
the UML model is analysed with respect to these results.

Structure of this paper.
We discuss related work in Section 2. Section 3 presents

a brief introduction to the PEPA language which we use to
calculate performance results. Section 4 gives an overview of
activity diagrams and the MARTE profile. This section also
presents the running example used in the paper. Section 5
presents the algorithms used to translate a UML activity dia-
gram into a PEPA model. Section 6 gives details of the soft-
ware tool which implements the translation. Conclusions and
further work are discussed in Section 7.

2. RELATED WORK
Performance evaluation in the software development pro-

cess has been an active area of research in recent years.
The survey in [2] provides an extensive overview of this
field. In particular, quantitative analysis of UML models has
been enjoying research interest from different model analy-
sis methodologies. For instance, in [26] activity diagrams are

translated into Layered Queueing Networks (LQN). In [3] a
combination of Use Case diagrams, Activity Diagrams and
Deployment Diagrams annotated with SPT are translated into
Multiclass Queueing Network Models. In [8] quality of ser-
vice agreements of service-oriented architectures are assessed
through activity diagrams annotated with the UML Profile
for Automated Business Processes and WSDL descriptions
enhanced with SPT extensions to expose performance char-
acteristics. Generalised Semi-Markov Processes are used by
DSPNexpress [18] to carry out performance evaluation of state
machine diagrams and activity diagrams. In [16] discrete-
event simulation models are extracted from a combination of
activity diagrams and collaboration diagrams whose perfor-
mance characteristics are interactively inserted by the mod-
eller as simulation progresses.

This is not the first work which focuses on performance eval-
uation of UML models using PEPA. In [7] an algorithm is dis-
cussed to transform UML state machine diagrams and collab-
oration diagrams into PEPA models. The implementation tool
which supports such a transformation has inspired the extrac-
tion/reflection approach of our tool. Along this line of research
is the contribution in [13], where a case study on mobile tele-
phony is model-checked via an annotated UML mapped to
PEPA. More closely related to the present work is [6] where
UML2 activity diagrams are interpreted as PEPA nets [11], a
variant of PEPA. Both control flows and object flows are con-
sidered, however the translation is tailored to a particular case
study and a means to systematically map such diagrams is not
provided. In addition the tool does not benefit from the frame-
work provided by the MARTE profile, thus making it necessary
to annotate the diagram according to non-standard notations.

Another work close in spirit to ours is [19], where perfor-
mance evaluation of activity diagrams is carried out via trans-
lation into Generalised Stochastic Petri Nets. Although the
transformation is based on the UML 1.5, the authors point out
that it is closer to the UML2 token-based semantics of activ-
ity diagrams. The main difference is in the interpretation of
UML activities: the authors put them into a more general
framework for software performance engineering. More specif-
ically, activities express the behaviour of the doActivity of the
states in UML state machines. Related to this context is other
research on performance modelling with use cases [21], state
machines [20], and sequence diagrams [4]. In our approach,
activities represent behaviour which can be analysed per se.
However, activities are given a Markovian interpretation by
means of performance annotations via the SPT profile. For
this reason, we believe that our approach is complementary
to that work, and helps fulfil the guiding principle of SPT-
MARTE about providing a common framework for different
model analysis techniques. In particular, here we exploit the
large toolset that PEPA has been enjoying over the last decade,
which makes Markovian steady-state analysis, passage-time
analysis, model-checking, and discrete-event simulation read-
ily available to the software performance engineering commu-
nity.

Another major benefit from the use of PEPA as intermedi-
ate language is that it enables other forms of analysis which
help cope with the well-known state space explosion problem
of large discrete-state models. PEPA has been recently pro-
vided with a fluid-flow semantics [15] which gives rise to a
system of first-order differential equations as the underlying
mathematical tool for performance evaluation. Although this
paper focuses on the Markovian interpretation, the translation



described here may seamlessly employ this continuous-state
semantics. Even in the realm of Markovian analysis, PEPA is
the possibility of performing efficient and scalable stochastic
simulation, via its interpretation against a recently proposed
population-based semantics [5].

3. OVERVIEW OF PEPA
PEPA is a stochastic process algebra which allows the per-

formance evaluation of models described using the following
two-level grammar:

S := (α,r).S |S+S |A
C := S |C ¤¢

L
C |C/L

The first production defines sequential components, whereas
the second allows composition of components. Below is an
informal description of the operators of the grammar. For the
formal definition the reader is referred to [14].

Prefix (α,r).S denotes an activity of type α performed at rate
r by a sequential component. The sequential compo-
nent is said to enable the activity. The rate indicates an
exponential distribution with mean delay 1/r. When the
activity completes, the sequential component behaves as
S.

Choice P+Q indicates probabilistic choice among the activi-
ties enabled by the sequential components P and Q.

Constant A def= S is used to define cyclic behaviour. The
sequential component A behaves as S.

Cooperation P¤¢
L

Q allows composition. P and Q carry out
their enabled activities concurrently if the type of the
activity is not in the cooperation set L. If the activ-
ity’s type is in L, they perform a shared action at a rate
which depends on the rates of the individual components
involved in the cooperation. A rate of a shared activity
may be left as unspecified at a particular sequential com-
ponent by using the symbol >. This signifies that the
shared rate is specified by other components.

