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ABSTRACT

Simulation modeling in systems biology embarks on discrete event simulation only for cases of small cardinalities of
entities and uses continuous simulation otherwise. Modern modeling environments like Bio-PEPA support both types
of simulation within a single modeling formalism. Developing models for complex dynamic phenomena is not trivial
in practice and requires careful verification and testing. In this paper, we describe relevant steps in the verification and
testing of a TNFα-mediated NF-κB signal transduction pathway model and discuss to what extent automated techniques
help a practitioner to derive a suitable model.

1 INTRODUCTION

Modeling the dynamics of a biological system is not trivial and much research has gone into the development of
stochastic discrete event system models and continuous simulation models, where the latter are mostly described by
systems of ordinary differential equations. The challenges in this area are manifold, starting from the generation of
experimental data in vivo, the derivation of conceptual models and a theoretical understanding of the dynamics of a
system, its constituents and mechanisms and the development of executable models.

In this paper we investigate the role of automated support in the verification and testing of stochastic discrete event
simulation models in this context. Designing and implementing a large simulation model is a complex task in any
circumstance, and the inclusion of stochastic elements can cause the model to exhibit non-intuitive behaviour, making
it difficult to know whether output from the model is “as expected”. However, in the context of biological models there
are several factors which exacerbate the problem.

Biological models play a dual role of documenting current knowledge about the system or mechanism under study
and providing the basis for study of dynamic behaviour. Thus the construction of models is intimately related to
the local availability, or not, of experimental data relating to the system under study. As a result, new models may
be built as refinements of old ones taken from the literature; model structure may be taken at least in part from a
collated database such as KEGG or the BioModels database; model parameters may also be derived from data in a
database such as BRENDA. Moreover, when experimental data is available automated Bayesian approaches may be
used to generate the reaction network. Furthermore the availability of accessible workflows which automate processes
such as database search and Bayesian inference is accelerating the trend towards semi-automatic model construction.
Even if originally handcrafted, a model may subsequently be modified and extended using evolutionary algorithms and
the increased use of version control tools for collaborative model development as favoured in biomodel engineering
approaches (Breitling et al. 2010) may also lead to the development of larger and more complex models than previously
seen. This all contributes to the situation where the link between the model and the scientist is tenuous since the model
user may not be entirely responsible for the model’s construction.

For reasons such as these we think that it is timely for model verification and testing to receive increased
attention from researchers who are considering the next generation of biological modelling tools. We focus on the
Bio-PEPA Eclipse Plug-in tool suite (Duguid et al. 2009), extending it with several features to assist the model user
in verifying a model before embarking on in silico experimentation. In particular we have written a special-purpose
implementation of the Gillespie algorithm which writes its results in the form of a trace which can be read by Traviando
(Kemper and Tepper 2009). Traviando is a general purpose trace analyzer and model checker, which has been developed
primarily to assist in the debugging of simulation models. It had not previously been applied to biological models.
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To illustrate our approach we consider the first scenario mentioned above, the case of a model taken from the
literature. When a model has been previously published it is tempting to start by seeking to reproduce the corresponding
results from the literature. A common experience is that this is less straightforward than expected and typing errors,
underspecified formalisms, omission of necessary details and the like make this work tedious and time consuming. In
many cases the models are large and complex and the form of model supplied may not have been generated with human
readability in mind. This means that uncovering the nature of unexpected behaviour, never mind its source, can be
extremely difficult. Moreover, this assumes that the given model is already verified and correct. For our chosen model
in this study, a model of the TNFα-mediated NF-κB signal transduction pathway published in (Cho et al. 2003), we
elaborate on several steps to obtain a consistent model. Following a famous remark that adopting the right point of
view gains you 80 additional IQ points (attributed to Alan Kay), we show several views of this model, reformulated in
Bio-PEPA, that make it simple to recognize certain modeling errors and to achieve a model that passes a face validity
check.

The rest of the paper is structured as follows. In Section 2, we describe the published pathway model. In Section
3, we briefly recall the main features of the Bio-PEPA modeling formalism and its corresponding modeling framework.
In Section 4, we explain how the model of Cho et al. (2003) has been reformulated as a Bio-PEPA model. Section 5
illustrates our concept of views that is used to identify several errors in the published model. This section gives some
guidance to a modeler on how to perform consistency checks on Bio-PEPA models and describes several implemented
fully automated approaches to increase a modelers productivity. In Section 6, we perform a face validity check and
compare simulation results for different variants of the model of Cho et al. (2003). Related work is discussed in
Section 7 and we conclude in Section 8.

