
Choreographing Security and Performance Analysis for
Web Services

Stephen Gilmore1, Valentin Haenel1, Leı̈la Kloul2, and Monika Maidl3

1 Laboratory for Foundations of Computer Science, The University of Edinburgh, Scotland
2 PRiSM, Université de Versailles, 45, avenue des Etats-Unis, 78000 Versailles, France

3 Siemens AG, CT IC3, Otto-Hahn-Ring 6, 81739 München, Germany

Abstract. We describe a UML-based method which supports model-driven
development of service-oriented architectures including those used in Web ser-
vices. Analysable content is extracted from the UML models in the form of pro-
cess calculus descriptions. These are analysed to provide strong guarantees of
satisfactory security and performance. The results are reflected back in the form
of a modified version of the UML model which highlights points of the design
which can give rise to operational difficulties. A design platform supporting the
methodology, Choreographer, interoperates with state-of-the-art UML modelling
tools such as Poseidon. We illustrate the approach on an example.

1 Introduction

Web services must deliver secure services to users in order that financial and other
confidential transactions can be conducted without interference. Off-the-shelf solutions
are not available. Web services need to build end-to-end security from the point-to-
point security afforded by standard network protocols. Even if a secure system can be
created, scaling up to large user populations provides a steep challenge. The availability
of many different forms of assistance (caching, stateless session beans, process isolation
and others) means that the challenge of building scalable systems is complicated further
by difficult-to-quantify approaches to system performance tuning.

We have developed a design platform, Choreographer, which seeks to assist with
the development of secure systems with quantified levels of performance. To provide
an accessible entry point for practising Web service developers the methodology which
we support uses the UML. This is a novel feature of our work: we use a modelling lan-
guage where a specification language or process calculus might more often be used to
initiate the analysis. Many UML designs are not analysed either qualitatively or quan-
titatively. Here we provide support for both types of analysis, and illustrate the value of
the analysis via an example.

We use a range of UML diagram types to express the security and performance
considerations of the system. As a principle, we use standard UML notation: there are
no notational extensions or additional diagram types. This decision has two beneficial
consequences. First, a UML modeller using this methodology does not need to learn
any supplementary notation. Second, we are able to use standard UML tools such as
Poseidon [1] to edit the UML diagrams which we use.

M. Bravetti et al. (Eds.): EPEW 2005 and WS-FM 2005, LNCS 3670, pp. 200–214, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Choreographing Security and Performance Analysis for Web Services 201

We use class diagrams, collaboration diagrams, sequence diagrams and state dia-
grams to describe the system under study in UML terms. Additional diagram types
may be used in the UML project which is accepted as an input to Choreographer. These
can be used for other purposes in model-driven development, such as automatic code
generation, and will not interfere with the analysis process. Our aim is to disrupt exist-
ing model-driven development approaches as little as possible while adding value to the
UML modelling work which would be going on in any case.

Different models can be used for different purposes in the design of an application
and so the methodology supported by our design platform allows modellers to either do
a security analysis alone, or a performance analysis, or both. That is, the annotated ver-
sions of models which result from one run can be used again as inputs to Choreographer
to perform a different type of analysis. The consequence of this is that a modeller using
an established operational procedure to determine satisfactory levels of security (resp.
performance) can use our design platform to do performance (resp. security) analysis
alone. They are not forced to adopt both of the kinds of analysis which we offer if they
do not need both, or already have a preferred way to do one of them.

The original contribution of this paper is to present a UML-based methodology
for integrated security and performance analysis. The method is supported by a well-
engineered tool and set on the formal foundation of dedicated process calculi with cus-
tom analysers. We describe the UML-based methodology which Choreographer sup-
ports and discuss the implementation of the Choreographer platform itself. We describe
its use on a typical Web service creation problem: a Web-based micro-business. We
believe that the Choreographer software tool could also be used for high-level analy-
sis of other service-oriented architecture questions such as the assessment of service
discovery protocols but we do not demonstrate this in the present paper.

Structure of This Paper: The paper is structured as follows: the Choreographer analysis
tool is presented in Section 2. The example application is a web-based micro business,
described in Section 3. This is followed by a UML model and its associated performance
and security models in Sections 4, 5 and 6. Related work and conclusions follow.