Hiding C/L turns all the enabled activities of C whose type is
in the action set L into silent activities over which coop-
eration is not possible. Hiding will not be used in the
remainder of this paper.

PEPA descriptions are interpreted against an operational
semantics which results in a labelled transition system whose
states are PEPA components and transition labels are the
(type, rate) pairs of the activities enabled by that state. A Con-
tinuous Time Markov Chain (CTMC) can be derived from the
labelled transition system by associating each state of the sys-
tem with a state of the Markov process. The generator matrix
is extracted from the rates in the transition labels. The solu-
tion of this underlying CTMC ultimately allows for the perfor-
mance evaluation of the system.

As a practical example, consider the PEPA model of an appli-
cation invoking some web service modelled as two sequential
components, as shown in Fig. 2. After a certain amount of
thinking time (with mean duration p1λ) the application may
perform a local activity and loop back to its initial state. Alter-
natively (rate p2λ), it may make a request to the web ser-
vice (shared activity) and wait until a respond action can be
performed. Below the PEPA description is the corresponding
labelled transition system.

Appl def= (think, p1λ).Appl1
+ (think, p2λ).Appl2

Appl1
def= (local,m).Appl

Appl2
def= (request, rq).Appl3

Appl3
def= (respond, rp).Appl

WS def= (request,>).WS1
WS1

def= (serve,µ).WS2
WS2

def= (respond,>).WS

S ys def= Appl ¤¢
L

WS
L = {request, respond}

¡
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Figure 2: The PEPA model of the web service and its underly-
ing derivation graph

4. ACTIVITY DIAGRAMS AND MARTE
In this section we describe our approach to performance

evaluation via UML2 activities, developed in the context of
MARTE. The specification of activities in the UML has
changed significantly with the transition from UML1.5 to
UML2. In this work we shall be concerned with the semantics
of the latest version. Unless otherwise stated, the term UML
refers to the UML2 specification in the remainder of this paper.
In this section we overview the meta-model of UML activities
with focus on the elements of interest for performance evalu-
ation using PEPA. The definitive reference for UML activities
is the UML2 formal specification [24].

An activity is a behavioural element of the UML which mod-
els the coordination of lower-level behaviours, both sequential
and concurrent, to carry out a computational step. An activ-
ity is represented as a graph of activity nodes connected by
two kinds of edges: control flows and object flows. Activity
nodes may be of three types: Action nodes, modelling a unit of
computation of the system; Object nodes, representing objects
existing at a given point during an activity; and Control nodes,
which are used for the coordination of flows. We are concerned
with control flows here. Figure 3 shows the UML elements
which will be considered for translation throughout this paper.

We use MARTE according to the activity-based approach
discussed in [23], Sect. 7.2.1.2.1 In particular, the extension
units of interest here are those of the Base Performance Com-

1Although this approach is described in the SPT specification,
similar arguments hold for MARTE. An easy-to-use correspon-
dence table between MARTE and SPT is provided in Annex H
of [25].



Figure 3: UML control nodes supported by the translation algorithm for PEPA.

pliance Case, except ETM (Enhanced Time Modelling): GRM
(Generic Resource Modelling), NFP (Non-Functional Proper-
ties), GAM (Generic quantitative Analysis Modelling), and
PAM (Performance Analysis Modelling). For the sake of com-
pleteness here we briefly summarise the relevant concepts
with regards to the interpretation for PEPA.

Performance evaluation may be carried out on activities
stereotyped with «GaScenario». Its cause property allows
the extraction of workload specification, stereotyped with
«GaWorkloadEvent». Closed patterns are supported, which
define the workload as a population of users which interpose
some thinking time between successive, cyclic executions of the
activity. We support specification of synchronous activities as
behaviour of action nodes to any depth of nesting, ultimately
leading to single atomic steps, i.e. behaviours which are not
further decomposable. This is to support iterative develop-
ment methodologies whereby operations originally described
as atomic are later turned into more fine-grained sub-activities
of the scenario. We refer to those as sub-scenarios as opposed
to the activity stereotyped with «GaScenario» which is called a
top-level scenario.

The atomic units of execution are stereotyped with
«PaStep». To denote the amount of time taken by a step
we use its hostDemand attribute. Meaningful applications
will typically have hostDemand = (exp(<time>), s) to indi-
cate an exponentially distributed delay with mean <time> sec-
onds. With similar considerations to [19] we take the infinite
resource assumption. Every step is assumed to be executed
by a dedicated process on exclusive processors—concurrency is
introduced solely by the synchronisation points in the activ-
ity diagrams. Consequently, the attributes host and concurRes
of a step need not be specified, nor can they be inferred from
the location execution or from deployment. Swimlanes may
be used, however they cannot explicitly represent the process
executing the steps (via application of the «PaRunTInstance»,
for example).

