
Software performance modelling using PEPA nets

Stephen Gilmore†, Jane Hillston†, Leı̈la Kloul†
∗

and Marina Ribaudo‡

† Laboratory for Foundations of Computer Science, The University of Edinburgh, Scotland
‡ DISI — Dipartimento di Informatica e Scienze dell’Informazione, 16146 Genova, Italy

{stg,jeh,leila}@inf.ed.ac.uk and ribaudo@disi.unige.it

ABSTRACT
Modelling and analysing distributed and mobile software sys-
tems is a challenging task. PEPA nets—coloured stochas-
tic Petri nets—are a recently introduced modelling formalism
which clearly capture important features such as location, syn-
chronisation and message passing. In this paper we describe
PEPA nets and the newly-developed platform support for soft-
ware performance modelling using them. Crucial to this sup-
port is the compilation from PEPA nets into Hillston’s PEPA
stochastic process algebra in order to access the software tools
which support the PEPA algebra. In addition to derivation of
steady state performance measures, this suite of tools allows
properties of the system to be verified using model-checking.
We show the application of PEPA nets in the modelling and
analysis of a secure Web service.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements / Specificat-
ions —Methodologies; D.3.2 [Programming Languages]:
Language Classifications ; D.2.8 [Software Engineering]:
Metrics—performance measures

General Terms
PEPA nets; performance analysis; mobile objects

1. INTRODUCTION
The correct representation of many modern software systems
needs us to distinguish several distinct contexts of computa-
tion. These contexts may depend on physical location, oper-
ating conditions, or both. For example, in a distributed sys-
tem interaction which takes place locally may be richer than
that available through a remote interface; mobile objects may
migrate within a system, significantly altering communication

∗On leave from PRISM, Université de Versailles, 45, Av. des
Etats-Unis 78000 Versailles, France.

costs; and in fault-tolerant systems the current fault scenario
can significantly affect performance.

Unfortunately, many effective state-of-the-art analysis tools do
not provide support, for example, for differentiating between
simple local communication and movement or migration of
processes which can change the allowable pattern of commu-
nication.

PEPA nets [1] extend the PEPA stochastic process algebra [3]
by allowing PEPA components to be used as the tokens of a
coloured stochastic Petri net. A PEPA component has local
state which can be modified by performing timed actions, either
individually or in cooperation with an other component. These
activities define an interface analogous to the interface made
up of the methods which can be invoked on an object. Con-
straints on the nature of the timing information (exponentially
distributed random delays) mean that a PEPA model defines
a Continuous-Time Markov Chain (CTMC). The addition of
the Petri net infrastructure allows us to explicitly represent
locations or contexts (places) and movement between them
(transition firings). Software components of the system, repre-
sented by PEPA components, form tokens of the net and move
between places according to a formally defined firing rule.

Furthermore, the semantics of the formalism imposes a restric-
tion on communication based on the structure of the net. Com-
munication is strictly confined within places—only compo-
nents presently within the same context may interact. Thus
interaction between tokens at different places is not allowed;
for tokens to interact they must first meet at one of the places
of the net. Moreover as a token moves around the net, its pos-
sible activities may be altered to reflect its current location.
Restricting communication according to these rules provides,
for example, a credible formalism for representing mobile code
systems where the tokens of a PEPA net model stateful mobile
objects under a system of dynamic binding of names.

As explained above, the places of the PEPA net provide the
locations, or contexts of the system. These are themselves
modelled by PEPA components, termedstatic components,
which, unlike tokens, are unable to move from the place. These
immobile parts of the system may represent hardware (such as
servers) or software (such as databases). Static components
may communicate with tokens while they are present or they
can communicate with other static components in the same

place. Communication between static components at different
places is not allowed.

In this paper we present PEPA nets, which have recently been
extended to include more general net structures, and demon-
strate their modelling and analysis capabilities on a small case
study based on a secure Web service.

There is an extensive suite of tools already supporting the PEPA
language. In order to be able to exploit these tools, rather
than develop new ones, we have developed an algorithm which
compiles a PEPA net model to an equivalent model in PEPA.
The difficulty here is transforming a PEPA net model into a
model in a language which has no explicit notion of either
location or mobility between locations. Despite the complex-
ity of the transformation, we believe it is worthwhile since it
provides access to established, trusted tools. Furthermore it
is implemented in a software tool and therefore transparent to
the user.

Structure of this paper:In the next section we present exam-
ples and the definition of the PEPA nets modelling language.
This definition extends previous versions, by allowing a more
general net structure to be used. We also explain the firing
rule, which has been appropriately extended to take account of
this more general structure. In Sect. 3 we describe the method
of translating PEPA nets to PEPA and present results about
the translation. In Sect. 4 we present an example of the algo-
rithm. The objective of the algorithm is to allow PEPA net
users to be able to exploit the existing tool support for PEPA.
In Sect. 5 we give a brief overview of that tool support. In
Sect. 6 we describe our Web Services case study. In Sect. 7
we describe the implementation of our translation method as
an extension to the PEPA Workbench for PEPA nets which
connects to the tools of the PEPA platform. Conclusions are
presented in Sect. 8.