2 BIOLOGICAL PROBLEM OF INTEREST

Figure 1: Circuit diagram of the TNFα-mediated NF-κB signal transduction pathway model

Our starting point for this paper is a published study of the TNFα-mediated NF-κB signal transduction path-
way (Cho et al. 2003). This pathway plays an important role in immunity and inflammation, and in the control of
cell proliferation, cell differentiation, and apoptosis (programmed cell death). The model of the pathway which we
use as an illustration here is concise, but not trivial. There are 31 chemical species and 31 reactions in the model.
The model is presented in (Cho et al. 2003) as a system of differential equations and also illustrated using a graphical
representation (termed a “circuit diagram”) in a style reminiscent of a Petri net (reproduced in Figure 1).

We selected the model for a number of reasons. The presentation of the model given in the original paper was
clear and complete — a full set of ordinary differential equations was included in the paper. Furthermore the inclusion
of the circuit diagram meant that we had an alternative view of the authors’ intention for the model in addition to

621



Clark, Gilmore, Hillston and Kemper

the mathematical representation. Finally one of our authors had some familiarity with the underlying biology through
having conducted related modelling studies in the past (Hillston and Duguid 2009, Ciocchetta et al. 2010).

3 BIO-PEPA: MODELING FORMALISM AND TOOL

In this section, we recall the Bio-PEPA modelling formalism and its corresponding modelling framework.
Bio-PEPA is a recently defined formal model description language for biochemical pathways based on a stochastic

process algebra (Ciocchetta and Hillston 2009). In Bio-PEPA a reagent-centric style of modelling is adopted, and a
variety of analysis techniques can be applied to a single model expression. In the reagent-centric style each reagent or
species within the pathway is modelled as a distinct component which can undertake reactions, which are represented
as actions in the process algebra. Currently supported analysis techniques include stochastic simulation at the molecular
level, ordinary differential equations, probabilistic model checking and numerical analysis of a continuous time Markov
chain.

Process algebras are a well-established modelling approach for representing concurrent systems facilitating both
qualitative and quantitative analysis. Within the last decade they have also been proposed as the basis for several
modelling techniques applied to biological problems, particularly intracellular signalling pathways, e.g. (Regev 2001,
Calder, Gilmore, and Hillston 2006). A process algebra model captures the behaviour of a system as the actions and
interactions between a number of entities, usually termed processes or components. In stochastic process algebras, such
as PEPA (Hillston 2006) or the stochastic π-calculus (Priami 1995), a random variable representing average duration is
associated with each action. In the stochastic π-calculus, interactions are strictly binary whereas in PEPA and Bio-PEPA
the more general, multiway synchronisation is supported.

The main components of a Bio-PEPA system are the species components, describing the behaviour of each species,
and the model component, describing the interactions between the various species. The species initial amounts are
given in the model component. The syntax of the Bio-PEPA components is defined as:

S ::= (α,κ) op S | S +S |C with op= ↓ | ↑ | ⊕ | ⊖ | ⊙ P ::= P ��
L

P | S(x)

where S is the species component and P is the model component. In the prefix term (α,κ) op S, κ is the stoichiometry
coefficient of species S in reaction α , and the prefix combinator “op” represents the role of S in the reaction. Specifically,
↓ indicates a reactant, ↑ a product, ⊕ an activator, ⊖ an inhibitor and ⊙ a generic modifier. In the following we will
use α op S as an abbreviation for (α,1) op S. The operator “+” expresses the choice between possible actions, and
the constant C is defined by an equation C

def
= S. The process P ��

L
Q denotes synchronisation between components P

and Q, the set L determines those activities on which the operands are forced to synchronise, with ��
∗

denoting a
synchronisation on all common action types. In the model component S(x), the parameter x ∈ REAL represents the
initial amount of the species. Thus Bio-PEPA models are population models, which keep track of the impact of reactions
on the number of molecules of the involved species.

In practical terms, process algebras resemble computer programs. They provide a textual description of the model
using a domain-specific language, as opposed to a general-purpose programming language such as Java or C++. Process
algebras might appear to be less user-friendly than graphical notations but – being similar to programming languages
– they are well supported by editors used for programming, e.g., with cut and paste, find and replace, and a textual
description has room for comments and descriptive names. They can be used seamlessly with a version control system
such as CVS, as typically used to manage software projects. This means that it is very easy to check differences
between model versions, which strongly supports biomodel engineering and makes it very convenient for researchers
to collaborate on jamboree-style development of community-curated models.

