
Mapping coloured stochastic Petri nets to
stochastic process algebras

Linda Brodo 1

Istituto Trentino di Cultura - IRST
Povo (Trento), Italy

Stephen Gilmore 2

Laboratory for Foundations of Computer Science
The University of Edinburgh, Edinburgh, Scotland

Jane Hillston 3

Laboratory for Foundations of Computer Science
The University of Edinburgh, Edinburgh, Scotland

Corrado Priami 4

Dipartimento di Informatica e Telecomunicazioni
Università di Trento, Povo, Italy

Abstract

We provide a mapping which translates a model in a coloured stochastic Petri
net notation (PEPA nets) into a term of a foundational stochastic process algebra
(Stochastic CCS). Our mapping is a compositional static method which translates
from one high-level model to another without needing to evaluate the state space
of the given PEPA net. The result of the translation is a well-formed input for
verification tools which manipulate process algebra terms but provide no support
for coloured nets. We demonstrate the correctness of the translation by proving a
correspondence result between the input and the image under translation.

1 Email: brodo@itc.it
2 Email: stg@inf.ed.ac.uk. Corresponding author.
3 Email: jeh@inf.ed.ac.uk
4 Email: priami@dit.unitn.it

Preprint submitted to Elsevier Preprint 3 June 2003

mailto:brodo@itc.it
mailto:stg@inf.ed.ac.uk
mailto:jeh@inf.ed.ac.uk
mailto:priami@dit.unitn.it

1 Introduction

The language of PEPA nets [1] is a performance modelling formalism which
allows the modeller to describe a high-level performance model of a system
as a coloured stochastic Petri net where the tokens of the net are model com-
ponents of Hillston’s PEPA stochastic process algebra [2]. PEPA nets evolve
either by (local) transitions within a place or by (global) firings of the net,
transferring tokens from one place to another. Exponentially-distributed ran-
dom delays are associated with both transitions and firings so that together
these two forms of evolution of the net describe a continuous-time Markov
chain (CTMC) which can be solved to find the stationary probability distri-
bution of the system. Performance measures on the system can be expressed
in terms of this stationary probability distribution.

Moving stateful processes between the places in the net is used in modelling
systems which have both a degree of process mobility and also the capacity
to dynamically reconfigure the communication topology of the system. Typi-
cal subjects for modelling with PEPA nets are mobile code software systems
under a discipline of dynamic binding of names. The PEPA nets language
enforces the property that communication between components at different
places is not allowed. Remote communication is not an allowable atomic op-
eration and must be implemented via a combination of migration and local
communication.

There are several benefits of analysing communication rules such as these
via a mapping into a foundational process algebra.

(i) The communication rules are rather new but the algebra is simple and
well-understood. This gives us a way to consider the new language fea-
tures using established proven analysis methods.

(ii) The encoding provides a route to process algebra-based verification tools
such as model-checkers and theorem provers.

(iii) The encoding may expose previously unknown properties of the PEPA
nets language which can be used profitably to develop new proof tech-
niques.

(iv) The general approach may be applicable to untimed coloured Petri nets
and classical process algebras.

We explore the relationship between coloured stochastic Petri net and pro-
cess algebras by mapping PEPA nets into the foundational process algebra,
Milner’s CCS [3] enhanced with timing information to give Stochastic CCS
(CCSS).

If they were to be viewed purely formally as high-level description lan-
guages for specifying continuous-time Markov chains, then PEPA nets and
CCSS would be considered equally expressive. That is to say, for a given

48

CTMC C, it is possible to construct a high-level model in either formalism
such that the underlying CTMC derived from the model is isomporphic to C.

This is a fundamental agreement in expressive power, but it is a rather
weak one, similar to the agreement that all programming languages are Turing-
complete. Here we seek instead to relate these two languages via generating
an encoding from PEPA nets into CCSS such that the model and its encoding
would generate isomorphic CTMCs when evaluated against their respective
language semantics. In general these isomorphic CTMCs would be derived
from different intermediate labelled transition systems.

Net ; CCSS

↓ ↓
LTS 1 LTS 2

↓ ↓
CTMC 1 ≡ CTMC 2

The encoding which we seek is a compositional one, which does not trivially
expand the given PEPA net to its full state space and then translate this into
a sequential CCSS term. Formally, the size of the CCSS description which we
generate must be proportional to the size of the description of the input PEPA
net, not proportional to the size of its state space. In interleaving models of
concurrent systems the size of the state space of a model can be exponentially
larger than the size of the model itself so the difference between these two
views is significant.