2. PEPA NETS
In this section we provide a brief overview of PEPA nets and
the PEPA stochastic process algebra. A fuller description,
together with supporting theory and proofs is available in [1]
and [3]. The purpose of this summary is to provide enough
information about the modelling language to make the present
paper self-contained.

The tokens of a PEPA net are terms of the PEPA stochastic pro-
cess algebra which define the behaviour of components via the
activities they undertake and the interactions between them.
One example of a PEPA component would be aFile object
which can be opened for reading or writing, have data read
(or written) and closed. Such an object would understand the
methodsopenRead(), openWrite(), read(), write() andclose().
A PEPA model shows the order in which such methods can be
invoked.

File
def
= (openRead, ro).InStream

+ (openWrite, ro).OutStream

InStream
def
= (read, rr).InStream

+ (close, rc).File

OutStream
def
= (write, rw).OutStream

+ (close, rc).File

Every activity in the model incurs an execution cost which
is quantified by an estimate of the (exponentially-distributed)
rate at which it can occur (ro, rr , rw, rc).

Such a description documents a high-level protocol for using
File objects, from which it is possible to derive properties such
as “it is not possible to write to a closed file” and “read and
write operations cannot be interleaved: the file must be closed
and re-opened first”.

A PEPA net is made up of PEPAcontexts, one at each place in
the net. A context consists of a number ofstaticcomponents
(possibly zero) and a number ofcells (at least one). Like a
memory location in an imperative program, a cell is a storage
area to be filled by a datum of a particular type. In particular
in a PEPA net, a cell is a storage area dedicated to storing
a PEPA component, such as theFile object described above.
The components which fill cells can circulate as the tokens of
the net. In contrast, the static components cannot move. A
typical place might be the following:

File[] ��
L

FileReader

where thesynchronisation set Lin this case is~A(File), the
complete action type setof the component, (openRead, open-
Write, . . .). This place has aFile-type cell and a static compo-
nent,FileReader, which can process the file when it arrives.

A PEPA net differentiates between two types of change of
state. We refer to these asfirings of the net andtransitions
of PEPA components. Each are special cases of PEPA activ-
ities. Transitions of PEPA components will typically be used
to model small-scale (orlocal) changes of state as components
undertake activities. Firings of the net will typically be used
to model macro-step (orglobal) changes of state such as con-
text switches, breakdowns and repairs, one thread yielding to
another, or a mobile software agent moving from one network
host to another. The set of all firings is denoted byAf . The
set of all transitions is denoted byAt. We distinguish firings
syntactically by printing their names in boldface.

Continuing our example, we introduce an instant message as a
type of transmissible file.

InstantMessage
def
= (transmit , r t).File

Part of a definition of a PEPA net which models the passage of
instant messages is shown below. An instant messageIM can
be moved from the input place on the left to the output place
on the right by thetransmit firing. In doing so it changes
state to evolve to aFile derivative, which can be read by the
FileReader.

InstantMessage[IM]
(transmit,rt)

−−−→[]−−−→ File[] ��
L

FileReader

The syntax of PEPA nets is given in Figure 1. In that grammar
S denotes asequential componentandP denotes aconcurrent
componentwhich executes in parallel.I stands for a constant
which denotes either a sequential or a concurrent component,
as bound by a definition.

N ::= D+M (net)

M ::= (MP, . . .) (marking)
MP ::= P[C, . . .] (place marking)

D ::= I
def
= S (component defn)

| P[C]
def
= P[C] (place defn)

| P[C, . . .]
def
= P[C] ��

L
P (place defn)

P ::= P ��
L

P (cooperation)
| P/L (hiding)
| P[C] (cell)
| I (identifier)

C ::= ‘ ’ (empty)
| S (full)

S ::= (α, r).S (prefix)
| S+ S (choice)
| I (identifier)

Figure 1: The syntax of PEPA nets

DEFINITION 1 (PEPANET). A PEPA netN is a tuple
N = (P,T , I, O, `, π, C, D, M0) such that

• P is a finite set of places;

• T is a finite set of net transitions;

• I : T → P is the input function;

• O : T → P is the output function;

• ` : T → (Af , R+ ∪ {>}) is the labelling function,
which assigns a PEPA activity ((type, rate) pair) to each
transition. The rate determines the negative exponen-
tial distribution governing the delay associated with the
transition;

• π : Af → N is the priority function which assigns pri-
orities (represented by natural numbers) to firing action
types;

• C : P → P is the place definition function which assigns
a PEPA context, containing at least one cell, to each
place;

• D is the set of token component definitions;

• M0 is the initial marking of the net.

We use the notation

P1

(α, r)

−→[]−→ P2

to capture the information that there is a transition connecting
placeP1 to placeP2 labelled by(α, r).

The structured operational semantics, given in [1], given a pre-
cise definition of the possible evolution of a PEPA net, and
show how a CTMC can be derived, treating each marking as a
distinct state.