The process algebraic specifications of the behaviours of species provide the central part of the Bio-PEPA model
but some auxiliary information is also required. These include

• Information about the spatial organisation of the system in terms of compartments and their sizes. This allows
correct translation to be made between the concentration view of species (as presented in ODEs) and the
molecular counts used in stochastic simulation.

• Kinetic rate functions. It is assumed that each reaction is governed by a rate function which may depend
on the current population of involved species. Typical examples include mass action kinetics and Michaelis
Menten kinetics. These functions are specified separately.

• Parameters. Some kinetic rate functions require separate parameters such as Michaelis Menten constants.
These are also defined separately.

This additional information completes a Bio-PEPA model to form a Bio-PEPA system suitable for analysis.
The Bio-PEPA Eclipse Plugin (Duguid et al. 2009) is an integrated development environment for Bio-PEPA which

builds on the functionality of the Eclipse platform to support all aspects of Bio-PEPA modelling from management of
projects and editing of models, through simulation and experimentation, to visualisation of results. Useful features inherited
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from Eclipse include built-in support for version control systems. Using the Eclipse Plug-in, Bio-PEPA models can be
exported to SBML (Hucka et al. 2008) or to the PRISM modelling language (Kwiatkowska, Norman, and Parker 2009).

The Bio-PEPA Eclipse Plugin includes a suite of simulators, both continuous and discrete. Of the discrete
simulators there are both exact simulators (implementing Gillespie’s Direct Method (Gillespie 1977) and the Gibson-
Bruck Next Reaction Method (Gibson and Bruck 2000)) and approximate simulators (implementing the τ-leap procedure
(Gillespie 2001)). The simulation algorithm which we have modified to produce output for Traviando is an exact,
discrete stochastic procedure, Gillespie’s Direct Method. This has a range of important qualities for the present purpose
including: 1) the algorithm simulates the reaction dynamics exactly, with every reaction represented without omission
or approximation; 2) the algorithm operates on integer-valued molecular counts with transitions from one state to the
next caused by the occurrence of a single reaction without averaging or amalgamation; and 3) the algorithm converges
in the limit (as population levels tend to infinity) to the solution of the continuous-deterministic model of the system
(Gillespie 2009), securing comparisons with this form of solution for Bio-PEPA models. In summary, the detailed
single execution run provides us with a mean to embark on a trace analyzer for debugging purposes like Traviando to
analyze the dynamic behavior of a model.

4 THE BIO-PEPA MODEL

For the purposes of this study our intention was to start from a Bio-PEPA model which as closely as possible recreated
the model of Cho et al. (2003). Since in that paper the model was presented as a set of ordinary differential equations
(ODEs) that was our starting point.

Each ODE is focused on one variable in the model, which in this case will be the concentration of a single species
in the pathway, and the reactions which will increase or decrease the concentration. This is actually quite close to the
Bio-PEPA view of the system. As explained above, in Bio-PEPA we model in a reagent-centric style, meaning that
there is a species component for each biochemical species in the pathway and the species definition specifies which
reactions increase or decrease that species. Thus the state of the system is similarly focused on the populations of the
individual species in both the ODE model and the Bio-PEPA model. Therefore it was reasonably straightforward to
generate a Bio-PEPA model from the published ODEs. However there is a subtle difference.

In the ODE model each reaction is represented anonymously by the mathematical expression detailing its impact
on the variable. In contrast in the Bio-PEPA model each reaction is named and the quantitative impact of the reaction
is specified separately in its declaration of the kinetic rate function. This separation of concerns allows the logical
impact of the reaction to be viewed independently of the quantitative impact based on variable values. Moreover in the
Bio-PEPA model a single reaction can have only one expression of its dynamics. Consequently in our development of
the Bio-PEPA model from the ODE model we distinguished apparent reactions which impacted on the same variables,
but with differing rates. In order to derive a species component from an ODE the first step was to associate a Bio-PEPA
species component name with each variable in the ODEs (M1,M2, . . . ,M31 in the model of Cho et al.). If a term in
the following ODE was positive the corresponding component is taken to be a product of the reaction resulting in a
↑ prefix in the Bio-PEPA definition. Conversely each negative term is taken to be a reaction where the species is a
reactant resulting in a ↓ term in the Bio-PEPA definition. A selection of the ODEs from the original model and the
corresponding Bio-PEPA kinetic rate functions and species definitions are shown in Figure 2. Note that the ODEs for
M30 and M31 contain different terms for reaction r29. This forced us to specify two separate reactions r29 and r29alt
in the matching Bio-PEPA definition in Figure 2. This issue will come up later again.