4.1 Example
Figure 4 depicts the activity diagram which will be used

throughout the remainder of this paper to illustrate a concrete

Table 1: Stereotype attributes for the activity in Fig. 4
Request Service
PaStep hostDemand=(exp(1/r1), s)
GaWorkloadEvent pattern=closed(population=10,

extDelay=(exp(1/think), s))
Pay and Wait
PaStep hostDemand=(exp(1/r2), s)
Take Order
PaStep hostDemand=(exp(1/r3), s)

throughput=out:orderTh
Fill Order
PaStep hostDemand=(exp(1/r4), s)
Delivery
PaStep hostDemand=(exp(1/r5), s)
Deliver Order
PaStep hostDemand=(exp(1/r6), s)
Collect Order
PaStep hostDemand=(exp(1/r7), s)
Select Payment Method
PaStep hostDemand=(exp(1/r8), s)
Charge Credit Card
PaStep hostDemand=(exp(1/r9), s)

utilization=out:ccUtil
Make Bank Transfer
PaStep hostDemand=(exp(1/r10), s)

application of the translation algorithm. (It is an adaption of
the activity diagram shown in [27], p 97, with the Pay action
expanded into a more fine-grained sub-scenario.) To reduce
clutter the stereotype attributes of interest are shown sepa-
rately in Table 1.

The activity starts off with one flow requesting some ser-
vice. As well as representing a unit of computation, this step
is stereotyped with «GaWorkloadEvent», thus describing the
external workload on the modelled system. In this case study,
the workload comprises a population of 10 components with
thinking time between successive requests with mean 1/think
seconds. The completion of this action triggers the execution
of two concurrent flows, concerned with payment and order



Figure 4: Running example. Top-level scenario (top diagram)
and sub-scenario for the Pay action (lower diagram).

processing. Once they both complete, the main flow continues
with delivery and collection, modelled as a sequence of steps.
The Pay action expands into a sub-scenario where a choice is
made between two available methods of payment. The sub-
scenario ends when the payment is completed.

The corresponding PEPA model is shown in Fig. 5. The
main concept underpinning the translation of the activity is
to model each flow in the activity as a PEPA sequential com-
ponent. A fork node with M outgoing edges introduces M −1
other flows, one being the continuation of the flow coming in.
Conversely, at join nodes with N incoming edges, N −1 flows
end, and the remaining flow continues with the behaviour
described by outgoing edge. The algorithm visits the activ-
ity diagram in such a way that the flow which initiates the
activity is let through the join nodes until the activity is termi-
nated. This is accomplished via a depth-first visit of the activ-
ity diagram from the initial node. In the example this main
flow performs the actions {RequestService, Pay, DeliverOrder,
CollectOrder}, whereas the second flow performs {TakeOrder,
FillOrder}. Notice that the main component is also assigned
the execution of the Pay sub-scenario. In addition, the choice
as to which outgoing behaviour from a fork node to assign to
the main component is arbitrary.

An alternative model is possible, in which the main
component performs {RequestService, TakeOrder, FillOrder,

Think def= (doThink, think).Start
Start def= (doRequest,>).Think

RequestService def= (doRequest,r1).SelectPayment
SelectPayment def= (payAndWait,r2).

(doSelectPayment,r8).PaymentType
PaymentType def= CreditCard+BankTransfer

CreditCard def= (doCharge,r9).EndSubScenario
BankTransfer def= (doTransfer,r10).EndSubScenario

EndSubScenario def= (doDelivery,r5).DeliverOrder
DeliverOrder def= (doDeliverOrder,r6).CollectOrder
CollectOrder def= (doCollect,r7).Finish

Finish def= RequestService
TakeOrder def= (payAndWait,>).

(doTakeOrder,r3).FillOrder
FillOrder def= (doFillOrder,r4).Delivery1
Delivery1

def= (doDelivery,>).TakeOrder
System def=

((
Think[10] ¤¢

doRequest
RequestService

)

¤¢
doDelivery,payAndWait

TakeOrder
)

Figure 5: PEPA model extracted from the activity diagram in
Fig. 4

DeliverOrder, CollectOrder} and the other flow is in charge
of the Pay operation. Although not identical to the former,
this model yields the same performance results, because the
underlying Markov chain is the same. The PEPA description
of this alternative case is shown in Fig. 6.

The definitions for the workload components are not shown
because they are unaffected. In both cases, synchronisation
points are described by the shared action types payAndWait,
which represents the fork, and doDelivery, which represents
the join.

The workload is represented as an array of components
which is composed with the system thus generated. Each ele-
ment of the array is a two-state component cycling through the
actions doThink and requestService, the latter being shared
with the main component. It is worthwhile noticing that
the description of the workload as a composition of indepen-
dent automata may reduce the size of the underlying CTMC
when aggregation techniques (see [12]) are employed during
the exploration of the state space.

5. ALGORITHM
This section discusses how to perform automatic mapping of

activity diagrams onto PEPA performance models. The pro-
cedure takes as input an activity diagram stereotyped with
«GaScenario» and consists of three main steps. In the first
step, a number of preconditions are checked and the diagram
may be subjected to graph transformation. This is discussed
in Sect.5.1. The second step performs a depth-first visit of
the diagram by starting from the initial node. This is done
by means of a function called visitNode whose generic signa-
ture takes as input the control node to be visited as well as a
label uniquely identifying the flow in which the node is exe-
cuted. The function returns a (PEPA) constant, which repre-
sents the initial component that starts off the execution of the
visited node. To reduce clutter, we assume that i.e., visitNode
behaves polymorphically according to the type of the node that



RequestService def= (doRequest,r1).TakeOrder
TakeOrder def= (payAndWait,>).