We define the firing rule of PEPA nets to respect the net struc-
ture in the usual way (one token from each input arc, one

token to each output arc) but also to take into consideration
the ability of tokens to participate in the firing (can they per-
form an activity of the correct type?), and the availability of
vacant cells of the appropriate type in the output places. Note
that in previously published papers on PEPA nets the net struc-
ture was restricted to form a state machine, thus removing the
possibility of more than one token moving at once. We have
now removed this restriction but still require that the net is
balancedin the sense that, for each transition, the number of
input arcs is equal to the number of output arcs. In classical
Petri nets tokens are identitiless, and can be viewed as being
consumed from input places and created into output places for
each firing. In contrast, in PEPA nets our tokens have state and
identity, and we view them aspassing throughnet-level tran-
sitions. For each firing there must be as many output tokens as
there were input tokens. This generalisation has increased the
expressiveness of the formalism.

DEFINITION 2 (ENABLING). An enabling is a mapping
of places to tokens. A transition t has anenablingof firing type
α, E(t, α), if for each input placePi of t there is a token T in the
current marking ofPi , which has a one-stepα-derivative, T′.

Note that there may be several enablings for a given transition
firing in any particular marking, as the enabling selects one
token to fire from each input place1, and there may be more
than one eligible token at each input place.

Since it is important that each fired token has a vacant cell to
go into after the firing, we define a corresponding notion of
output. A transition has an output if, in the current marking,
there is at least one vacant cell in each output place.

DEFINITION 3 (OUTPUT). For any transition t, anout-
put, denotedO(t), is a mapping from the output places of t to
vacant cells in the current marking.

Since each token passes through a net level transition when
it fires, a transition is enabled only when there is a bijective
function between the chosen enabling and an output.

DEFINITION 4 (CONCESSION). A transition t hascon-
cessionfor a firing of typeα if there is an enablingE(t, α)
such that there is a bijective mappingφ from E(t, α) to an
outputO(t), which preserves the types of tokens.

As with classical Petri nets with priority, having concession
identifies those transitions which could legally fire according
to the net structure and the current marking. Those transitions
whichcanfire are determined by the priorities.

DEFINITION 5 (ENABLING RULE). A transition t will be
enabledfor a firing of typeα if there is no other transition of
higher priority with concession in the current marking.

1We assume all arcs have multiplicity 1.

DEFINITION 6 (FIRING RULE). When a transition t fires
with typeα on the basis of the enablingE(t, α), and concession
φ then for each(Pi , T,) in E(t, α), T[T] is replaced by T[] in
the marking ofPi , and the current marking of each output
place is updated according toφ.

We assume that when there is more than one mappingφ from
an enabling to an output, then they have equal probability and
one is selected randomly. The rate of the enabled firing is
determined using apparent rates, and the notion of bounded
capacity, as usual for PEPA.

3. TRANSLATING PEPA NETS TO PEPA
In order to be able to fully exploit the existing suite of analy-
sis tools for PEPA models we have defined a translation from
PEPA nets to PEPA. In this section we describe the algorithm
to do this in some detail. The algorithm is composed of a
number of different steps which are described in turn in the
following sections.

Before starting the translation, apreprocessingphase in nec-
essary in order to rename firings that in the PEPA nets share
the same input place and same action type. This is done by
checking the arcs specification in the PEPA net file. For exam-
ple, we need to make transformations of the arcs such as the
following

Pk

(α,r1)

−→[]−→ Pj and Pk

(α,r2)

−→[]−→ Pi

;

Pk

(α1,r1)

−→[]−→ Pj and Pk

(α2,r2)

−→[]−→ Pi

and to store the triples (α, α1, r1) and (α, α2, r2) in an array
denoted byFire.

Several data types and functions are used in the algorithm and
are introduced below. In addition we use~A(C), returning the
complete action type set of componentC.

All stores all action types of the PEPA model
NumberSC[] counts occurrences of static components

Numberαj counts renamings of activityαj

as introduced by preprocessing
OccurSC[] stores repeated static components

Fire[] stores the triples from the preprocessing
TargetPj stores triples(P, αj , r) whereP is the

output place of the arc and(αj , r) its label
Collect[α] stores the components which must synchronise

on the current action typeα
Extract(αj) returns the original action typeα from

the triple inFire; Nil otherwise
Lsync(Ti , SCk) synchronisation set between token type

Ti and the static componentSCk

T (C) returns the type of componentC

3.1 Step 1: Translating Static Components
This step concerns the translation of static components. We
need to count the occurrences of static components within the
places of the PEPA net and rename action types and deriva-
tives of each occurrence of the static component to reflect its
location. This allows us to avoid erroneous synchronisations

since in a PEPA net synchronisation is possible only when the
components are resident in the same place.

for eachstatic componentSCi

NumberSC[i]← 0;

OccurSC[i]← ∅;
for eachplacePj ∈ P

if (SCi in Pj)

then NumberSC[i]← NumberSC[i] + 1;

if (NumberSC[i] > 1) then

OccurSC[i]← SCi;
for k = 1 . . . NumberSC[i]

make an instanceSCik of SCi, renumber-
ing activities and derivatives;

// save all action types in All

All ← All ∪ ~A(SCik);