2 Choreographer

One feature of the methodology which we support with the Choreographer design plat-
form tool is that modellers are able to express the models which are input to Choreog-
rapher in standard UML. The analysis process is initiated by invoking Choreographer
on a UML project archive. The formal content of the UML model is stored in such
an archive in an XML-based interchange representation (XMI). Software connectors
termed extractors process the XMI representation of the input model and derive an
analysable form of the model expressed in a process calculus. We use different process
calculi for security and performance analysis: LySa [2] for the former and PEPA [3] for
the latter.

Another key feature of the method is that the results of the analysis are reflected
back as a modified version of the original UML model. The reflectors which do this
are also available as software components which take the original UML project and

202 S. Gilmore et al.

the results of the analysers as inputs and write their results as complete UML projects
in which the results of the analysis have been incorporated. The purpose of this is to
ensure that the interpretation of the analysis results can be undertaken at the UML level
and that the UML is not being used only as a model description language from which a
process calculus representation is generated.

The Choreographer platform is designed to support UML-centered development but
is flexible enough to accommodate other modes of use in addition. These might simply
be preferred by designers or developers who are using the platform or they might be
needed to support a style of development favoured by the institution or software house
which commissioned the development. Thus, a guiding principle of the design of Chore-
ographer is that the processing of UML models should be made visible to the developer
in order that the mapping between UML diagram elements and constructs of the pro-
cess calculi beneath is transparent. This principle ensures that modellers have access
to the representations which are needed to understand how their diagram elements are
interpreted in the analysis process.

Fig. 1. The Choreographer user interface

In terms of its appearance, the Choreographer platform follows the conventional
design of an IDE, as seen in Figure 1. The main design area divides into an explorer
on the left, an editor on the right, and a message console beneath these. The explorer
provides a view onto the local file system which is structured in order to group related
documents into logical projects. The editor is language-aware with contextual modes:
we have implemented editors for the process calculi which we use in the security and
performance analysis process. The console is used to feed back to the user information
about the progress of commands or analyses which have been launched from the appli-
cation menus. Concise summaries of the analyses are printed into the console to allow
information about the outcome to be obtained without having to initiate the reflection
process and render the results in the Poseidon UML modelling tool.

Choreographing Security and Performance Analysis for Web Services 203

3 The Web-Based Business System

The case study provided by our industrial partner is a business-to-business Web ser-
vice to enable e-business based on a peer-to-peer authentication and communication
paradigm. The objective of this system is to provide support to micro web-based busi-
nesses which do not themselves have the capability to develop proprietary solutions for
e-business.

The service is accessible through both wired Internet connections and mobile
devices using standard protocols such as the wireless application protocol. The sys-
tem will present the various services offered by the service providers according to a
coherent layout and will provide an interface for service access. While users should
be able to process their transactions on a peer-to-peer basis, it is necessary to provide
a central portal at which users register and can search for services. Registration and
searching for services can be handled by UDDI.

The system naturally decomposes into three parts: the portal, service providers and
customers (Figure 2). The upper part of Figure 2 describes that part of the functionality
which involves the portal. The lower part concerns the peer-to-peer functionality.

The Portal. The portal enables remote data search and service navigation. Moreover
it constitutes the interface between the customers and the service providers during the
on-line business transactions. The e-business data management provides access to dis-
tributed products and services catalogues. The portal supports a significant number of
concurrent sessions while providing end-to-end security of the transactions.

The Service Provider. A new service provider joining the system first must register at
the portal. A registered service provider can publish its services onto the portal dynam-
ically. The list of its services can be accessed by any customer through the portal. Each
provider will be able to modify its published services list by adding a new product;
changing the characteristics of an existing one; or removing a service from the list. At
any moment, a service provider can quit the system by unregistering from the portal.
The service provider can also handle transactions directly with customers who have
registered at the service provider.