Because of differences in the modelling constructs which are provided by
the two languages, it is not the case that the full PEPA nets language can be
mapped into CCSS in a fully compositional fashion. To point to one reason
for this, here is no suitable encoding of the PEPA multi-way synchronisation
into the two-way handshake synchronisation of CCSS. For this reason we aim
only to encode a subset of the language of PEPA nets in CCSS.

Structure of this paper

This paper is rather technical and has a number of formal definitions. To help
the reader to understand the purpose of the definitions which come later we
first present a small example in Section 2 which compares an input to our
translation with the corresponding output. We then continue to expose more
detail of the translation from PEPA nets to CCSS with a discussion of its high-
level properties in Section 3. The translation itself is presented via a series of
inter-related function definitions in Section 4. In Section 5 we present a larger
example which exercises some of the subtleties of the translation which have
been highlighted in the previous section. In Section 6 we present properties of
the translation including our primary result, that our encoding of a PEPA net

49

generates a CCSS process which describes a labelled continuous-time Markov
chain which is isomorphic to that obtained from the input PEPA net. Related
work is discussed in Section 7. Section 8 presents conclusions on the work. To
make the paper self-contained, we provide an introduction to PEPA nets and
CCSS in Appendix A. Readers unfamiliar with these languages would benefit
from reading Appendix A first.

2 An introductory example: lights on and off

We illustrate the idea of mapping a PEPA net into CCSS with a simple ex-
ample. Consider a net with two places and a single token which circulates
between the places. The token is initially in place P1. At each place there is a
switch which controls a light which is either on or off (initially off). The token
circulates around the net flipping the switch, moving to the other place, and
then repeating this behaviour.

T1

T2

P2P1T

(go,>)

(return ,>)

The description of the token of the net is a cyclic sequence of eight activities
(switch the light on; go to the other place; switch the light on there; return to
the previous location; switch the light off there; go to the other place; switch
the light off there; return to the previous location). We chose different rates
for the eight activities (r1, . . . , r8).

Token
def
= (on, r1).(go, r2).(on, r3).(return , r4).

(off , r5).(go, r6).(off , r7).(return , r8).Token

A switch simply enforces the discipline that it must alternately be switched
on and off.

Switch
def
= (on,>).(off ,>).Switch

Places P1 and P2 of the net provide contexts which describe a (static, immo-
bile) switch and a cell to contain a (dynamic, cycling) token. When the token
is resident it synchronises with the switch to perform the activities on and
off . When the token is not present the switch cannot change state because it
is partnered with a token in a PEPA synchronisation and cannot perform the
synchronised activities without its partner.

50

P1[t]
def
= Switch ��

{on,off }
Token[t]

P2[t]
def
= Switch ��

{on,off }
Token[t]

Finally, we describe the initial marking of the net in which the token is resident
in place P1 in its initial state (Token).

System
def
= (P1[Token], P2[])

We now present this example in CCSS. The translation of the Token compo-
nent of the PEPA net gives rise to two subterms which describe, respectively,
the token’s behaviour and its movement.

1. fix (Token = (on@1, r1).(go, r2).(on@2, r3).(return , r4).

(off @1, r5).(go, r6).(off @2, r7).(return , r8).Token)

2. fix
(
TokenMob = (go, 1).(return , 1).(go, 1).(return , 1).TokenMob

)
The translations of the two places of the net give rise to two subterms which
describe the static components resident at the two places (the two copies of
the switch). The activity names of the switch have been renamed to allow
them to be distinguished.

1. fix
(
P1 = fix

(
Switch = (on@1, 1).(off @1, 1).Switch

))
2. fix

(
P2 = fix

(
Switch = (on@2, 1).(off @2, 1).Switch

))
The complete system is built by composing these four subterms and restrict-
ing on their shared actions, as shown below:

System
def
= ((fix (TokenMob = (go, 1).(return , 1).(go, 1).(return , 1).

TokenMob)

| fix (Token = (on@1, r1).(go, r2).(on@2, r3).(return , r4).

(off @1, r5).(go, r6).(off @2, r7).(return , r8).Token)

) \ { go, return }

| fix
(
P1 = fix

(
Switch = (on@1, 1).(off @1, 1).Switch

))
| fix

(
P2 = fix

(
Switch = (on@2, 1).(off @2, 1).Switch

))
) \ { on@1, off @1, on@2, off @2 }

Both of these models define a simple eight-state system which is viewed as a
CTMC as below. The symbol ◦ denotes a bulb which is lit and • denotes one

51

which is not. The plus superscript denotes the presence of the token.