(doTakeOrder,r3).FillOrder
FillOrder def= (doFillOrder,r4).Delivery

Delivery def= (doDelivery,>).DeliverOrder
DeliverOrder def= (doDeliverOrder,r6).CollectOrder
CollectOrder def= (doCollect,r7).Finish

Finish def= RequestService
SelectPayment def= (payAndWait,r2).

(doSelectPayment,r8).PaymentType
PaymentType def= CreditCard+BankTransfer

CreditCard def= (doCharge,r9).EndSubScenario
BankTransfer def= (doTransfer,r10).EndSubScenario

EndSubScenario def= (doDelivery,r5).SelectPayment
System def=

((
Think[10] ¤¢

doRequest
RequestService

)

¤¢
doDelivery,payAndWait

SelectPayment
)

Figure 6: Alternative PEPA model from the activity diagram in
Fig. 4. The main flows goes along the right hand side outgoing
edge of the fork node.

is passed. The pseudocode for each supported control node is
presented in Sect. 5.2, accompanied by references to the run-
ning example (cfr. Fig. 4) as a concrete application. The visit of
the graph provides the PEPA description of the activity. In the
third step, this is composed with the description of the applied
workload to obtain the performance model of the whole system
(Sect. 5.3). Finally, this section concludes with a discussion
on the non-functional properties that are available as output
results from the model analysis (Sect. 5.4).

On a side note, it should be pointed out that we are aware
of recent work on PUMA [30], an intermediate representation
of the annotated design model (called Core Scenario Model)
which extracts only the information relevant to performance
analysis, thus easing the process of mapping to the target anal-
ysis technique. However, in the remainder of this paper we
deal with direct generation from UML models. This choice is
mainly due to the fact that Core Scenario Models are extracted
from models annotated with SPT, not MARTE. If a revision of
PUMA took account of the differences between the two pro-
files, the mapping to PEPA would greatly benefit from such a
framework.

5.1 Preconditions and Transformations
The main precondition that has to be checked is that activity

diagrams amenable to automatic translation into PEPA mod-
els must be directed acyclic graphs, with a single source. Dia-
grams may have more than one sink, however only one can
be an activity final node. The other sinks must be flow final
nodes. Future work shall be concerned with the relaxation of
such assumptions.

In accordance with the UML2 formal specification, control
tokens are placed at all the nodes that have no incoming edges.
If there are many, the execution of the activity will have dif-
ferent initial flows. We also recall that, as a consequence,
initial nodes are not compulsory. Thus, the assumption on
the number of sources restricts activities to having one initial
flow, whose execution is started by the initial node. However,
as far as the translation to PEPA is concerned this is a mild

Algorithm 1 Pre-processing of activity to allow multiple ini-
tial flows.

initialNode ⇐;
floatingNodes ⇐;
for Node n in Activity do

if size(n.incomingEdges) == 0 then
if n is InitialNodeType then

if initialNode == ; then
initialNode ⇐ n

else
initialNode.addOutgoingEdges(n.outgoingEdges)
delete n

end if
else

add n to floatingNodes
end if

end if
end for
if initialNode == ; then

initialNode ⇐ new InitialNodeType
end if
if size(floatingNodes) + size(initialNode.outgoingEdges) > 1
then

fork ⇐ new ForkNode
fork.outgoingEdges ⇐ InitialNode.outgoingEdges
fork.addIncomingEdge(initialNode)
for Node n in floatingNodes do

fork.addOutgoingEdge(n)
end for

else
if size(floatingNodes) == 1 then

initialNode.addOutgoingEdges(floatingNodes)
end if

end if

limitation because such a case may encompass activities with
implicit initial nodes as well as activities with more than one
initial flow. This can be accomplished by subjecting the orig-
inal activity to a pre-processing stage in which all the nodes
with no incoming edges fork explicitly from an initial node.

Algorithm 1 shows how to perform this transformation.
Examples of applications of this algorithm are shown in Fig. 7.
This transformation preserves the property that control tokens
are available at such nodes only when the execution of the
activity is started. From the point of view of performance
analysis, however, the two graphs are not equal if the activ-
ity is interpreted against the original PEPA semantics which
do not allow immediate actions. In this case, the execution of
the nodes is delayed by the action performed at the fork node,
whose duration is not instantaneous.

In the remainder of this section it is assumed that initial
nodes have only one outgoing edge. In fact, in the UML

Figure 7: Graph transformation for single-source activities.
Original activity (left) and transformed activity (right).



an initial node with multiple outgoing edges may be consid-
ered equivalent to a topology in which a central buffer node
is inserted between the node and the edges. A flow is then
selected by a non-deterministic choice. However, for the pur-
poses of software performance evaluation, the modeller may
replace non-determinism with probabilistic choice by interpos-
ing a decision node between the initial node and the edges. A
procedure may be used during the pre-processing state to per-
form such a transformation.

Control nodes are also assumed to have only one outgo-
ing edge. As the UML treats multiple outgoing edges as an
implicit fork, this requirement does not reduce the expressive-
ness of the underlying performance model, though it helps
reduce the clutter of the algorithm description. Again, we
may think of a pre-processing stage which creates explicit fork
nodes in such cases.

5.2 Node Visit Algorithms
In describing the algorithms we will make use of some util-

ity functions. getPEPAConstant(Node) creates a PEPA con-
stant for a given node in the activity graph. Here we do not
want to have two different nodes with the same constant and
we cannot rely on the node’s name because the UML does not
require them to be unique. Similarly, getActionType creates
a unique PEPA action type for a given activity node.