3.2 Step 2: Translating Cells
In this step we consider all the PEPA net places containing
cells and we associate one component with each cell within a
place. Each cell definition is built by considering the input and
output arcs to the place itself, with respect to the type of the
token which may occupy the cell. Moreover, each cell can be
in two states:empty, denoted by a subscript 0 in its derivative,
andfull denoted by a subscript 1. Firing a token into the place
changes the state of the cell from empty to full. Firing a token
out of the cell changes its state from full to empty. This allows
us to prevent a token from moving to a place where all of the
cells are already full.

for each token typeT and placePj ∈ P

for eachcell i in Pj

create a componentCellTji0;

for each input arcPk

(α,r)

−→[]−→ Pj such thatα ∈
~A(()T)

All ← All ∪ {α};
// avoiding redundant activities
CellTji0 ← CellTji0 + (α, r).CellTji1;

for each output arcPj

(α,r)

−→[]−→ Pk such that
α ∈ ~A(()T)

All ← All ∪ {α};
CellTji1 ← CellTji1 + (α, r).CellTji0;

3.3 Step 3: Translating Tokens
Token definitions need to be revised according to their dynamic
behaviour. Two aspects are taken into account: the movement
of a token into a new place after a firing and its interaction
with static components within a PEPA net place. Again, in

order to avoid erroneous synchronisations, we need to cre-
ate new names for action types and derivatives. This is done
when two or more net transitions have the same label and when
tokens synchronise with static components which appear sev-
eral times in the net. Recall that in Step 1 the action types
and the derivatives of each occurrence of the static component
were renamed. Therefore here we need to copy the derivatives
of the token where the synchronising action type appears and
we do this for each renaming of the synchronising action.

for each token typeTi

// movement of the token in the net

for eachaction typeαj ∈ Af (Ti)

Numberαj ← 0;
TargetPj ← ∅;

for eacharcPk

(action,r)

−→[]−→ Pl

α∗
j ← Extract(action);

if (αj = α∗
j) then

Numberαj ← Numberαj + 1;
TargetPj ← TargetPj ∪ Pl;

if (Numberαj > 1) then
r∗ ← r/Numberαj ;
for eachdistinct place inTargetPj

add the corresponding activity(action, r∗)
in TargetPj followed by a new com-
ponent identifierC∗;

duplicate the sequential componentC
resulting from the execution of action
αj in Ti , replacingC with C∗;

elsemake a copy of the current derivative ofTi ;

// interaction of token and static components

for eachplacePl ∈ P
if (Ti in Pl) then

for eachstatic componentSCk in OccurSC
for eachaction typeαj ∈ Lsync(Ti , SCk)

for x = 1 . . . NumberSC[k]
duplicate the derivatives where
αj appears inTi for each renam-
ing of αj during the translation
of the static componentSCk;

// representing the initial marking

for eachoccurrence ofTi atPj in M0

make an instanceSTij of Ti, renumbering
activities and derivatives.

3.4 Step 4: Building the System Equation
The “system equation” of a PEPA model forms a parallel com-
position of the process components which have defining equa-
tions. Several copies of each component might be required
and any instance of a process definition can be configured by
the use of a synchronisation set which forces it to synchronise
with one or more of the other processes. We build the system

equation for the PEPA model generated from the input PEPA
net by putting in parallel all the components generated in the
previous steps. Then we force them to synchronise on com-
mon action types.

// Build the equation with empty synchronising sets
take the first componentC0 in the PEPA model

System← ′(′ + C0;

for eachcomponentCi

System← System+ ′(<>′ + Ci

balance the number of opened left parenthesis

// Fill the synchronising sets in the system equation

remove repeated action types fromAll

for eachα ∈ All

for eachcomponentC

if α ∈ A(C) then
Collect[α]← C;

for eachpair (Ck, Cl) ∈ Collect[α]

if T (Ck) 6= T (Cl) then
insertα in the synchronisation set associated
with the most left component betweenCk

andCl

3.5 Properties of the translation
PEPA stochastic process algebra models have no notion of
context, nor any capacity to move components from one con-
text to another, and therefore cannot express the concept of
dynamically varying communication structure. The task per-
formed by the compilation of a PEPA net described above
has been to remove all of the mobility from the PEPA net
by making components’ behaviour depend on location. This
is achieved by expanding the definition of the tokens of the
net replicating local state behaviours and customising these
for each cell which the token may visit.

The compilation from a PEPA net to a PEPA model is analo-
gous to the preprocessing of a coloured Petri net to transform
it into an uncoloured net for analysis purposes. In the worst
case—when there is only a single class of token, all tokens can
travel to all of the places of the net, and the net has no static
components—the resulting PEPA model isn times larger than
the input PEPA net, wheren is the number of cells in the net.

The correctness of the translation from the input PEPA net to
the resulting PEPA model can be stated formally thus. When
evaluated against the operational semantics of the languages
the two models generate labelled transition systems (LTS) for
the models. These LTS contain information about the activities
performed in the model by including action types in labels. If
these occurrences of action types are removed then isomorphic
CTMCs are obtained for the input PEPA net and its translation.
This is the sense in which the output PEPA model is a correct
translation of the input PEPA net.