(•+, •) r1→ (◦+, •) r2→ (◦, •+)
r3→ (◦, ◦+)

r8 ↑ ↓ r4

(•, •+)
r7← (•, ◦+)

r6← (•+, ◦) r5← (◦+, ◦)

3 High-level overview of the translation

We now describe the translation of a PEPA net into an equivalent Stochastic
CCS model. We highlight the following points:

Tokens: The tokens in a PEPA net use names whose interpretation will de-
pend upon the location of the token and the scope of the cooperation sets
it is within. There are two types of activities which need to be translated,
those which cause a local transition of the net (with no movement of a to-
ken) and those which cause a global firing of the net (where a token moves
from an input place to an output place).

The translation of a token in a PEPA net gives rise to two tightly-coupled
processes in the resulting CCS definitions. One of these encodes the be-
haviour of the token (say, that it will perform α first and then β) and the
other encodes information about the static structure of the net (say, that
there is an α-labelled transition between place P1 and P2). Each token
is actually composed with a subnet of the entire net, specialised to only
those places which are reachable by a token of this type (that is, with this
alphabet).

Static components: By their nature, static components do not perform fir-
ing activities. Their translation mirrors the translation of transition activi-
ties in tokens.

Places: There are two aspects to the translation of each place in the net:
(i) the instantiation of the static components of the place; and
(ii) the representation of the arcs from this place to other places.
In undertaking the first of these we specialise local transition names. This
differentiates each copy of a component from other copies of this component
at other places.

The second of these produces a collection of process definitions where
each process performs only firing activities. These definitions mirror the
structure of the net, with the representation of the places and the labelled
net transitions between them.

The initial marking: The initial marking is formed by making the right
choice of the names for the activities of the specialised representations of
the tokens of the net. Concretely, if the PEPA net specifies that a token

52

will first perform activity α and that it is initially in place Pi then the CCSS

translation will first perform α@i.
We compose in parallel each token with the definition of the place where

it is initially, restricting on the names of the transition activities. The
remaining free names of the system are restricted.

3.1 Limitations on translatable PEPA nets

We require that our translation does not modify the continuous-time Markov
chain which is generated from the CCSS-encoding. Doing so would invalidate
any analysis performed on the translated representation. This strong condition
obliges us to limit the class of nets we will translate.

There are two kinds of limitations. The first kind deals with details of the
PEPA stochastic process algebra language which is used to encode the tokens
of the net. The second kind is more closely tailored to features of the PEPA
nets formalism.

Concerning the PEPA language limitations we do not translate the multi-
way synchronization of PEPA. We only translate binary synchronizations.
These are usually between one active participant (specifying a rate via a real-
valued random variable) and one passive participant (indicating that it does
not specify the rate of the activity by using the distinguished symbol >).

The limitations imposed on the PEPA nets formalism for the purposes of
this encoding into CCSS are listed below.

(i) All tokens are different. Cells in a PEPA net context specify the type of
token which they can store so one consequence of this restriction is that
each place has as many cells as all the tokens which can reach that place.

(ii) Within a place it is possible to specify names for synchronising activites
between tokens and static components. In addition it is possible to hide
names in order to prevent further synchronisation. However, the names
which are used to interact with tokens cannot be hidden. For example,
consider the following place definition.

P [t]
def
=

(
S ��

L
Token[t]

)
/L′

Here it must be the case that L ∩ L′ = ∅.
(iii) Within a place it is possible for two tokens to synchronise, if they are

both resident in cells in the place. However, it is not possible to hide the
names which are used to interact. Consider the following place definition.

P [t1, t2]
def
=

(
Token1[t1] ��

L
Token2[t2]

)
/L′

Again it must be the case that L ∩ L′ = ∅.

53

(iv) A place may use several synchronisation sets to specify the interactions
between tokens or between static components and tokens. For any place
with N such synchronisation sets we can consider these to be an indexed
family Li for i = 1, . . . , N . We require these sets to be pairwise disjoint
so that Li ∩ Lj = ∅, for all i, j ∈ 1, . . . , N .

(v) The tokens of the PEPA net must be sequential processes. They cannot
be defined using PEPA synchronization.

(vi) In each place and in each token, there is only a single use of PEPA’s
hiding operator and it must be at the outermost level. This restriction
corresponds to defining a standard form for writing the definition of a
place and of a token.

Some clarifying comments are needed on the above. The difficulty through-
out the encoding is in representing the range of synchronisation possibilities
afforded in PEPA nets and mapping them into the CCSS algebra. At the
PEPA level we have an indexed family of synchronisation operators and a
hiding operator (“��” and “/”) and at the CCS level we have a single parallel
composition operator and a restriction operator (“|” and “\”).

On specific points above, concerning limitation (i) in CCS we cannot have a
process use a name which encodes the current location of a token (using the @i
suffix) if many processes are using this name. This would create unintentional
synchronisation points which were not in the original PEPA net.