5 MODEL CONSISTENCY

A biochemical model can generally be viewed in one of two ways which we label the reagent-centric view and the
reaction-centric view. The reagent-centric view defines the model in terms of the reagents; each reagent is defined with
its relationship to each of the reactions. The reaction-centric view defines the model as a list of reactions specifying
the effect each reaction has on the reagents of the system. Any one biochemical system can be defined in terms of
either view, in our software the modeller must define the model in the reagent-centric view and the chemical equation
view is generated automatically. We begin this section with a more detailed description of each view and then show
how the combination assists the modeller in detecting modelling errors.

5.1 Reagent-centric point of view

This view is used in Bio-PEPA to specify a model in the format described in Section 3. There are four main sections
of a Bio-PEPA model; the first defines all numerical constants used within the model. The second defines the rates of
all the reactions in the model. These rates are usually dependent on the concentrations of the reactants of the reaction
associated with the given rate. There is a set of predefined common functions such as mass action or Michaelis-Menten
kinetics to assist in the definition of the reaction rates. The third section of the model defines all reagents (species) as a
set of equations. Each equation defines one reagent and declares the relationship between the reagent and each reaction
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dM1

dt
= −k1 ·M1 ·M2 + k2 ·M3

dM2

dt
= −k1 ·M1 ·M2 + k2 ·M24 + k13 ·M12

...
...

...
dM30

dt
= k29 ·M29 ·M31 − k30 ·M30

dM31

dt
= −k29 ·M29 ·M30 + k30 ·M30 + k19 ·M17

M1
def
= r1↓M1+ r2↑M1

M2
def
= r1↓M2+ r2↑M2+ r24↑M2+ r13↑M2

...
...

...

M30
def
= r29↑M30+ r30↓M30

M31
def
= r29alt↓M31+ r30↑M31+ r19↑M31

r1 = [k1 ·M1 ·M2] r2 = [k2 ·M3] r13 = [k13 ·M12] r19 = [k19 ·M17]
r24 = [k24 ·M24] r29 = [k29 ·M29 ·M31] r29alt = [k29 ·M29 ·M30] r30 = [k30 ·M30]

Figure 2: Fragment of the published ODE model of the TNFα-mediated NF-κB signal transduction pathway (upper
left), the corresponding fragment of the Bio-PEPA model (upper right) and its functional rate definitions (bottom).

in which it is involved. This is done using the operators defined in the preceding section to specify that the reagent is
a product, reactant, activator, inhibitor or general modifier of the given reaction. The equation for a given reagent need
make no mention of any reactions in which it is not involved. The fourth and final section of the Bio-PEPA model
provides a system equation which composes all the reagents into a single system and specifies the reagents’ initial
quantities.

This view incorporates style recommendations known from software engineering, e.g. numerical constants are
defined only once and a corresponding name is used throughout a model. It makes it straightforward to check which
reactions are affecting a particular reagent. Special cases of reagents that act as sources or sinks are easily identified.
This view is supported with the Bio-PEPA model editor, a text editor that also incorporates a rule set to provide
immediate visual feedback for syntax violations and errors such as the use of undefined constants, reactions or reagents.
Further details on this view can be found in (Duguid et al. 2009).

When we encoded the TNFα-mediated NF-κB signal transduction pathway model, the static analysis checks
incorporated in the Bio-PEPA Eclipse Plug-in detects that the model has at least two areas of concern. We see from
the species definitions in Figure 2 that reaction r29alt consumes species M31, but from the kinetic laws we see that
the rate of r29alt does not depend on the concentration of M31, but on the concentration of M29 and M30 instead. This
is highlighted by the software as a warning, meaning that the software considers the model to be suspicious but the
modeller may override this concern and the model may still be compiled and analysed. We decided to fix this error by
replacing r29alt with r29 in the defining equation of M31 such that r29alt becomes obsolete and can be removed. The
software also recognizes a similar error in the equation of M5 where reaction r20 is given a rate of k20M5M20 instead
of k20M5M21 and we fixed this error accordingly.