We also make use of globally-visible FIFO queues for each
flow identifier. Such queues record the flow’s alphabets, i.e. the
PEPA constants along the flow as they are found during the
visit of the graph. These operations are performed by Algo-
rithm 2. After creating the constant, it updates the system
equation if the input node is the first element of the flow. Of
particular interest is the first element of the queue which is
the initial local state of the flow. When the flow terminates
(because of a join), the first element is used to reset the local
component. As far as the extraction algorithm is concerned,
only the head of the queue is strictly necessary. However, the
whole alphabet of the sequential component comes into play
when the model’s output variables are to be processed, as dis-
cussed in Sect. 5.4.

Algorithm 2 Create Constant for Node node, flow f low
Require: S current system equation

Constant C⇐ getPEPAConstant(node)
enqueue C into f low.alphabet
if size( f low.alphabet) == 1 then

if S ==; then
S ⇐C

else
coop ⇐ new Cooperation
coop.leftHandSide ⇐ S
coop.rightHandSide ⇐C
S ⇐ coop

end if
end if
return C

As we visit the graph, we keep track of the first action that
is executed by the system. This may be either an atomic action
executed by a node, or a fork action. This information will
be used to create a synchronisation point between the closed
workload and the activity model. This action type is held in
the WorkloadSyncAction variable. As is common with graph
exploration algorithms, we assume that there exists a func-

tion to mark nodes that have been already visited. This is of
particular importance during the visit of join nodes (see Algo-
rithm 6).

The function getParent alters the system equation of the
underlying PEPA performance model. It takes a constant as
input and returns the cooperation operator in the system equa-
tion which is the parent of that PEPA constant. If the pre-
requisite that the constant is known to appear in the system
equation is satisfied, the parent exists and is unique because
a PEPA model’s system equation is a binary tree.2 The tree
is manipulated using its node’s attributes leftHandSide and
rightHandSide, holding pointers to its children. The actionSet
attribute offers a pointer to the cooperation’s action set.

The function getRate is called on nodes that in the PEPA
interpretation represent atomic units of execution (forks, joins,
and action nodes), and return the parameter of the exponen-
tially distributed variable associated to that action. That
is inferred from the hostDemand property of the stereotype
«PaStep» which must be applied to such nodes.

Finally, as stated above activities have only one final activ-
ity node. As this will be translated to a PEPA constant, we
define a function getFinalNode that returns the PEPA term
corresponding to the final node.

5.2.1 Initial nodes
Algorithm 3 shows the pseudocode for the initial node of

the activity, which simply visits its sole outgoing node. In the
example, Request Service is visited.

Algorithm 3 Visit Initial Node node, flow f low
return visitNode(node.target, f low)

5.2.2 Action Nodes
Algorithm 4 is concerned with the transformation of an

action node, i.e., an atomic unit of execution along a thread’s
flow, which will be mapped onto a PEPA prefix. Information
on the duration of the activity is gathered from the «PaStep»
stereotype which must be applied to the node. In partic-
ular, the hostDemand non-functional property will be pro-
cessed. Because of the Markovian interpretation of the per-
formance model, values must indicate an exponentially dis-
tributed delay. In MARTE, this can be accomplished by using
VSL expressions as in Table 1.

Algorithm 4 Visit Action Node node, flow f low
if isFirstActionVisited == false then

WorkloadSyncAction⇐ doActioni
isFirstActionVisited = true

end if
C⇐ createConstant(node, f low)
TargetTerm ⇐ visitNode(node.target, f low)
rate⇐ getRate(node)
action⇐ getActionType(node)
add C def= (action,rate).TargetTerm
return C

For instance, Request Service is an action node that is pro-
cessed with this algorithm. The target term in this case is the

2Here we are not concerned with degenerate cases where there
is only one sequential component in the system.



constant corresponding to Select Payment Method. The compo-
nent returned is RequestService. Notice that Request Service
is the first action to be visited, hence the action type the sys-
tem workload synchronises upon is doRequest. In addition,
this action is the first of its flow. When the constant is cre-
ated, manipulation of the PEPA system equation takes place
to add this new sequential component. The same manipula-
tion applies when TakeOrder is visited, because it represents
the initial component of the second flow.

5.2.3 Fork Nodes
Algorithm 5 describes the mapping of fork nodes. The role

of this algorithm is twofold. First, it create new flows. The
outgoing edge that is first visited is assigned the same flow
as the incoming edge. A new flow identifier is given to each
of the remaining edges. This is how sequential components
are updated in the system equation. Second, it modifies the
PEPA system equation by making the outgoing flows synchro-
nise over the fork action which is uniquely assigned to that
node. In this framework a fork is a non-instantaneous action
which must be stereotyped with «PaStep» to retrieve the dura-
tion associated with it. The resulting multi-way synchronisa-
tion between the outgoing flows is such that the overall rate
of the shared activity is dominated by the component which is
first visited. It is assigned the delay specified in the «PaStep»
attributes, whereas the other components are passive.