Limitation (ii) characterizes the role of the hiding operator which creates
a local environment where a token, when it enters this local environment,
adopts the local hiding policy. This cannot be simulated in CCS without
adding a dynamic restriction operator which the language does not currently
have; names are statically bound in CCS. Limitation (iii) is needed for the
same reason.

Limitation (iv) imposes a general discipline on the use of synchronization
names inside a place which we need. This limitation derives from the fact that
the effective interface of the tokens of a PEPA net dynamically changes de-
pending on the position of the token. In contrast the CCS restriction operator
has a fixed scope. We place the uses of restriction at the outermost position
as each token may potentially interact with any other place/token process.

We want to abstract away the internal parallel structure of the tokens so
limitation (v) requires any concurrent tokens to be re-expressed as sequential
components. This is always possible by repeated applications of the expansion
law of interleaving process algebras such as PEPA. Also, we can still rely on
a compositional translation function.

Finally, in the last point we assume a unique name environment for each
place and for each token. This point of view is familiar from calculi which
allow α-conversion of restricted names.

54

We use a restricted top-level (RTL) form for CCS processes where all the
restrictions are pushed to the top level of terms. To have processes in RTL-
form, the congruence rules will be applied at the beginning and each time that
recursive operators introduce new restrictions.

We term PEPA nets obeying the above limitations limited PEPA nets.

4 A functional encoding of the translation

In this section we will define a family of functions to encode a limited PEPA
net (Pnet) process into a Stochastic CCS process.

A Pnet is defined by the tuple 〈S, T, F, (D, M)〉, where S is the set of
places, T is the set of transition names, F ⊆ S × (T × R) × S, is the flow
relation between places, D the set of Pnet definitions and M is the initial
marking of the net. The encoding function E : Pnet → CCSS is expressed by:

Eσ(M) = PCCS

where σ = 〈S, T, F, D〉 stores information about the Pnet .

As all the place-processes and all the token-processes in a Pnet are distinct,
we enumerate them and we will use this enumeration in referring to them. As
outlined above, the mapping consists of three distinct maps translating static
components, net-level structures and token components respectively.

Eσ

(
(P1[A1 . . . , Am], . . . , PN [Am+n, . . . , AM])

)
=(

(ΠN
i=1 SCCSi) | ΠM

j=1 (MCCSj | TCCSj) \ namesj

)
\ names

where

SCCSi = ESi
σ(Pi),

MCCSj = EMσ(Aj),

TCCSj = ET i
σ(Aj),

namesj = fnp(MCCSj),

and names = {α@i | α ∈ spec Aj Pi ∅ ∀i ∈ [1 . . . N],∀j ∈ [1 . . . M]}

Some explanation of the above notation is required: the index i represents
the ith place in a net and the index j represents the jth token.

The format which we use to translate Pnet name p is p@n, n ∈ N where
the numeric suffix uniquely encodes the position of the name, i.e. in which
place the name is used.

The function ESi
σ() : N×Pnet → CCSS translates the static components

of the ith place; it is applied at each place of the PEPA net and gives as result

55

the translation of the components of the places which are not tokens.

ESi
σ(P ��

L
R) = (ESi

σ(P) | ESi
σ(R)) \ L′

where L′ = {x@i | x ∈ (L\
⋃M

j=1 spec Aj Pi ∅)}

ESi
σ(P/L) = ESi

σ(P){x@new()/x@i} ∀ x ∈ L

ESi
σ(I[C]) = 0

ESi
σ(S1 + S2) = ESi

σ(S1) + ESi
σ(S2)

ESi
〈S,T,F,D〉(I) =

fix
(
I = ESi

〈S,T,F,D\{Idef
=P}〉

(P)
)

if (I
def
= P) ∈ D

I otherwise

ESi
σ((α, r).S) =

 (α@i, 1).ESi
σ(S) if r = >

(α@i, r).ESi
σ(S) otherwise

Fig. 1. Definition of ES function where P , R, S, are expressions, I is an identifier.

The function EMσ() : N×Pnet → CCSS translates only the firing actions
of the jth token. It is applied to each token and gives as result a CCS process
which synchronizes with the ETσ-translation of that token to allow it to move
between places.

The function ET i
σ() : N×N× Pnet → CCSS translates all the transition

actions of the jth token in the ith place.

The definitions of the functions ESi
σ(), EMσ() and ET i

σ() are given in Fig-
ures 1, 2 and 3, respectively. In Figure A.5 there is the definition of function
spec, which calculates all the synchronisation activities a token-process uses in
cooperation with static components of a place-process. In defining encoding
functions we will use the function new() which returns each time a fresh name.