Service Provider

Service Provider

Service Provider

Service Provider

Customer

Customer

Customer

Customer

Portal

transaction

publish

search

register

search

transaction

register

Fig. 2. Architecture of the web-based business system

204 S. Gilmore et al.

The customer. Like the service providers, new customers have to register at the portal
before being able to use its services. The registered customers are informed by the portal
about available services, the newly published services, and the modified or removed
ones. The user may perform on-line transactions via the portal to buy products he is
interested in by selecting them from the list. The customers’ order requests are then
routed by the portal to the appropriate service provider. Alternatively, a customer can
choose to communicate peer-to-peer with a chosen service provider after registering
directly with this service provider.

4 UML Model of the System

We turn now to our model of the above system. The performance model of the sys-
tem consists of a collaboration between sequential object instances which undertake
timed activities either individually, or in collaboration with other objects. Thus the
UML diagram types which are used to describe this model are class diagrams (iden-
tifying the kinds of the objects in the system), state diagrams (detailing the behaviour
of the objects) and collaboration diagrams (introducing an operational configuration of
the system with named object instances collaborating on sets of activities).

Performance analysis of the system is conducted via the generation and solution of a
continuous-time Markov chain (CTMC) representation of the system, thus the durations
of all of the activities in the system are quantified by providing the parameter to a
negative exponential distribution.

The state diagram which represents a buyer in the system is shown in Figure 3.
Other components in the model are not much more complex than that of the buyers.

Figure 4 shows that the model of the service providers in the system have common syn-
chronisation points with the buyers (reflecting exchanges which are not routed through
the central portal in the system, for reasons of scalability). Where these synchronisation
points occur, one of the interacting components specifies the rate of occurrence of the
activity and the other passively co-operates with these activities.

Buyer Buyer1 Buyer2

Buyer3

new_request / rate(r)

update_request / rate(T)

get_product_list / rate(T)

select_product / rate(r1)

restart / rate(r2)

select_product / rate(r1)

restart /

check_out / rate(r3)

Fig. 3. State diagram of the Buyer in the Web-based micro-business model

Choreographing Security and Performance Analysis for Web Services 205

Provider

Provider0

Provider1

Provider2

update_request / rate(s)

transmit_order / rate(T)
get_own_list / rate(T)

add_product / rate(s1)

delete_product / rate(s2)

change_value / rate(r3)

quit / rate(s4)

process_order / rate(s5)

Fig. 4. State diagram of the Provider in the Web-based micro-business model

Principal

+ PK+:PublicKey
−PK−:PrivateKey
+ cert :Certificate
−ID:Document

+ msg (p:Msg):
+ checkmsg ():void
+ checkdecrypt ():void

<< principal >>

A

−NA:Nonce
−Key:SessionKey
−vcertB:Certificate
−vPKB:PublicKey
−vSKB:int
−vNB:Nonce

+ premsg1 ():void
+ postmsg2 ():void
+ premsg3 ():void

<< principal >>

B

−NB:Nonce
−vKey:SessionKey
−vCertA :Certificate
−vEKA:PublicKey
−vPKA:int
−vNA:Nonce

+ postmsg1 ():void
+ presmg2 ():void
+ postmsg3 ():void

Fig. 5. The class diagram for the principals involved in secure transactions

In the UML design, security relevant information is specified by the ForLySa pro-
file [4], which provides the means to annotate class diagrams and sequence diagrams
with security-specific data. More precisely, ForLysa allows us to specify cryptographic
security protocols with two participants (A and B) who typically exchange a new
session key. Such protocols use cryptographic concepts like cryptographic keys and
nonces, which are provided by two classes in the ForLysa profile: the class Msg for
messages and the class Principal for participants of the protocol. The class Msg has
attributes holding the sender and receiver of the message and the encrypted and unen-
crypted payloads of the message; the latter are objects of appropriate classes, and these
classes contain methods for encrypting and decrypting data. The class Principal con-
tains attributes for the private/public keys or symmetric keys associated with a principal,
and specifies methods for sending and checking of messages.

206 S. Gilmore et al.

i:A j:B

: msg(out)

: postmsg1

: checkdecrypt

: premsg2

: msg(out)

: premsg

: postmsg2

: checkdecrypt

: checkmsg

: premsg3

: msg(out)

: checkmsg

: postmsg3

: checkdecrypt

cryptoPointA

cryptoPointB

Fig. 6. The sequence diagram of the protocol for the principals involved in secure transactions

As an example, we show the UML design in Choreographer of the cryptographic
security protocol described in Section 6, consisting of a class diagram and a sequence
diagram. The class diagram, shown in Figure 5, specifies two principals A and B, as
subclasses of Principal, which have attributes to hold the data generated or acquired
during a run of the protocol.