5.2 Reaction-centric view

This view focuses on a representation of the specification of reactions in a model in the familiar format of chemical
reactions. Since biologists are trained to read reaction definitions, they can easily spot errors in reagents involved in a
reaction. Common errors that can be easily detected in this view are missing reagents, misspelled or incorrect reagents
or stoichiometry values. Special cases like reactions that only produce or only consume reagents are easily recognized.

This view is not edited by the user at all, it is generated automatically from the above defined reagent-centric view.
This means that the two views are always of the same model. In addition to listing all the reactions in the specified
model, the software also highlights any sources or sinks in the model. Both reagents and reactions may be sources or
sinks. For a reagent to be a source it must be a reactant in at least one reaction and must not be a product of any
reaction. Conversely for a reagent to be a sink it must be the product of some reaction without being a reactant of
any reaction. Both source and sink reagents are straightforward to detect from the reagent-centric view but non-trivial
from the chemical equation view. The following reagent definition is that of a source reagent because it is consumed
but never produced: S

def
= r1↓S + r2↓S.

For a reaction to be a source reaction, it must have at least one product and no reactants. Analogously for a
reaction to be a sink reaction it must have at least one reactant and no products. In contrast to source and sink reagents,
source and sink reactions are straightforward to detect from the chemical equation view but non-trivial to see from the
reagent-centric view. Both kinds are automatically computed and displayed to the modeller. Note that reagent source
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r1 : → A
r2 : A+B → Z
r3 : Z → C +B

A
def
= r1↑A+ r2↓A

Z
def
= r2↑Z + r3↓Z

B
def
= r2↓B+ r3↑B

C
def
= r3↑C

Figure 3: A model which is not fully covered by an invariant as the total mass in the system is not conserved but which
still has a local invariant: B+Z. The reaction r1 is a source reaction and the reagent C is a sink reagent.

and sinks do not produce or consume mass whereas as reaction source and sinks do. The following is an example sink
reaction because it consumes mass without producing any: r1

def
= P+S −→.

5.3 Conservation of matter view

For most models in systems biology some conservation rules apply. For instance, the total number of molecules of
certain kinds remain constant throughout a simulation albeit these molecules may become part of a variety of more
complex chemical compounds. This property can be formalized as a state invariant, a weighted sum of reagents whose
total value depends on the initial quantities of reagents but otherwise remains constant throughout a simulation. Since
a chemical master equation can be represented by a Petri net, we can readily apply invariant analysis techniques known
from the theory of Petri nets. We can therefore compute a minimal generating set of invariants with a version of the
Fourier-Motzkin method described in (Martinez and Silva 1982) for a simple class of Petri nets.

We implemented the method and provide a view on the computed invariants as well as a list of those reagents that
are not covered by any invariant at all. The theoretical worst case complexity of the method is exponential although it
is rarely seen in practice. Nevertheless we implemented the method with an upper bound on the internal matrix data
structure to prevent this case from bringing down the overall framework and we also included a greedy heuristic that
aims at minimizing internal data structures in an attempt to prevent the worst case from happening. We postprocess
the computed invariants to reduce the generated set to a linearly independent set with a preference for invariants with
minimal support. The rationale is that invariants that cover only a few reagents give more insight to a modeller and
are easier to verify than large invariants that include a large number of reagents.

Note that a model does not need to fully conserve the mass for it to have reagent invariants. There may still be
source and/or sink reactions which produce or consume mass such that the overall mass in the entire system is not
invariant. A simple case of this is an enzyme enabled reaction such as that shown in Figure 3.

However, although it is possible to have localised invariants in the presence of a system which does not conserve
mass, if all of the reagents in a model are covered by at least one invariant then the whole system must conserve mass.
For this reason our software notifies the user of any reagents which are not covered by any invariant, the presence of
which means that the whole model does not conserve mass. This notification allows the user to to decide whether this
is behaviour which they expect from their model.

Our Bio-PEPA model yields the following invariants. The total amount of FADD is invariant, i.e. M21 +M23 +M24

is constant. The total amount of Capase-8 is invariant, i.e., M18 +M22 +M24 +M25 +M26 is constant. The Effector may
be temporarily bound with IAP or permanently consumed as DNA fragmentation, i.e., M26 +M27 +M28 +M29 +M30

is constant. The total amount of IKK is invariant, i.e., M8 + M9 + M12 + M13 + M15 is constant. IkB/NF-kB (M14)
contributes to the production of NF-kB, i.e., M14 +M15 +M16 is constant. In addition, M14 +M15 +M17 +M30 +M31

is constant, which shows that IkN/NF-kB (M14) contributes to the production of c-IAP (M31) which is used in the
regulation module to bind the Effector (M29) and thus disable r25 to avoid DNA fragmentation.