Algorithm 5 Visit Fork Node node, flow f low
forkAction⇐ getActionType(node)
if isFirstActionVisited == false then

WorkloadSyncAction⇐ forkAction
isFirstActionVisited = true

end if
isFirstChild ⇐ true
for edge ∈ node.outgoingEdges do

if isFirstChild == true then
flow c ⇐ f low
rate⇐ getRate(node)

else
flow c ⇐ new flow
rate⇐>

end if
TargetTerm ⇐ visitNode(edge, f low)
prefix (forkAction,rate) to TargetTerm
if isFirstChild == true then

isFirstChild ⇐ false
FirstChild⇐TargetTerm

else
coop ⇐ getParent(TargetTerm)
add {forkAction} to coop.actionSet

end if
end for
return FirstChild

A concrete application of this algorithm is illustrated by the
components Pay and TakeOrder in the example. Here, the call
action node Pay is executed within the first flow. On the other
hand, TakeOrder is the initial state of the second flow. The
fork that starts off its execution is modelled as the cooperation
on the shared action payAndWait. (In the example, the action
type is named after the node’s name.) Finally, notice that the
component that is first visited executes at an active rate. Here,
the active component is SelectPayment, the PEPA component

mapping the first action node of the sub-scenario. On the other
hand, TakeOrder is given a passive rate.

5.2.4 Join Nodes
Join nodes may have multiple incoming edges but must have

only one outgoing edge. The algorithm for such nodes (see
Algorithm 6) assigns the outgoing edge the same flow as the
incoming edge that first visits the join node. All the other
flows terminate their execution. The analysis of steady-state
behaviour is an important preliminary to the main purpose of
software performance evaluation. For the system to exhibit
such behaviour, components must cycle. Hence, flow termina-
tion is interpreted as the component going back to its initial
state, as recorded in the flow’s alphabet data structure.

Algorithm 6 Visit Join Node node, flow f low
joinAction⇐ getActionType(node)
if isFirstVisit(node) then

TargetTerm ⇐ visitNode(node.target, f low)
rate⇐ getRate(node)
JoinProcess⇐ Joini

def= (joinAction,rate).TargetTerm
coop ⇐ getParent(TargetTerm)
add {joinAction} to coop.actionSet

else
InitialTerm⇐ f low.alphabet.first()
add joinAction to parent cooperation of InitialTerm
JoinProcess⇐ Joini,f

def= (joinAction,>).InitialTerm
setFirstVisit(node)

end if
return JoinProcess

The treatment of join nodes is symmetrical to that of fork
nodes. The join’s unique action type is retrieved to add this
synchronisation point to the system equation. A join is mod-
elled as a multi-way synchronisation between all the compo-
nents which model its incoming flows. A join node is visited
as many times by the algorithm as the number of its flows.
The first flow which visits the join is assigned an active rate,
the other being passive. Similar arguments to the case of fork
nodes hold for the choice of the active component.

With respect to the sample activity diagram, the behaviour
of the join Delivery is expressed by the two components
Delivery and Delivery1. Delivery is a local derivative of the
first flow, exposing the action doDelivery which is to be exe-
cuted in cooperation with Delivery1, a local derivative of the
second flow. After the action is performed, the first compo-
nent will behave as the outgoing node from the join, thus it is
assigned an active rate. Instead, Delivery1 is passive and loops
back to its initial state.

5.2.5 Decision and Merge Nodes
Although decision and merge nodes share the same nota-

tion, decision nodes choose between flows, while merge nodes
bring together multiple alternate flows. We model decision
nodes as PEPA choices (see Algorithm 7). For example, the
decision node in the sub-scenario is modelled with the process
definition PaymentType def= CreditCard+BankTransfer.

The algorithm for merge nodes simply returns the term of
their target node (see Algorithm 8).

5.2.6 Call Action Nodes
Algorithm 9 is concerned with the mapping of Call Action

nodes. Although such nodes may indicate any UML behaviour



Algorithm 7 Visit Decision Node node, flow f low
C⇐ createConstant(node, f low)
ChoiceSet⇐;
for target ∈ node.targets do

TargetTerm ⇐ visitNode(target, f low)
add TargetTerm to ChoiceSet

end for
add C def= createChoice(ChoiceSet)
return de f

Algorithm 8 Visit Merge Node node, flow f low
return visitNode(node.target, f low)

(such as, for instance, interactions, state machines, or use
cases), here we restrict ourselves to a call of an activity, which
represents a sub-scenario. This activity inherits the flow iden-
tifier of the incoming edge to the node. Another task per-
formed by the algorithm is to link the final activity node of
the nested activity with the outgoing edge of the node (oth-
erwise the nested activity’s final node would be mapped as a
term going back to the initial term of the nested activity).

Algorithm 9 Visit Call Behaviour Node node, flow f low
activity ⇐ node.getNestedActivity()
StartTerm⇐ visitNode(getInitialNode(activity), f low)
TargetTerm ⇐ visitNode(node.target, f low)
EndTerm⇐ activity.getFinalNodeTerm()
EndTerm.rightHandSide ⇐ TargetTerm.rightHandSide
remove TargetTerm
return StartTerm

In the example, StartTerm will be the first action of the sub-
scenario, SelectPayment. TargetTerm will be (doDelivery,0.5).
DeliverOrder. Before the substitution of the two right hand
sides, EndTerm is defined as EndTerm def= SelectPayment.