The sequence diagram in Figure 6 describes the exchange of messages between
A and B which defines the protocol. For each message, first the sender prepares and
encrypts the content in method premsg by providing values for the attributes of a vari-
able out of class Msg. When receiving a message, the recipient checks its contents
(eg. correct addresses) with method checkmsg, then decrypts the encrypted parts with
method postmsg. This assigns a value to the attribute which holds the decrypted content
of the message. The decrypted part is then analysed in checkdecrypt where the receiver
checks that the content has the required format. Figure 5 shows the call sequence for
these methods, while the body of each method is specified by constraints which are not
visible in the diagram.

5 Performance Analysis

The performance analysis of the above UML project proceeds by extracting a perfor-
mance model in Hillston’s Performance Evaluation Process Algebra (PEPA) [3]. This
extraction is performed automatically by the Choreographer design platform.

Choreographing Security and Performance Analysis for Web Services 207

5.1 The PEPA Model

The objects whose behaviour is specified by state diagrams in the UML model give
rise to PEPA components in the process algebra model. The first component, Portal,
models the behaviour of the interface between the service providers and the customers.
The second component, Provider, models any provider registered in the system. The
last component, Buyer, is used to model the behaviour of a customer. Note that in this
model, we assume that both buyers and providers are already known to the system: they
have already registered.

Component Buyer. In an on-line transaction, the system user starts by sending a request
to the portal about a specific product he is interested in—for example, books. This can
be done by a simple click on the icon titled “Books” in the main pages of available prod-
ucts provided by the portal. This is modelled by action type new request. The response
of the portal is to send to the customer the catalogue or list of books available with all
characteristics. We model this using action type get product list. Once the customer has
the targeted list, he can select all the items he wants (action select product) and then go
to the check out (action check out). This last step allows the buyer to place an order for
selected items. At any moment the customer can change his mind and stop the process.
This is modelled using action type restart. Note that action type get product list has an
unspecified rate in component Buyer because the rate is defined by the portal which will
send the list of products at his rhythm.

Buyer
def= (new request, r).Buyer1 + (update request,�).Buyer

Buyer1
def= (get product list,�).Buyer2

Buyer2
def= (select product, r1).Buyer3 + (restart, r2).Buyer

Buyer3
def= (select product, r1).Buyer3 + (restart, r2).Buyer

+ (check out, r3).Buyer

Component Provider. Once a service provider is registered, he may either send a
request to the system to update the list of products or services he has published or
receive an order from the portal. The former is modelled using action type
update request and the latter using action type transmit order. In the first case, he
will receive the list of services he owns (action get own list) and can then make all
of the changes which he wants to using action types add product, delete product and
change values. Once he is finished with the updates he can leave the system (action type
quit). In the second case, he will consider the customer order and do what is necessary
to satisfy the request. This is modelled using action type process order.

Provider
def= (update request, s).P rovider0 + (transmit order,�).P rovider2

Provider0
def= (get own list,�).P rovider1

Provider1
def= (add product, s1).P rovider1 + (delete product, s2).P rovider1

+ (change values, s3).P rovider1 + (quit, s4).P rovider

Provider2
def= (process order, s5).P rovider

208 S. Gilmore et al.

Component Portal. The portal manages both the buyers and the providers. All activ-
ities of component Portal are synchronizing activities, either with the buyers or the
providers.