There are six other invariants that contribute to cover all species which are not presented here in the interests of
space. However, although all the reagents in the model are covered by some invariant, certain expected invariants such
as the amount of TRAF2 (M6) being preserved, are not derived.

In order to determine if an error in the model has caused the unexpected absence of the preservation of TRAF2 (M6)
we calculated the overall net effect of certain sequences of reactions in the pathway model. These allow us to deduce
that, TNFα (M1) can result in a DNA fragmentation (M28) via the sequence of reactions r1,r3,r20,r22,r24,r25,r27,r28.
However, this sequence also consumes Effector (M29). Since Effector (M29) cannot be produced by the model this
implies that a sufficient initial amount of Effector is necessary to enable this sequence of reactions. We also observe
that TRAF2 (M6) and RIP1 (M10) are increased as a side effect of r24, which enables r5 and r7. Note that those two
reactions compete with r20 for TNF./TNFR1/TRADD (M5), such that this reaction sequence has a tendency to reduce
its likelihood of occurring multiple times.

We also observe that the generation of RIP1n (M19) and RIP1c (M20) in the regulatory module is achieved via
the sequence r1,r3,r20,r22,r24,r17,r18. That sequence has the effect of producing one RIP1n and one RIP1c from one
TNFα (M1). However, it also generates one TRAF2 (M6) as a side effect due to r24.
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Finally, the generation of IkB-P (M16) is performed via the sequence r1,r3,r5,r11,r13,r14,r16,r7,r9. This sequence
consumes two times TNFα to generate IkB-P once due to r5 and r7. It also consumes IkB/NF-kB (M14) compounds,
which are not produced within the model and draw from a sufficient initial amount to enable reaction r14. Furthermore,
this sequence produces NF-kB (M17) which will ultimately increase c-IAP (M31) with r19 which is then captured in a
reversible reaction of r29,r30 but acts like a sink. The consumption of two TNFR1 (M2) and two TRADD (M4) due to
r11 is only partially given back by r13, when the compound breaks up and produces IKK∗ (M13).

In light of these observations, one possible change to the model is to remove the creation of TRAF2 (M6) and RIP1
(M10) by r24 because this violates conservation of matter. It would also be necessary to increase the stoichiometry constants
for r13 with respect to the production of TNFR1 (M2) and TRADD (M4) from one to two in order to preserve conservation
of matter because two of each are previously consumed to generate TNF./TNFR1/TRADD/RIP1/TRAF2/IKK (M12)
that is input to r13. (Other, more complex changes to the model might be better than these, but a domain expert should
evaluate other possibilities once the modelling tools have highlighted the possibility of error in the model.)

If the above changes are applied then the model would respect invariants that are more intuitive. The total amount of
TRAF2 is invariant, i.e., M6 +M7 +M9 +M12 is constant. The total amount of RIP1 is invariant and since r18 produces two
species at once, we see two corresponding invariants, i.e., M10 +M11 +M12 +M18 +M19 and M10 +M11 +M12 +M18 +M20

is constant. The total amount of TRADD is invariant, i.e., M4 +M5 +M7 +M9 +M11 +2 ·M12 +M23 +M24 is constant.
The weight of 2 on M12 for this invariant, indicates that r11 creates one M12 for inputs from M9 and M11. The total amount
of TNFR1 is invariant, i.e., M2 +M3 +M5 +M7 +M9 +M11 +2 ·M12 +M23 +M24 is constant. The final invariant covers
TNFα (M1) and most of the pathway model because it tracks what may result from the transformation of TNFα . It says that
M1 +M3 +M5 +M7 +M9 +M11 +2 ·M12 +2 ·M13 +2 ·M15 +2 ·M16 +M18 +M19 +M23 +M24 +M25 +M26 +M27 +M28

is constant, which describes that TNFα (M1) may result in IkB-P (M16), RIP1n M19, or DNA fragmentation M28.