5 A larger example: a mobile software agent

We illustrate the application of the above translation to the following PEPA
net modelling a mobile software agent as described in [1]. In this example a
mobile agent visits three sites. It interacts with static software components at
the three sites and has two kinds of interactions. When visiting a site where a
network probe is present it interrogates the probe to collect the data which it
has gathered on recent patterns of network traffic. When the agents returns
to the central co-ordinating site it dumps the data which it has harvested
to the master probe. The master probe analyses the data. The structure of
the system allows the analysis to be temporally overlapped with the agent’s

56

communication and data gathering.

We first present the place index set, the transition names and the firing
relation.

S = {1, 2, 3}, T = {go, return},

F = {(1, return , 2), (2, go, 1), (2, go, 3), (3, return , 2)}

Now we progress to the definitions of the places, the static components and
the token of the net. Collectively these make the definition set D. First we
present the components: the probes, the master probe and the mobile agent.

EMσ(P/L) = EMσ(P)

EMσ(S1 + S2) = EMσ(S1) + EMσ(S2)

EM〈S,T,F,D〉(I) =

fix
(
IMob = EM

〈S,T,F,D\{Idef
=P}〉

(P)
)

if I
def
= P ∈ D

IMob otherwise

EMσ((α, r).S) =

∑H
h=1(α , 1).EMσ(S)

+∑K
k=1(α , λk).EMσ(S)

if α ∈ T with

(i, (α,>), z1) . . . (i, (α,>), zH) ∈ F,

(i, (α, λ1), z1) . . . (i, (α, λK), zK) ∈ F,

EMσ(S) otherwise

Fig. 2. Definition of EM function where P , R, S, are expressions, I is an identifier.

ET i
σ(P/L) = ET i

σ(P){new()@i/xi} ∀ x ∈ L

ET i
σ(S1 + S2) = ET i

σ(S1) + ET i
σ(S2)

ET i
〈S,T,F,D〉(I) =

fix
(
I = ET i

〈S,T,F,D\{(Idef
=P)}〉

(P)
)

if I
def
= P ∈ D

I otherwise

ET i
σ((α, r).S) =

∑J
j=1(α, 1).ET zj

σ (S) if α ∈ T and r = >∑J
j=1(α, r).ET zj

σ (S) if α ∈ T and r 6= >

(α@i, r).ET i
σ(S) if α /∈ T and r 6= >

(α@i, 1).ET i
σ(S) if α /∈ T and r = >

where ∀ j ∈ J (i, (α, rj), zj) ∈ F

Fig. 3. Definition of ET function where P , R, S, are expressions, I is an identifier.

57

The probe chooses (via the summation operator) to monitor the network or
to be interrogated by the agent, if it is present.

Probe
def
= (monitor , rm).Probe + (interrogate,>).Probe

Master
def
= (dump,>).(analyse, ra).Master

Agent [A]
def
= (go.λ).(interrogate, ri).(return , µ).(dump, rd).Agent

Every place of the net contains a cell which the agent can inhabit. Places 1
and 3 contain network probes. Place 2 is the central “home” location where
the master probe resides. The synchronisation sets are selected appropriately.

P1[A]
def
= Agent [A] ��

{interrogate}
Probe

P2[A]
def
= Agent [A] ��

{dump}
Master

P3[A]
def
= Agent [A] ��

{interrogate}
Probe

Finally we conclude with the initial marking of the net. The agent is initially
in its home location, in its initial state.

M = (P1[], P2[A1], P3[]).

The result of the encoding function Eσ=〈S,T,F,D〉(M) is the CCSS process

PCCS =
(
recP1 | recP2 | recP3 |

(recAgent | recAgentMob) \ { go, return })
\ { interrogate@3, dump@2, interrogate@1 }

where recP1, recP2 and recP3 are the translations of the static components
resident at the places of the net as follows:

recP1 = ES1
σ(P1) = fix

(
P1 = fix

(
Probe = (monitor@1, rm).P robe +

(interrogate@1, 1).P robe
))

recP2 = ES2
σ(P2) = fix

(
P2 = fix

(
Master = (dump@2, 1).

(analyze@2, ra).Master
))

recP3 = ES3
σ(P3) = fix

(
P3 = fix

(
Probe = (monitor@3, rm).P robe +

(interrogate@3, 1).P robe
))

58

The definitions recAgent and recAgentMob are the translation of the token
of the net.

recAgentMob = EM2
σ(Agent) = fix

(
AgentMob =

(go, λl).(return , µl).AgentMob +

(go, λr).(return , µr).AgentMob
)

recAgent = ET (2,1)
σ (Agent) = fix

(
Agent =

(go, λ).(interrogate@1, ri).

(return , µ).(dump@2, rd).Agent +

(go, λ).(interrogate@3, ri).