Portal
def= (new request,�).Portal1 + (update request,�).Portal3
+ (select product,�).Portal1 + (restart,�).Portal
+ (check out,�).Portal2 + (get product list, v1).Portal1

Portal1
def= (get product list, v1).Portal1 + (select product,�).Portal1
+ (restart,�).Portal + (check out,�).Portal2
+ (new request,�).Portal1

Portal2
def= (transmit order, v).Portal + (select product,�).Portal2
+ (restart,�).Portal2 + (check out,�).Portal2
+ (new request,�).Portal2 + (get product list, v1).Portal2

Portal3
def= (get list, v2).Portal3 + (add product,�).Portal3
+ (delete product,�).Portal3 + (change values,�).Portal3
+ (quit,�).Portal

The Complete System: The behaviour of the actors of the online system and their
interactions between each other are captured by component Web Business which is
defined as follows:

Web Business
def=

(Buyer ��
K

. . . ��
K

Buyer) ��
L

(
(Provider|| . . . ||Provider) ��

M
Portal

)

where the synchronising sets are defined as follows:

K = {update request}
L = {new request, get product list, select product, restart, check out,

update request}
M = {update request, get own list, transmit order, add product,

delete product, change values, quit}

Remark: The use of action update request in component Buyer ensures that during the
updates of a product list by its owner, the buyers do not have access to this list. As all
components of the model must synchronise on update request, it will not be enabled
unless all occurrences of component Buyer are in their initial state.

5.2 Numerical Results

In this section we give an idea of the performance measures which we can compute in
the context of such an application. We are mainly interested in the throughput of the
portal. We consider a system composed of five buyers and one provider. This simple
system allows us to retain intellectual control of the behaviour of the throughput in a
system with a portal based architecture. All curves are plotted as a function of the arrival
rate r of the requests of one buyer.

Choreographing Security and Performance Analysis for Web Services 209

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 1 2 3 4 5 6 7 8 9 10

t
h
r
o
u
g
h
p
u
t

(
r
e
q
u
e
s
t
s
/
s
)

Arrival rate (r)

"Total throughput"
"Transmit"

(a) Total throughput

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10

T
h
r
o
u
g
h
p
u
t

(
r
e
q
u
e
s
t
s
/
s
)

Arrival rate (r)

"get_own_list"

(b) Throughput for provider requests

Fig. 7. Throughput computation

– Figure 7(a) depicts the total throughput of the portal in terms of buyer’s requests to
get a product list and to select a product from a list, and the provider’s requests to
get its own list. This figure also gives the throughput part related to the transmission
of the orders to the provider. As we can see, the transmission of the buyer’s orders is
a very small part of the throughput of the system. This may be explained by the fact
that the buyers spend the greater part of their time selecting products. Moreover,
once an item is selected, a buyer may decide to abandon or restart. Thus not all
buyers end up checking out with purchases.

– Figure 7(b) shows the behaviour of the part of the portal throughput related to
the provider requests (get own list). Unlike what we have seen in Figure 7(a), this
throughput decreases as the arrival rate increases. As we have more requests from
the buyers, the portal spends more time dealing with these requests, and thus less
time with the provider requests.

6 Security Analysis

The security of a networked service depends heavily on the ability of users to send
confidential messages via wireless or Internet connections, and to confirm the identity
of the partner in their message exchange. Cryptographic techniques are usually used
both to ensure the confidentiality of messages and for authentication.

But cryptography is not a magic wand to make everything all right. The main issue
is that sending encrypted messages is only safe if only the authorized parties have the
corresponding key. So data security becomes a key management problem [5], and the
main task consists of designing an appropriate protocol for authenticated key exchange.
Such a protocol allows two or more participants to exchange a cryptographic session
key in such a way that the participants are assured that only the intended parties obtain
the session key. Confidentiality and integrity of data is then guaranteed by encrypting
all data with the session key. The main tool for providing proper authentication in such
a key-exchange protocol is again cryptography, and hence an analysis tool must be
able to deal with cryptographic concepts. Before describing the LySatool [2] used by
Choreographer, we first discuss the security requirements of the web-based business

210 S. Gilmore et al.

system, and show the key exchange protocol chosen for the project. The protocol can
be realised by the use of WS-Security, which provides all of the necessary mechanisms.

6.1 Security Analysis for the Web-Based Business System

In the case study, all communication should be encrypted to guarantee data confiden-
tiality and integrity. This means that before starting a data exchange, a service provider
and a customer or the portal and a user have to use a protocol for authenticated session
key exchange.