4. EXAMPLE: MOBILE AGENTS
We present a small example to reinforce the reader’s under-
standing of the translation algorithm. In this example a mobile
software agent visits three sites. It interacts with static soft-
ware components at these sites and has two kinds of interac-
tions. When visiting a site where a network probe is present
it interrogates the probe for the data which it has gathered on
recent patterns of network traffic. When it returns to the cen-
tral co-ordinating site it dumps the data which it has harvested
to the master probe. The master probe analyses the data.

The structure of the application is as represented by the PEPA
net in Figure 2. This marking of the net shows the mobile
agent resident at the central co-ordinating site. Recall that as
a memory aid, in both the net and the PEPA token definitions,
we print in bold the names of those activities which can cause
a firing of the net. In this example the activities which can
cause a firing of the net aregoandreturn .

T1

T2

T3

T4

(go,>) (go,>)

(return ,>) (return ,>)

P1 P2 P3Agent

Figure 2: A simple mobile agent system

Formally, we define the places of the net as shown in the PEPA
context definitions below.

P1[Agent]
def
= Agent[Agent] ��

{interrogate}
Probe

P2[Agent]
def
= Agent[Agent] ��

{dump}
Master

P3[Agent]
def
= Agent[Agent] ��

{interrogate}
Probe

The behaviour of the components is given by the following
PEPA definitions.

Agent
def
= (go, λ).Agent′

Agent′
def
= (interrogate, r i).Agent′′

Agent′′
def
= (return , µ).Agent′′′

Agent′′′
def
= (dump, rd).Agent

Master
def
= (dump,>).Master′

Master′
def
= (analyse, ra).Master

Probe
def
= (monitor, rm).Probe+

(interrogate,>).Probe

The initial marking of the net has oneAgenttoken in placeP2

and no other tokens:(
Agent[] ��

{interrogate}
Probe,

Agent[Agent] ��
{dump}

Master,

Agent[] ��
{interrogate}

Probe
)

4.1 Translation into PEPA
The example has two static componentsMaster and Probe.
As the latter appears twice in the PEPA net model (in places
P1 and P3), the application of the algorithm generates two
instantiations of this componentProbe1andProbe2. Thus in
the PEPA model we have:

Master
def
= (dump,>).Master′

Master′
def
= (analyse, ra).Master

Probe1
def
= (monitor1, rm).Probe1

+ (interrogate1,>).Probe1

Probe2
def
= (monitor2, rm).Probe2

+ (interrogate2,>).Probe2

As each place contains just one cell, the translation algorithm
will generate three new components which we will denote by
Cellj 0, where the subscriptj = 1, 2 or 3 specifies that the cell
resides at placeP1, P2 or P3. The suffix which followsj takes
only the values zero or one and is used to record whether the
cell is empty or full2.

Firings and transitions are no longer distinguished because
there is only one class of activities in PEPA and so we no
longer embolden the namesgoandreturn.

Cell10
def
= (go1,>).Cell11

Cell11
def
= (return1,>).Cell10

Cell20
def
= (return1,>).Cell21 + (return2,>).Cell21

Cell21
def
= (go1,>).Cell20 + (go2,>).Cell20

Cell30
def
= (go2,>).Cell31

Cell31
def
= (return2,>).Cell30

ComponentAgentis the token in the net and its definition is
modified to take into account its complete dynamic behaviour
in the net.

Agent
def
= (go1, λ/2).Agent

′
+ (go2, λ/2).Agent

′

1

Agent
′ def

= (interrogate1, r i).Agent
′′

Agent
′

1

def
= (interrogate2, r i).Agent

′′

1

Agent
′′ def

= (return1, µ).Agent
′′′

Agent
′′

1

def
= (return2, µ).Agent

′′′

Agent
′′′ def

= (dump, rd).Agent

The PEPA system equation forms a parallel composition of
instances of the above components and requires them to syn-
chronise on their common actions. The system equation in this
case is as follows:

System
def
= (Cell10 ��

K1
(Probe��

K2
(Agent��

K3
(Cell21

��
K4

(Master��
K5

(Probe1 ��
K6

Cell30))))))

whereK1 = { go1, return1}, K2 = { interrogate1}, K3 = { go1,
return1, go2, return2, dump, interrogate2}, K4 = { go2}, K5 =
K6 = ∅.
2Note that since there is only one token type in this PEPA net
we omit the corresponding subscript.

5. PLATFORM SUPPORT FOR PEPA
As mentioned earlier, the objective of the translation from PEPA
nets to PEPA is to allow the PEPA net modeller to exploit the
existing suite of tools which support PEPA. In this section we
give a brief overview of these tools.

We see the provision of tool support for modelling languages
as being analogous to providing tools for programming lan-
guages. A software development kit typically provides a range
of tools (compilers, debuggers, profilers, perhaps even model
checkers) which perform various types of analysis or conver-
sion on the program. Similarly in providing platform sup-
port for PEPA and PEPA nets we provide this through a mod-
elling kit containing solvers, passage-time analysers, model-
checkers and other tools.