(return , µ).(dump@2, rd).Agent
)

The restricted names are derived by the following computations:
{interrogate@3, dump@2, interrogate@1} = {α@i | α ∈ spec A2

1 Pi ∅},
{go, return} = fnp(recAgentMob).

6 Properties of the translation

Property 6.1 (Coverage) Let Pn = (P1[], . . . , Pi[Token], . . . , Pn[]), and

T = ET i
σ(Token). Then for all µj where T

µj−→ T ′, either µj = (x@i, r)
or µj = (x@i, r) or µj = (x, r) or µj = (x, r).

Proof. As Token processes can only be specified by sequential operators (see our initial
assumptions), the continuation following each action, i.e. (α, r).P is the sole continuation
of the complete process. 2

This definition introduces a relabelling function which is similar to others
used in other work in the enhanced operational semantics style [4].

Definition 6.1 The function ` : Θ × N → R ∪ > returns the names of the
channel used by the action together with its rate: `(α, 1) = >, `(α, r) = r.

Theorem 6.2 (Correspondence of CTMCs) Let Pn = (P1, . . . , Pn) be a
restricted PEPA net, then

Pn
(α,r)−−→n P ′

n iff Eσ(Pn)
θ−→CCS Eσ(P ′

n), with `(θ) = r.

Proof. [Short form.] Both directions can be proved by cases on the rule applied and by
induction on the length of the derivation of its premises. 2

59

7 Related work

We view this work as part of a continuing programme to understand the con-
nections between stochastic Petri nets and stochastic process algebras initiated
by Donatelli, Hillston and Ribaudo [5] and continued by [6]. Like those earlier
works, the present paper is largely focussed on theoretical concerns. Practical
engineering insights on the similarities and differences between Petri nets and
process algebras have come from attempts to use the two modelling formalisms
together in an integrated approach to performance modelling. Examples of
the latter approach include [7] and [8].

The contribution of this paper has taken the form of an encoding of a
coloured stochastic Petri net language into a foundational process algebra. A
complementary approach is to select a process algebra and equip it with a Petri
net semantics as in the work of Ribaudo, which compares both representation
issues [9] and analysis techniques [10].

8 Conclusions

We have presented a translation of a sublanguage of PEPA nets into Stochastic
CCS. We have used the translation to show the equivalence of an input PEPA
net and its image under translation. This implies isomorphism between their
underlying CTMCs.

This translation relates the two languages by embedding one in the other.
A companion work compares the two languages by equipping PEPA nets with
an enhanced operational semantics in the CCSS style [11].

Even when applied to simple examples, the results of the encoding demon-
strate that the input net is considerably simpler than its image under the
encoding. This suggests that the added features of the PEPA nets language
are a useful conceptual tool for performance modellers.

Acknowledgements

The authors are supported by the DEGAS (Design Environments for Global
ApplicationS) project IST-2001-32072 funded by the FET Proactive Initiative
on Global Computing.

References

[1] S. Gilmore, J. Hillston, and M. Ribaudo. PEPA nets: A structured performance
modelling formalism. In A.J. Field and P.G. Harrison, editors, Proceedings
of the 12th International Conference on Modelling Tools and Techniques for
Computer and Communication System Performance Evaluation, number 2324

60

in Lecture Notes in Computer Science, pages 111–130, London, UK, April 2002.
Springer-Verlag.

[2] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

[3] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[4] P. Degano and C. Priami. Enhanced operational semantics: a tool for describing
and analysing concurrent systems. ACM Computing Surveys, 33(2):135–176,
2001.

[5] S. Donatelli, J. Hillston, and M. Ribaudo. A comparison of Performance
Evaluation Process Algebra and Generalized Stochastic Petri Nets. In Proc.
6th International Workshop on Petri Nets and Performance Models, Durham,
North Carolina, 1995.

[6] J. Hillston, L. Recalde, M. Ribaudo, and M. Silva. A comparison of the
expressiveness of SPA and bounded SPN models. In B. Haverkort and
R. German, editors, Proceedings of the 9th International Workshop on Petri
Nets and Performance Models, Aachen, Germany, September 2001. IEEE
Computer Science Press.

[7] G. Clark and W.H. Sanders. Implementing a stochastic process algebra
within the Möbius modeling framework. In L. de Alfaro and S. Gilmore,
editors, Proceedings of the first joint PAPM-PROBMIV Workshop, volume
2165 of Lecture Notes in Computer Science, pages 200–215, Aachen, Germany,
September 2001. Springer-Verlag.

[8] M. Bernardo, N. Busi, and M. Ribaudo. Integrating TwoTowers and GreatSPN.
In R. Gorrieri et al., editor, ICALP Workshops 2000 — Proceedings of
the Satellite Workshops of the 27th International Colloquium on Automata,
Languages and Programming (Proceedings of the Eighth Annual Workshop on
Process Algebra and Performance Modelling), number 8 in Proceedings in
Informatics, pages 551–563, Geneva, Switzerland, September 2000. Carleton
Scientific.