5.4 Cyclic behavior and reversible reactions

In a biological model, certain reactions may be reversible as well. In addition there may be longer sequences of reactions
which are cyclic in the sense that performing exactly those reactions returns the model to the state it was in before the
cycle. All these scenarios formally relate to an invariant in the sense that performing a set of reactions in particular
quantities will yield the starting configuration again. As with the conservation of matter, this notion of invariant can be
transferred from Petri net theory (Grafahrend-Belau et al. 2008). In Petri net theory a sequence of reactions with no
effect on the state of the model is known as a t-invariant. A generating set can be computed with the Fourier-Motzkin
method. The result is a weighted sum of reactions that if performed accordingly would result in the same starting state,
i.e., it would describe a cycle in a simulation run of a stochastic discrete event simulation of the given model.

As with the reagent invariants, reaction invariants were implemented for Bio-PEPA. With the reagent invariants
we present to the user the list of reagents not involved in any invariant as this means that the whole system does not
conserve mass. We do the same for reaction invariants, reporting a list of reactions which are not involved in any
reaction invariant.

The reaction invariant analysis reveals pairs of reversible reactions, which is obvious and straightforward to confirm
yet helpful to increase our confidence in the encoding. The invariant analysis also shows that reactions r13, r16, r18, r19,
r24, r27, and r28 are not contained within cyclic behavior. The effect of these reactions therefore cannot be reversed.
The pathway is intended to generate certain output such as the DNA fragmentation (M28) for some TNFα (M1) as input.
So a modeller can create a test harness of artificial reactions which directly feed back any output into its corresponding
input. In other words the test reactions are the reverse of the intended overall effect of the pathway. If the original
pathway has been modelled correctly then the addition of the test reactions will result in the model being covered by
invariants. The total effect of the pathway and its test reactions should be to return the system to the state which it
was in before traversing the pathway and the test reactions. Formulating this test harness requires a modeller to clarify
their expectations on the overall effects of a sequence of reactions, an activity which may also reveal modelling or
specification errors.

To our example model we added three test reactions, namely r32 : M28 → M1 +M29, r33 : M19 +M20 → M1 +M10,
and r34 : M16 +M31 → 2 ·M1 +M14, which describe the inverse effects of the intended overall effects of the pathway.
With the addition of the reactions we re-ran the invariant analysis and obtained the expected result, i.e. the modified
model is covered with invariants which describe the intended effect of the pathway and the test reactions as zero.
Note that the test reactions r32, r33, and r34 are disabled for subsequent analysis. The Bio-PEPA software includes
functionality which allows a modeller to knock-out (disable) specific reactions in simulation experiments.

5.5 A summary of steps towards a consistent model

The different views supported by Bio-PEPA can be used to proceed through the following list of steps to derive a model
that is consistent at least from a qualitative point of view.
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1) Encode a model in the reagent-centric view and resolve reported issues until a model reaches a state where all
constants, rates, species, reactions and the overall system are specified and dependencies of reaction rates are checked.
2) Confirm chemical reactions in the reaction-centric view with respect to participating reactants and products as well
as stoichiometry constants. Focus also on source/sink reactions and reactants. Return to the reagent-centric view and
perform changes as necessary.
3) Compile a list of invariants that reflect conservation of mass of chemical compounds and check this list with
reagent invariants calculated in the conservation of matter view. It is possible that invariants do not exactly match with
expectations, but species that are expected to be part of some invariant should indeed be covered by the calculated ones.
Also calculate the net total effect of key reaction sequences, most likely the ones that start at a source reaction/reagent
and end at a sink reaction/reagent, to see if these sequences produce unexpected side effects on certain species. If this
is the case, return to the reagent-centric view and perform changes as necessary.
4) Compile a list of reversible reactions and check those with the computed reaction invariants. For pathway models,
calculate the overall effect of sequence of reactions that starts with some input reagent/reaction and goes to an expected
corresponding output reagent/reaction. Add artificial reactions and reagents such that these perform the inverse of
this effect and the overall model performs in a closed-loop. The resulting model should have corresponding reac-
tion invariants. These artificial reactions confirm the correct understanding of the overall effect of a sequence of reactions.

The Bio-PEPA suite supports these steps, calculation of invariants included. For steps 3 and 4, Traviando provides
information for invariants and for the effects of reaction sequences between source and sink reaction/reagents. To obtain
these results, we produce a simulation trace where all reactions perform at least once with the Bio-PEPA suite and
feed this trace into Traviando’s report generator. After performing these steps, a model is sufficiently well-understood
to investigate its dynamic properties and to consider quantitative aspects of its behavior.