For this protocol, there is a choice between using either symmetric cryptography or
public key cryptography in a protocol for authenticated key exchange. When using sym-
metric key cryptography, the communication has to be conducted via a central server,
and all users have to share initial symmetric keys with the server. The design goal of the
project of providing peer-to-peer communication between service providers and cus-
tomers would be violated if communication between users necessarily involved a cen-
tral server. Moreover, initial distribution of secret symmetric keys is difficult to achieve
in a practical way. Hence a protocol based on public key cryptography is used. In order
to link a user identity U to a public key, it is essential to use certificates certU , e.g.
X.509 certificates, which are signed by some trusted certification authority.

(1) A → B: A, certA
(2) B → A: {B, NB}:K+

A, certB
(3) A → B: {A, NB, KAB}:K+

B

The aim of the protocol is to provide authenticated key exchange between A and B,
i.e. after the exchange both A and B are assured that only they know the new session
key KAB . More precisely, correct authentication is achieved by the protocol if A can
be sure that message (3) can only be decrypted by B, while B knows that message (3)
can only be sent by A.

6.2 LySa Model of the Protocol

The informal notation of the protocol used above leaves implicit a number of assump-
tions and does not completely describe actions such as decrypting with a certain key,
comparing nonces, and checking certificates. Moreover it is crucial to specify the envi-
ronment in which the protocol is executed, i.e. the actions which potential attackers can
perform.

For a formal analysis, these assumptions have to be specified. LySa provides a for-
mat for this, which is essentially a process algebra, enriched by cryptographic notions
such as encryption and decryption, symmetric keys, public and private keys, allowing it
to model authenticated key exchange protocols. More precisely, LySa is based on the π-
calculus. The main difference from the π-calculus and the Spi-calculus is that there are
no channels: messages can be arbitrarily intercepted and redirected. Moreover, pattern
matching is used to check that a message contains expected values (such as nonces),
and to bind values to free variables. Each participant in the protocol (in our case A and
B) is modelled by a separate process. Each message of the protocol corresponds to two

Choreographing Security and Performance Analysis for Web Services 211

actions: one performed by the sender who encrypts and sends the message, and one per-
formed by the receiver who decrypts the message, checks the content, and might store
parts of it.

As an example, consider message (3), sent from A to B. Sending of messages is
denoted by 〈. . .〉.

(newKAB)〈A, B, {|A, vNB , KAB|} : K+
B〉

The first argument in the 〈. . .〉 expression denotes the sender (A), the second the
recipient (B), and the rest is the content of the message. The content in this case
consists of only one, encrypted, part. The terms are either names such as A, B, and
KAB , or variables such as vNB which has been bound to the value of NB when A
received message (2). Sending message (3) is preceded by generating a new session
key KAB which nobody except A knows. This is modelled by restriction with the ‘new’
operator.

Input of a message is denoted by (. . .). We show the receiving action associated
with (3), which is performed by process B:

(A, B; x).decrypt x as {|A,NB ; vK|} : K−
B

An incoming message is matched with an output, whereby the terms before the
semicolon have to match while the variables after the semicolon are bound to values
after successful matching. Accordingly, the first term denotes the sender and the second
term denotes the recipient of the message. Encrypted terms are bound to a free variable
and decrypted in the next step. Pattern matching is again applied to the content of an
encrypted message. In the example, B only accepts the message if the first argument is
A, and the second is the nonce NB which B has chosen for message (2). Note that B
has to decide with which key to decrypt the message. For message (3), this is the private
key K−

B .
As described, the protocol consists of two classes of processes: the process for

A and the process for B. In the LySa model every participant can act either as A or
B. Moreover, the replication operator ! indicates that any pair of participants perform
an unlimited number of possibly concurrent sessions. The attacker built into the LySa
model has the usual powers of the standard Dolev-Yao attacker [6], i.e. they can use
all of the information obtained from messages sent between participants to compose
messages which can be sent to any participant.