[9] M. Ribaudo. Stochastic Petri net semantics for stochastic process algebras.
In Proc. 6th International Workshop on Petri Nets and Performance Models,
Durham, North Carolina, 1995.

[10] M. Ribaudo. On the aggregation techniques in stochastic Petri nets and
stochastic process algebras. In S. Gilmore and J. Hillston, editors, Proceedings
of the Third International Workshop on Process Algebras and Performance
Modelling, pages 600–611. Special Issue of The Computer Journal, 38(7),
December 1995.

[11] S. Gilmore and J. Hillston. An enhanced operational semantics for PEPA nets.
DEGAS internal document, 2002.

61

A Background on Stochastic CCS and PEPA nets

A.1 Stochastic CCS

Definition A.1 Let A be an infinite set of names ranged over by a, b, . . . , x, y, . . .
and let A be the set of co-names ranged over by a, b, . . . , x, y, Let L = A∪A
be the set of labels. Let L ⊆ L, α ∈ L. Let K be a set of agent identifiers ranged
over by A, A1, Let r ∈ R. Processes, denoted by T,Q,R, . . ., are built ac-
cording to the following syntax:

T ::= 0 | (α, r).T | T + T | T |T | T \ L | fix
(
X = T

)
The prefix α is the activity type of the first activity that the process (α, r).T
can perform. The operator | describes parallel composition of processes. The
restriction \L internalises the names in L and their complements. The single-
ton restriction \{x} is often abbreviated to \x. Finally, fix

(
X = T

)
is the

definition of a recursive processes, where X is the recursion variable which
typically recurs within T .

The labels of the transitions are defined in Defn. A.2. The possible actions
(with metavariable µ) are (x, r) for action, (x, r) for co-action.

Definition A.2 The set Θ of enhanced labels (with metavariable θ) is de-
fined by the following syntax.

θ = µ | 〈(µ0, µ1), r〉

with µ0 = (x, r0) if and only if µ1 = (x, r1), or vice versa. The notion of free,
fn, and bound names, bn, are the standard ones.

Fig. A.1 presents the structured operational semantics up to α-equivalence.

T \ x \ y ≡ T \ y \ x (R |S) \ x ≡ (R \ x) |S if x 6∈ fn (S)

(R |S) \ x ≡ R | (S \ x) if x 6∈ fn (R) T \ x ≡ T if x 6∈ fn (T)

T0|T1 ≡ T1|T0 T0 + T1 ≡ T1 + T0

fix
(
X = T

)
≡ T{fix

(
X = T

)
/X}

Fig. A.1. Structural congruence for CCS

A variant of T
µ−→ Q is a transition which only differs in that T and Q have

been replaced by structurally congruent processes, and µ has been α-converted.
The apparent rate [2] of an action a in a given process P will be denoted by
ra(P). The operational semantics of our calculus is in Fig. A.2.

62

Act : µ.T
µ−→∅ T ′ Com :

T
(x,r1)−−−→ T ′, Q

(x,r2)−−−→ Q′

T |Q (〈(x,r1),(x,r2)〉,R)−−−−−−−−−−→ T ′|Q′

Sum :
T

θ−→ T ′

T + Q
θ−→ T ′

Par :
T

θ−→ T ′

T |Q θ−→ T ′|Q

R = r1

rx(P)
× r2

rx(Q)
×min(rx(P), rx(Q))

CCS1 :
P

(α,r)−−→ P ′

P \ I
(α,r)−−→CCS P ′ \ I

, if the name in α is not in I

CCS2
P

〈((α0,r0),(α1,r1)),R〉−−−−−−−−−−−→ P ′

P \ I
〈((α0,r0),(α1,r1)),R〉−−−−−−−−−−−→CCS P ′ \ I

, if the name in α0 is in I

Fig. A.2. Transition system for Stochastic CCS.

A.2 PEPA nets

The semantic rules for PEPA nets are shown in Fig. A.4. We present most
of the rules for PEPA (Prefix, Choice, Hiding and Constant) without
comment. The first two rules for Cooperation represent individual activities
in which component proceed independently and concurrently. The final rule
captures the case of shared activities, whose types appear in the cooperation
set. Here the rate of the shared activity is adjusted to reflect the inability
of the slower co-operand to function at the rate of the faster co-operand.
The adjustment is made using the apparent rates of the components. We use
the notation P

r1
〈α〉Qr2

to represent this adjustment to the rate when P would
perform α at rate r1 and Q would perform α at rate r2.