5.2.7 Final Nodes
The UML has two kinds of control nodes that stop an activ-

ity flow: ActivityFinalNode and FlowFinalNode. When a token
reaches the former, all the concurrent flows in the activity are
terminated. The latter terminates the flow that arrives at it
with no effect on the others. We model flow final nodes as
PEPA terms that make the sequential component loop back to
its initial state. The algorithm is straightforward and is shown
in Algorithm 10.

Algorithm 10 Visit Flow Final Node node, flow f low
return f low.al phabet. f irst()

The visit of an activity final node is similar, however a pro-
cess definition is added to the model description. If the node
belongs to a sub-scenario, it serves as a the placeholder that
will be manipulated during the visit of the call action node, as
discussed in 5.2.6. The top-level scenario’s activity final node is
termed Finish and corresponds to the main flow’s initial state.

5.3 Workload
Once the translation of the activity is completed, the system

is ready to be composed with the components that model the
applied workload. The procedure is shown in Algorithm 12.

Algorithm 11 Visit Activity Final Node node, flow f low
C⇐ createConstant(node, f low)
TargetTerm⇐ f low.alphabet.first()
add C def= TargetTerm
return C

Workloads are supported in the form of closed arrival pat-
terns. Each individual is translated as a sequential compo-
nent which cycles through the following local states: an idle
state where the component spends some thinking time, and a
state where the execution of the activity is triggered. Those
two states correspond to the Thinking and Requesting defini-
tions, respectively. The former performs an unshared action
delayAction, the latter synchronises with the rest of the sys-
tem over the first action that is performed by the activity. Here,
the workload component is passive with respect to this cooper-
ation.

The algorithm requires that the cause of «GaAnalysisCon-
text» be a «GaWorkloadEvent» whose pattern property is a
ClosedPattern. The actual parameters of the workload are
extracted from the non-functional properties population and
extDelay.

Algorithm 12 Composition of workload

Thinking def= (delayAction,extDelay).Requesting
Requesting def= (WorkloadSyncAction,>).Thinking
newcoop ⇐ new Cooperation
newcoop.leftHandSide ⇐Thinking[population]
newcoop.rightHandSide ⇐ systemEquation
add WorkloadSyncAction to newcoop.actionSet
systemEquation ⇐ newcoop

5.4 Output variables
In MARTE, performance measures of interest to the mod-

eller may be specified as output variables denoting non-
functional properties of the system. We shall be concerned
with the specification of performance indices related to the
steady-state behaviour of the system. Particularly, a set of
procedures of the mapping algorithm is devoted to extracting
output variables for utilisation and throughput. Both indices
are directly supported by MARTE via attributes of «PaStep»
(as inherited attributes from «GaScenario»). As discussed in
Sect. 5.2, the stereotype «PaStep» is applied to fork nodes,
join nodes, action nodes, and call action nodes. In accordance
with the semantics of PEPA, however, output variables to such
nodes cannot be specified indiscriminately. The purpose of this
paragraph is to discuss in which cases output variables are
meaningful.

Action nodes may have output variables regarding utilisa-
tion as well as throughput measures. An example of through-
put measure is the out:orderTh variable assigned to the
throughput property of Take Order. Utilisation is specified as
in the utilization property of Charge Credit Card through the
variable out:ccUtil. Fork and join nodes support the speci-
fication of throughput variables only. The result indicates the
rate at which the underlying shared action is performed by the
system in the steady state. All the remaining nodes and edges
in the diagram do not support any other specification of output
variables.



5.4.1 Calculation of utilisation
Let N be the number of sequential components in the sys-

tem and M < N be the workload population. The generic state
si ∈ S of the CTMC underlying the PEPA performance model
may be denoted as (Workloadi,Systemi), 1 ≤ i ≤ |S|, where
Workloadi is an M-tuple describing the state of the workload
components, and Systemi is the (N − M)-tuple of the activity
state. Let the system tuple be indexed by j : 1 ≤ j ≤ (N − M).
We denote as S ystemi, j the element at index j of the system
tuple of state i. Let A j be the alphabet of the flow mod-
elled by the element j of the system tuple. We have that
A j ⊆

⋃
1≤i≤|S|Systemi,j. Finally, let π be the equilibrium distri-

bution of the CTMC. The utilisation Ua j of a local derivative
a j ∈A j is calculated as follows:

Ua j =
∑
i
πi ,1≤ i ≤ |S|,Systemi, j = a j

In the model in Fig. 5, N = 12, M = 10. Suppose we wish to
calculate the utilisation of the action node FillOrder. That is
a local derivative of the second flow, whose alphabet is A2 =
{FillOrder,TakeOrder}. Notice that this is only a subset of the
states of the flow, as the unnamed state (doTakeOrder,0.33).
FillOrder is not a member of the alphabet. However, according
to Algorithm 4, every action node is assigned a labelled local
derivative, which is added to the flow’s alphabet. In this case,
the node’s label is identical to the local state’s name and it is
the value of a j to be used in the formula for utilisation.

5.4.2 Calculation of throughput
The throughput of an action α∗ can be calculated from the

labelled transition system of the underlying PEPA model as
follows. Let Bsi be set of activities enabled by state si . The
throughput T (α∗) is:

T (α∗)=
∑
i
πi ·

∑{
r : (α,r) ∈Bsi ,α=α∗}

Each activity node whose throughput calculation is allowed
is assigned an unique action type. For instance, the through-
put of the node Fill Order is computed as T (doFillOrder). The
throughput of the fork action Pay and Wait is obtained by cal-
culating T (payAndWait).