6.3 Security Analysis with LySa

The analysis performed by the LySatool is to ask whether for multiple runs of the pro-
tocols between a number of participants, and in the presence of a standard (Dolev-
Yao) network attacker, correct authentication is guranteed. The underlying technique
is static analysis, more specifically the Succinct Solver Suite [7] provides the imple-
mentation of the solution procedures which are deployed to effect the analysis. LySa
has been designed to verify correct authentication, and can also check confidential-
ity of data. The analysis of correct authentication is based on the use of assertions,
which annotate the points in the protocol at which encryption and decryption takes

212 S. Gilmore et al.

place (‘cryptopoints’). At an encryption point these assertions specify the destinations
where it is believed that the complementary decryption can occur. At a decryption point
the assertions specify the points where it is believed that the complementary encryption
occurred.

For the key exchange protocol of the web-based business system, the LySa asser-
tions specify that message (3) is correctly authenticated. More precisely, sending of
message (3) is annotated with [at a3 dest b3] while receiving of message (3) has anno-
tation [at b3 orig a3].

Hence, the assertions state correct (mutual) authentication of the communicating
parties. The LySa tool checks whether an attacker is able to impersonate a legitimate
participant and hence violate correct authentication. If the analysis shows that all asser-
tions are correct in the presence of an attacker, we learn that the protocol guarantees
correct authentication.

We have analysed the key exchange protocol for the web-based business system
with LySa and shown that it provides authenticated key exchange. Moreover, we exper-
imented with variants of the protocol and showed that omitting data from messages in
the protocol makes it insecure. As an example, we show an attack which is possible
when omitting the name A in message (3):

(1) A → B: A, certA
(2) B → A: {B, NB}:K+

A, certB
(3) A → B: { NB, KAB}:K+

B

After A has started a regular session with B, the attacker I starts a parallel session
with B, and afterwards sends the response of B instead of the second message in the
first session. Then the intruder intercepts the response of A in the first session and
misuses it as message (3) in the second session.

(1) A → B: A, certA
(1’) I → B: I, certI
(2’) B → I: {B, NB’ }:K+

I

(2) IB → A: {B, NB’ }:K+
A

(3) A → IB: { NB’, K }:K+
B

(3’) I → B: { NB’, K}:K+
B

The result is that K is the new session key for the session A thinks she is conducting
with B as well as for the session between B and I . This means that I can intercept
messages encrypted by A with the key KAB and make B believe that the message
comes from I .

7 Related Work

With regard to the performance analysis of UML models there are a range of significant
prior works which have similarities with the performance-related part of our work. In
many cases, these map UML diagrams of various kinds to other analysable representa-
tions including stochastic Petri nets [8, 9], layered queueing networks [10], generalised

Choreographing Security and Performance Analysis for Web Services 213

semi-Markov processes [11] and others. Some works are particularly noteworthy for
their careful consideration of the role of the UML metamodel in the performance anal-
ysis process [12]. Our work has some similarities with the above, and many differences
(different diagram types, different performance analysis technology). Two things are
unique to our work here: an integrated technology for security analysis and the use of
reflectors to reflect the results of the analysis back to the UML level.

Other methodologies based on UML have been defined in order to specify security
aspects of designs. UMLsec by Jan Jürjens [13, 14] is a versatile profile that includes
a wide range of high-level security concepts like secrecy, integrity, no-down-flow, fair
exchange etc. and allows the user to specify hardware platforms such as LAN, smart
card, Internet and others. It is however not possible to specify correct authentication,
which is the main security requirement on the key exchange protocols which are part
of the case studies that we have considered. As in the UML content processed by
the LySa extractor, UMLsec protocols are specified by sequence diagrams, and the
constraints used in the sequence diagrams are similar. However, the UML use sup-
ported by the LySa extractor provides a means to specify cryptopoints in sequence
diagrams, which is an essential prerequisite for analysing correct authentication with
LySa.

8 Conclusions

We have presented a novel method for analysing security and performance questions
about UML-described systems which follow a modern, open design pattern. The classes
of behaviours understood within the system are described by class and state diagrams.
The interactions between object instances of these classes are described using collab-
oration diagrams and sequence diagrams. The Choreographer design platform auto-
matically processes descriptions of systems structured in this way, and packaged as a
UML project. Process algebra representations of the formal content of the diagrams are
extracted and passed to efficient analysers which check performance and security prop-
erties. The results of these analysers can be inspected directly or reflected back through
the Choreographer design platform in order to present all of the analysis at the UML
level.