The analysis of a PEPA model proceeds by deriving its under-
lying Markov chain and solving this to find the long-run prob-
ability of the states of the chain. The states of the chain are
in one-to-one correspondence with the states of the deriva-
tion graph of a PEPA process as specified by the operational
semantics of the language so information about the long-run
behaviour of the CTMC translates directly to information about
the PEPA model from which it was derived.

The PEPA Workbench [4] generates the CTMC corresponding
to any given PEPA model. The Workbench is available in vari-
ous editions (principally implemented in ML and Java respec-
tively), connected to a variety of solvers for the CTMC. Addi-
tionally, in 1999 Clark implemented some additional PEPA
tools such as the PEPAroni simulator in Pizza [5], an extension
of Java. This was later re-implemented in the Java version of
the Workbench [6].

5.1 Analysis Tools
Generating the underlying CTMC, and finding its steady state
probability vector is rarely, if ever, the objective of PEPA or
PEPA net modelling. Formal tool support for querying per-
formance models is an area which has received little attention
until recently, despite its practical importance.

At the most basic level the modeller wishes to construct a
reward structureover the state space of the CTMC, to be used
in conjunction with the steady state probability vector to derive
performance measures. For steady state measures the reward
structure is a vector recording a reward for each state, although
for many states the reward value will be zero. Thus the prob-
lem becomes one of identifying the appropriate set of states to
attach a non-zero reward to. Clearly, when the CTMC arises
from a stochastic process algebra model we prefer to charac-
terise the state at the process algebra level. PEPA analysis
tools have been developed which tackle this problem in two
distinct ways.

5.1.1 The PEPA State Finder
The PEPA State Finder identifies subsets of states using regu-
lar expression pattern matching, applied to the table of PEPA
expressions which make up the state of the model. Recall
that there is a one-to-one correspondence between the syntac-
tic forms of the PEPA process as it evolves and the states of the

CTMC. The Workbench maintains a table recording this cor-
respondence, and using regular expression pattern matching
the PEPA State Finder is able to extract the states of inter-
est. For example, it is possible to use an expression such
|(next,r). to return the state numbers of all the states
in which the second component enables a (next, r) activity.
This could then be used to construct a reward structure suit-
able for calculating the throughput ofnextin the second com-
ponent: the valuer is placed in the reward vector at each posi-
tion corresponding to a (numerical) state found by the PEPA
State Finder.

5.1.2 PMLµ
A more sophisticated means of specifying rewards is described
in Clark’s PhD thesis [7], and developed around the stochas-
tic logic PMLµ. Inspired by the probabilistic model logic of
Laren and Skou, PML [8], PMLµ is able to differentiate PEPA
terms which perform the same activities but at different rates.
The key to this is a modification to Hennessy-Milner logic in
which the diamond operator becomes decorated with a rate.
The semantics of an expression in the logic is a subset of states,
and thus logical expressions may be used, in conjunction with
a value, to specify a reward structure. Clark extended the ML
edition of the PEPA Workbench to include support for PMLµ

and associated reward structures [7].

5.1.3 CSL
More recently the CSL logic (Continuous Stochastic Logic) [9]
has gained some acceptance as a suitable vehicle for express-
ing performance and performability measures which can be
model checked on a CTMC. Unlike the approach of PMLµ,
where the logic formula is used to distinguish a subset of states
(those satisfying the formula), a CSL formula expresses an
assertion about the performance measures of a model which
can then be checked to see whether it is true or not. Thus this
offers an alternative approach to using logics to assist in per-
formance analysis.

5.2 Interoperation with other tools
In addition to developing tools specific to PEPA, when possi-
ble we connect the PEPA language to existing tools for perfor-
mance modelling.

5.2.1 PEPA and M̈obius
The Möbius modelling framework [10] is a multi-formalism
and multi-paradigm modelling tool, and as such provided an
excellent tool to integrate PEPA into [11]. Integration in this
case involved not only building PEPA support into Möbius but
also incorporating M̈obius features into the version of PEPA
which was implemented in M̈obius. The reason for this was
that it then became possible to share variables between com-
ponents modelled in PEPA and components implemented in
another M̈obius formalism, such as SANs.

Building support for PEPA directly in another tool has the
advantage that the language is supported efficiently, without
additional overheads imposed by translation from one repre-
sentation into another. However, it has the implementation
cost that the implementor must be familiar not only with the
concepts of the host tool but also with their representation in

data structures and algorithms. Such tight integration is not
always cost-effective or necessarily desirable.

5.2.2 PEPA and PRISM
For our subsequent integration work we used a lighter-weight,
component-based method involving a relatively loose coupling
between the language and the host solver. This was adopted
when a binding for the PEPA language in the PRISM [12]
probabilistic model checker was developed. In PRISM analy-
sis of CTMCs is performance through model checking speci-
fications in the probabilistic temporal logic CSL.