P
r1
〈α〉Qr2

=
r1

rα(P)

r2

rα(Q)
min(rα(P), rα(Q))

We write P =a Q to indicate that P and Q have equal alphabets.

Three new rules are added for PEPA nets. In order to present these we

63

make use of a relational operator

P1

(α, r)

−→[]−→ P2

which expresses the existence of a transition in the net structure, connecting
places P1 and P2 labelled by activity (α, r). The negation of this operator
expresses the non-existence of such a transition.

The Cell rule conservatively extends the PEPA semantics to define that
a cell with is filled by a component P has the same transitions as P itself.
A typing judgement requires the context P [] to be filled with a component
which has the same alphabet as P , expressed by the alphabet equivalence =a.
There are no rules to infer transition for an empty cell because an empty cell
enable no transitions.

The Transition rule state that the net has local transitions which change
only a single component in the marking vector; moreover, these transitions
agree with the transitions generated by the preceding rules. The second
premise ensures that a local transition α can only occur in a place in a net
which does not enable a net-level transition labelled by α. Note that this
negative requirement is a static requirement related to the structure of the
net, not the negation of the transition relation which is being defined. Thus,
the rule cannot fail to be stratifiable.

The Firing rule represents a PEPA activity which moves a PEPA compo-
nent from the input place to the output place via a transition firing. This has
the effect that two entries in the marking vector change. The rate at which the
activity is performed is calculated as in the PEPA semantics for cooperation.

The semantics of PEPA nets is given in terms of the congruence rules in
Fig. A.2 and in terms of semantic rules in Fig. A.4.

T |Q ≡ Q|T P + Q ≡ Q + P

A ≡ P if A
def
= P

Fig. A.3. Congruence rules for PEPA nets processes.

64

Pre :

(α, r).P
(α,r)

−−−→ P

Com :
P

(α,r1)

−−−→ P ′ Q
(α,r2)

−−−→ Q′

P ��
L

Q
(α,R)

−−−→ P ′ ��
L

Q′
(α ∈ L, R = P

r1
〈α〉Qr2

)

Sum :
P

(α,r)

−−−→ P ′

P + Q
(α,r)

−−−→ P ′
Par :

P
(α,r)

−−−→ P ′

P ��
L

Q
(α,r)

−−−→ P ′ ��
L

Q

(α /∈ L)

Hide0 :
P

(α,r)

−−−→ P ′

P/L
(α,r)

−−−→ P ′/L

(α /∈ L) Hide1 :
P

(α,r)

−−−→ P ′

P/L
(τ,r)

−−−→ P ′/L

(α ∈ L)

Cell :
P ′

(α, r)

−−−→ P ′′

P [P ′]
(α, r)

−−−→n P [P ′′]

(P =a P ′)

Tra :
Pi

(α, r)

−−−→ P ′
i Pi

(α, r′)

−→[/]−→ Pj

(. . . , Pi, . . .)
(α, r)

−−−→n (. . . , P ′
i , . . .)

Fire :
Q

(α, r1)

−−−→ Q′ Pi

(α, r2)

−→[]−→ Pj

(Pi[Q], . . . , Pj[])
(α,R)

−−−→n (Pi[], . . . , Pj[Q′])

(R = Q
r1
〈α〉Pi

r2
)

Fig. A.4. The structured operational semantics of PEPA nets

65

alph ((α, r).R) = {α} ∪ alph R

alph ((α,>).R) = {α} ∪ alph R

alph (R + Q) = alph R ∪ alph Q

alph (R/L) = alph R\L

alph (R ��
L

Q) = alph R ∪ alph Q

alph (R[R]) = alph R

spec P (a.R) K = ∅

spec P (R + S) K = ∅

spec P (P [C]/L) K = ((K\L) ∩ alph P)

spec P (Q[C]/L) K = ∅

spec P (Q/L) K = ∅

spec P (R/L) K = spec P R (K\L)

spec P (P ��
L

S) K = (L ∩ alph P) ∪ (K ∩ alph P) ∪ spec P S (K ∪ L)

spec P (Q ��
L

S) K = spec P S (K ∪ L)

spec P (R ��
L

S) K = spec P R (K ∪ L) ∪ spec P S (K ∪ L)

P , Q are distinct identifiers, R, S expressions, K, L sets of actions, C is a
metavariable which stands for (empty space) or for an identifier.

Fig. A.5. Definition of spec function.

66

	Introduction
	An introductory example: lights on and off
	High-level overview of the translation
	Limitations on translatable PEPA nets

	A functional encoding of the translation
	A larger example: a mobile software agent
	Properties of the translation
	Related work
	Conclusions
	References
	Background on Stochastic CCS and PEPA nets
	Stochastic CCS
	PEPA nets