Through the use of the UML as an interface to the security and performance analysis
process we hope that we have an accessible framework which could attract developers
facing difficulties in engineering secure systems with high performance to consider for-
mal analysis as a beneficial complement to their current design practices. There are
many benefits to the use of formal modelling and analysis methods, not the least of
which is the ability to display that due care and attention has been taken in the develop-
ment of secure services which are to be used in business-to-business contexts.

Acknowledgements. The work described in the present paper was undertaken while
the authors were supported by the DEGAS (Design Environments for Global Applica-
tionS) project IST-2001-32072 funded by the FET Proactive Initiative on Global Com-
puting. The Choreographer design platform is a Java application which has been suc-
cessfully tested on Windows and Red Hat Linux systems. It is available for download
from http://www.lfcs.ed.ac.uk/choreographer.

http://www.lfcs.ed.ac.uk/choreographer

214 S. Gilmore et al.

References

[1] Gentleware AG systems. Poseidon for UML web site, November 2004. http://www.
gentleware.com/.

[2] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H.R. Nielson. Automatic validation of
protocol narration. In Proc. of the 16th Computer Security Foundations Workshop (CSFW
2003), pages 126–140. IEEE Computer Security Press, 2003.

[3] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University
Press, 1996.

[4] M. Buchholtz, C. Montangero, L. Perrone, and S. Semprini. For-LySa: UML for authenti-
cation analysis. In C. Priami and P. Quaglia, editors, Proceedings of the second workshop
on Global Computing, volume 3267 of Lecture Notes in Computer Science, pages 92–105,
Rovereto, Italy, 2004. Springer Verlag.

[5] Dieter Gollmann. Computer Security. Wiley, 1999.
[6] D. Dolev and A.C. Yao. On the security of public key protocols. IEEE Transactions on

Information Theory, 22(6):198–208, 1983.
[7] F. Nielson, H.R. Nielson, H. Sun, M. Buchholtz, R.R. Hansen, H. Pilegaard, and H. Seidl.

The Succinct Solver suite. In Proceedings of Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2004), volume 2988 of LNCS, pages 251–265. Springer-
Verlag, 2004.

[8] J.P. López-Grao, J. Merseguer, and J. Campos. From UML activity diagrams to stochastic
Petri nets: Application to software performance analysis. In Proceedings of the Seventeenth
International Symposium on Computer and Information Sciences, pages 405–409, Orlando,
Florida, October 2002. CRC Press.

[9] Juan Pablo López-Grao, José Merseguer, and Javier Campos. From UML activity diagrams
to Stochastic Petri nets: application to software performance engineering. In Proceedings
of the fourth international Workshop on Software and Performance, pages 25–36. ACM
Press, 2004.

[10] D.C. Petriu and H. Shen. Applying the UML performance profile: Graph grammar-based
derivation of LQN models from UML specifications. In Proceedings of Tools’02, number
2324 in LNCS, pages 159–177. Springer-Verlag, April 2002.

[11] C. Lindemann, A. Thümmler, A. Klemm, M. Lohmann, and O. P. Waldhorst. Performance
analysis of time-enhanced UML diagrams based on stochastic processes. In Tucci [15],
pages 25–34.

[12] S. Bernardi, S. Donatelli, and J. Merseguer. From UML sequence diagrams and statecharts
to analysable Petri net models. In Tucci [15], pages 35–45.

[13] Jan Jürjens. UMLsec: Extending UML for secure systems development. In 5th Intl. Con-
ference on the Unified Modeling Language (UML) 2000, LNCS 2460, 2002.

[14] Jan Jürjens. Secure Systems Development with UML. Springer, 2004.
[15] Salvatore Tucci, editor. Proceedings of the Third International Workshop on Software and

Performance (WOSP 2002). ACM Press, Rome, Italy, July 2002.

http://www.gentleware.com/
http://www.gentleware.com/

	Introduction
	Choreographer
	The Web-Based Business System
	UML Model of the System
	Performance Analysis
	The PEPA Model
	Numerical Results

	Security Analysis
	Security Analysis for the Web-Based Business System
	LySa Model of the Protocol
	Security Analysis with LySa

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