6 FACE VALIDITY OF A DES SIMULATION

For a face validity check, we compare simulation results with known results either from the literature or with those
expected by an expert in the field. Since Cho et al. (2003) focus on a sensitivity analysis, their published results are
not sufficiently detailed to compare results for particular model configurations. We therefore limit our considerations to
presentations of the simulated behavior for a version V1 of the model where errors in rate definitions have been fixed
as discussed in Section 5.1 and a final version V2 that is consistent with a conservation of matter and incorporates all
changes discussed in Section 5.

Figure 4 shows simulation results averaged over 1000 runs of Gillespie’s algorithm up to time t = 30 with an initial
configuration and rates as reported by Cho et al. (2003). We measure concentrations of species that serve as input,
TNFα (M1), and output, NF-κB (M17), RIP1n (M19), and DNA fragmentation (M28). Both versions show equivalent
results as can be seen in the graphs to the upper left and right of Figure 4 but for DNA fragmentation, which converges
to a higher value in V2. There are of course concentrations of various species significantly affected by the changes we
made. The lower left and right graphs in Figure 4 show simulation results for TNFR1 (M2), TRADD (M4), TRAF2 (M6),
and RIP1 (M10). As expected from our changes, the amount of TNFR1 and TRADD increases due to the conservation of
matter that is observed now. Concentrations of TRAF2 and RIP1 converge to lower values since they are not produced
by r24 in V2 as it is the case in V1. This explains the higher values for DNA fragmentation in V2, because lower
values of RIP1 reduce the inhibiting effect that r17 has on DNA fragmentation as it binds Capase-8∗ (M25).

At this point, a serious model validation needs to take wet lab measurement data into account and requires a more
substantial discussion on signal transduction pathways which is beyond the scope of this paper.

7 RELATED WORK

Post-hoc model-checkers complementary to this work are BioCham (Fages and Rizk 2007), BioNessie (Liu and Gilbert 2010)
and MC2 (Heiner, Gilbert, and Donaldson 2008), in that they can be applied to a continuous interpretation of the model
(and in some cases to discrete-state simulations also). In contrast we are working exclusively with a discrete interpretation
here. Because Bio-PEPA has both a continuous and a discrete-state interpretation it is possible that post-hoc model
checkers such as these could be productively used alongside Traviando to check Bio-PEPA models.

A point of difference between the work reported here and the related work is that in approaches based on
model-checking the user is required to invent a proposition to check against the model for every use of the model-
checker. This proposition must then be correctly expressed in the available logic of the model-checker, such as PLTLc
(Heiner, Gilbert, and Donaldson 2008). Although Traviando supports Linear Time Logic model-checking it is also
possible to perform trace analysis and compute results such as invariants without encoding any property as a logical
formula. This accessibility lowers the barrier to use by modellers who are familiar with computational tools but are
not confident with sophisticated logics.

Through the link to Traviando it is now possible to visualise simulation traces which have been generated by the
implementation of the Direct Method in the Bio-PEPA Eclipse Plugin. This approach to visualisation contrasts with
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Figure 4: Simulation results for a Gillespie simulation of different model versions

animation-based approaches such as (Phillips 2010), where the progress of a chemical simulation is represented using
3D pictures, showing increase in the quantity of each chemical species using an increase in the volume assigned to a
sphere associated with the species. One concern with animation-based approaches is whether they will scale with an
increased number of chemical species. The example shown in (Phillips 2010) has three species. In contrast we have
used Traviando successfully with the example from (Ciocchetta et al. 2008) which contains 108 species.

8 CONCLUSION

Making use of an existing body of knowledge in biological modeling is less trivial than one may expect. We illustrate
several steps in the process of recovering a biological simulation model from the literature. These are steps necessary
to familiarize oneself with a given model and to increase confidence in the internal consistency of a model. We chose
an existing non-trivial pathway model and the Bio-PEPA Eclipse Plug-in tool suite to work with. The Bio-PEPA suite
provides a variety of recently added automated techniques that support a modeler in the verification and testing of a
biological model. These techniques provide different views to a model as well as the computation of reaction and
reagent invariants which are helpful to identify certain types of errors ahead of any simulation. We found two types
of inconsistency in the model from (Cho et al. 2003). One kind of inconsistency was between the ODEs and diagram
showing their intention for the model. These may be regarded as programming/implementation errors. The others were
inconsistencies apparent in both the ODEs and the diagram. These may be regarded as design errors. Our analysis
techniques were able to uncover both kinds of error.

The Bio-PEPA suite can be downloaded from <www.biopepa.org/>. Traviando is available on request.
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