In order to define and analyse a model, PRISM requires two
input files: adescription of the systemunder investigation and
a set of propertiesto be checked against it. The description of
the system is given in a reactive module language. To integrate
PEPA, a PEPA compiler was adapted to generate its output in
the form of this language. Additionally, the model checker
itself was extended to support PEPA’s combinators (parallel
and hiding).

This method of working with PEPA models requires a signif-
icant degree of expertise on the part of the modeller, because
errors in evaluation can occur in the tool chain right from the
PEPA parser through PEPA-to-PRISM and PRISM down to
CUDD [13], the BDD library which provides MTBDD data
structures and algorithms to PRISM. Even if errors do not
occur in translation still to achieve the best performance from
the solver it is necessary to know how to configure both PRISM
and CUDD which means that this method is best suited to
experienced modellers only.

5.2.3 PEPA, IPC and Dnamaca
A recent development in the PEPA tools is Bradley’sipc (The
Imperial PEPA Compiler) [14]. Theipc tool translates an input
PEPA model into the Petri net notation provided by Knotten-
belt’s Dnamaca tool [15]. Theipc tool supports the PEPA lan-
guage comprehensively. Apparent rates are supported, as are
anonymous components. These are two advantages over the
PEPA-to-PRISM compiler, and a richer class of PEPA models
can therefore be analysed byipc/Dnamaca as a result.

In one other important respect,ipc provides more compre-
hensive PEPA support than comparable tools because it also
translates PMLµ formulae into the Dnamaca specification lan-
guage. The Dnamaca specification language is a classical Petri
net logic allowing specification formulae to quantify the num-
ber of tokens in the places of the net and thereby identify states
and sets of states within the reachable state space of the model.

Via ipc, the unique solution capabilities of Dnamaca become
available and because of this it is possible to efficiently per-
form passage time analysis over PEPA models.

6. EXAMPLE: SECURE WEB SERVICE
In this section we present a PEPA net model of an exam-
ple taken from the field of Web Services, a relatively new
Web programming paradigm which provides standard inter-
faces and communication protocols for integrating Web-based
distributed applications.

Web services allow different applications from different sources
to communicate and interoperate. Many practitioners believe
that they will become a key component of many organization’s
future business-integration initiatives. Security issues need to
be considered carefully because the integration of applications
that communicate over a network could reveal sensitive infor-
mation to unknown parties.

Web services interfaces are defined, described and discovered
by means of XML—the eXtensible Markup Language—and
therefore they are not tied to any single operating system or
programming language. XML is used to tag the data which
are exchanged between applications via SOAP (Simple Object
Access Protocol) messages, XML-based messages which may
be transported using a variety of Internet protocols, including
SMTP, MIME, and HTTP.

The available services are described using WSDL (the Web
Services Description Language), an XML-formatted language,
and they are made available thanks to UDDI (the Universal
Description, Discovery and Integration format), a Web-based
distributed directory that lists the available services, similar to
a traditional phone book’s yellow and white pages.

Our example is a model of a mobile object system where a
client sends SOAP message objects to a remote Web service.
Our scenario is that a financial tycoon is sending requests for
stocks and share price information to a remote Web service
which provides this information. These requests for informa-
tion are encrypted. An eavesdropper could make use of the
information in the messages if they were sent as clear text.
The Web service itself is protected by a firewall.

6.1 The token type
The tokens exchanged in the system are SOAP messages in
various formats. These may either be sent across the network
as clear text or encrypted to preserve their contents. A SOAP
message may be parsed to build an in-memory data structure
which can be read and modified as needed. This data structure
is a DOM tree (a Document Object Model tree).

SoapMessage
def
= (sendclr , rsc).SentClearMessage

+ (encrypt, re).EncryptedMsg

+ (parse, rp).DOMtree

SentClearMessage
def
= (copyClear,>).SoapMessage

The rate at which information is copied across the network
is specified not in this component but at the upper PEPA net
level. The description of this component leaves unspecified (>)
the rates at which these actions are performed, allowing the
cooperating partner in the synchronisation to determine these
rates. All such unspecified rates must be synchronised with
specified ones in the final model. Frequently, synchronisations
are between one active partner and one passive partner.

Encrypted messages can be decrypted to recover their initial

contents or sent across the network in encrypted form.

EncryptedMsg
def
= (decrypt, rd).SoapMessage

+ (sendenc, rse).SentEncMessage

SentEncMessage
def
= (copyEncrypted,>).EncryptedMsg

In both cases, we model the transmission of a SOAP mes-
sage as a two-phase process, separating the cost of making
the decision to send (sendclr , sendenc) from the cost of copying
the bytes across the network (copyClear, copyEncrypted).

DOM trees may be read or modified. As an in-memory data
structure they first must be serialised (using theexportactivity)
if they are to be sent across the network.

DOMtree
def
= (read, rr).DOMtree

+ (modify, rm).DOMtree

+ (export, rx).SoapMessage

6.2 Static components
SOAP message tokens of various forms are exchanged between
the places of the net. Static components at these places interact
with the tokens. On the client side is the user, making requests
of the remote Web Service. The user encrypts requests before
they are sent and decrypts replies when they are received.