6. TOOL SUPPORT
The translation algorithm has been implemented as a plug-

in for Rational Software Architect (RSA) v7, a leading UML
modelling tool. The plug-in is based on the implementation
of the MARTE profile for RSA, available at the OMG MARTE
web site [22].

Rational Software Architect is implemented on the Eclipse
development environment and can be extended by special-
purpose software services. Our software tool contributes an
Eclipse view (Performance Results) to the platform, from which
all the operations concerning the extraction and analysis of the
PEPA performance model are accessible. The view is linked
with the active editor of the Rational Software Architect work-
bench, and can be in one of the following states:

Inactive If the active editor is not showing an activity dia-
gram or the activity diagram is not stereotyped with
GaScenario.

Model Extracted When the underlying PEPA performance
model has been generated.

Model Analysed If the analysis of the performance model
has been successfully completed.

Model extraction and analysis is carried out by using ser-
vices of PEPAto, the Java-based API for PEPA to manipulate
the model’s abstract syntax tree and run the CTMC solvers.
PEPAto is a constituent plug-in of the PEPA Eclipse Plug-in
Project, which is fully compatible with RSA v7.x.

When the performance model is extracted, the view is popu-
lated with the output variables which define the performance
measures of interest to the modeller. The variable are pre-
sented in a tree-like fashion, according to the «ExpressionCon-
text» in which they are defined. Performance analysis is not
automatically run after model extraction, rather it is triggered
by a toolbar menu item in the view. When the model is solved,
the tree is updated with the values as calculated by the anal-
yser.

In the spirit of MARTE, the tool has been designed to
hide the underlying formal method and its underpinnings and
present the modeller with an interface which exposes concepts
only from the vocabularies of the UML and MARTE. Thus
modellers using the tool do not need to be familiar with process
algebras in general or with PEPA in particular. The PEPA pro-
cess algebra plays the role of an intermediate language here,
allowing access to the powerful solution methods made avail-
able by the PEPA tools, without having to work in the PEPA
language directly.

Nevertheless, the tool also features a preview option for the
inspection of the process calculus model which may give a more
insighful perspective to the experienced theoretician. It is
worth pointing out that the PEPA model can be imported into
the RSA workbench and independently subjected to the range
of tools provided by the PEPA Eclipse project.

The implementation of our translation of UML activity dia-
grams to PEPA is available in our plug-in for RSA. This
can be downloaded from http://homepages.inf.ed.ac.uk/

mtribast/uml, providing further information on the product
and a link to the Eclipse update site from which the plug-in as
well as its dependencies can be downloaded.

7. CONCLUSION
We presented a procedure to systematically map UML

activity diagrams into PEPA models, which can be analysed
through the solution of the underlying CTMC. Diagram anno-
tations with the profile for MARTE are used to specify the tim-
ing behaviour of the actions and to denote the output variables
of concern to the modeller. In this paper we showed how to
extract steady-state performance indices such as throughput
and utilisation. Nevertheless, PEPA enables other forms of
analysis, including transient analysis, and model checking. We
consign to future work extension of this approach in order to
make such analysis techniques available in the context of soft-
ware engineering.

Because of the Markovian interpretation of the performance
model, our approach is restricted to activities with only activity
final node. (As discussed above, the diagram may have other
sinks, which must be flow final nodes.) Recall that, in the
UML, all concurrent flows are terminated when one reaches
a final node. However, the interleaving semantics for PEPA
does not allow us to faithfully model such a behaviour. For
instance, let us consider a system with two independent PEPA
components A and B evolving through a number of local states
A1,A2, . . .AM and B1,B2, . . .BN , respectively. If we wished to



Figure 8: Rational Software Architect v 7.0 featuring the plug-in for the extraction of PEPA models from activity diagrams. On
the left hand side the workbench shows the top-level scenario of the case study. Below is the Performance Results view from which
all the extraction tasks are accessible. It currently displays the model’s output variables and the latest values. On the right hand
side is the description of the extracted model opened with the PEPA Eclipse Plug-in Project. The Graph View, one of its constituent
views, displays the utilisation of the sequential component modelling the second flow of the system.

model a behaviour in which A may terminate each B, we could
define a shared action final which can be executed by B at any
state. Suppose that AM performs such an activity. Upon the
execution of the shared action, the systems goes back to its ini-
tial state. The model description is listed thus. The dots denote
actions that are performed independently.

A1
def= . . .

A2
def= . . .

. . .
AM

def= (final, r).A1
Bi

def= . . .+ (final,>).B1
1≤ i ≤ N

System def= A1 ¤¢
final

B1

Let us now consider the sub-space of the underlying CTMC
where the final action is enabled, that is, {AM ¤¢

final
Bi : 1 ≤ i ≤

N}. In any state, final is not the only enabled action as Bi
can perform its independent actions as well. Since PEPA is
not equipped with semantics for priorities, there is a non-zero
probability for that state not to perform the final action. So
long as this notion of graceful termination of activities is taken
into account, it is possible to adapt the proposed algorithms to
support diagrams with multiple action final nodes. It is also
worthwhile pointing out that in such an extension the mod-
eller has control over the probability that the final action is
performed by adjusting the rate associated to the activity.
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