User
def
= Encrypt+ Decrypt

Encrypt
def
= (encrypt,>).(sendenc,>).User

Decrypt
def
= (decrypt,>).(parse,>).(read,>).Request

Request
def
= (modify,>).(export,>).User

Running on the firewall is a gatekeeper process which per-
forms three distinct functions: decrypting user requests, bounc-
ing flawed requests and encrypting replies from the server. The
gatekeeper receives requests from the user and decrypts them.
The decrypted message might be a well-formed request, in
which case it is forwarded to the server. Alternatively it might
be in an invalid format, request a non-existent service, or have
suspicious attachments. In this case it is bounced back to the
user with a diagnostic error message attached. This assign-
ment of responsibilities means that the load on the server is
reduced.

All of the communication with the user is sent in encrypted
format. Behind the firewall the messages are exchanged in the
clear. Thussendenc always sends to the user andsendclr always
sends to the server.

GateKeeper
def
= FilterIn + Bounce+ FilterOut

FilterIn
def
= (decrypt,>).(sendclr ,>).GateKeeper

Bounce
def
= (decrypt,>).FilterOut

FilterOut
def
= (encrypt,>).(sendenc,>).GateKeeper

Behind the firewall the share price Web service runs on the
server. Its life cycle is parsing, reading, modifying, serialising
and returning requests.

WebService
def
= (parse,>).(read,>).

(modify,>).(export,>).(sendclr ,>).WebService

6.3 The PEPA net
The PEPA net of the system sites the above static components
at places of the net and specifies the communication between
different places of the net by naming the transitions which
must be fired for tokens to move from place to place. The
User is operating the client machine, theGateKeeperprocess
runs on the firewall, theWebServiceon the server behind the
firewall.

Client side

User��
L

SoapMessage[SoapMessage]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper��
L

EncryptedMsg[]

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService��
L

SoapMessage[]

Server side

The synchronisation set used at each place,L, is {decrypt,
sendclr , parse, read, modify, export, encrypt, sendenc}.

6.4 Model analysis
We analysed our secure Web service model using the PEPA
Workbench for PEPA nets and the PRISM model checker, mak-
ing use of our PEPA net compiler tool to compile the net into
a PEPA model which is accepted by PRISM.

In the analysis of our example using the PEPA Workbench we
calculated the utilisation of the Web service as two quanti-
ties varied. The first was the probability (bounceProb) that
user requests to use the Web service would be bounced by
the gatekeeper process (for whatever reason). We varied this
between 0.05 (there is a low probability that requests will be
bounced) and 1.0 (requests messages are always bounced, and
do not reach the server). The second parameter which we var-
ied was the strength of the encryption used to encrypt mes-
sages. This variation is captured by an increase in the overhead
associated with encryption and decryption (encOver). We plot-
ted this for strong encryption taking in the range ten times
longer to compute to ninety times longer.

0.2
0.4

0.6
0.8

1
bounceProb

20
40

60
80encOver

0

0.02

0.04

0.06

utilProb

As expected, the utilisation of the Web service is seen to be
lowest when the strongest form of encryption is used (because
this delays only the user and the gatekeeper) and when the
probability of bouncing messages is highest (in that case they
never reach the server).

To perform model-checking on the PEPA net we compiled it
to PEPA and used PRISM to model check a range of CSL for-
mulae. One formula which we checked was “with probability
at least 0.5, the web service begins processing its first request
within t time units”. This is expressed in CSL as follows:

P≥0.5[true U≤t(WebService= (read,>).WebService′)].

This is a typical CSL formula, combining time, probability
and a path through the system evolution. We checked this for-
mula with the time parameter,t, taking values between 1.0
and 100,000.0 time units. Model-checking formulae of this
type on a 1.6GHz Pentium IV processor machine with 256Mb
of memory typically requires an average of 0.275 seconds of
compute time, as reported by PRISM. These times are mea-
sured in the PRISM implementation using Java’s native method
System.currentTimeMillis(). The formula above is satisfied
for all states of the secure Web Service model for values of
t=250 time units and higher.

7. IMPLEMENTATION
We have implemented our translation from PEPA nets to PEPA
as an extension to our existing tool, The PEPA Workbench for
PEPA Nets, ML Edition. This is a modular research version
of the PEPA Workbench for experimentation and extension so
it is well-suited to adding modules such as the PEPA net com-
piler.

The workbench front end which consists of the PEPA net parser
and syntax tree builder required no changes from their use
as components of the PEPA Workbench. Similarly, the static
analyser for PEPA nets was unchanged. The new components
added by the compiler make use of this front end and then pro-
vide other functions for traversing the abstract syntax tree of
the PEPA net and inferring derived synchronisation sets from
the union of sets which are stored throughout the tree. Simi-
larly, token flows were inferred for the components which flow
around the net. Additionally, new names were coined for spe-
cialisations of activities within cells. Finally, a PEPA “system
equation” is generated which composes the images of tokens,
cells and static components using the appropriate inferred syn-
chronisation sets.

We have found the implementation of the compiler to be very
efficient in practice. The PEPA net compiler does not unfold
the global state space of the model. Instead it uses the compo-
sitional nature of the PEPA net when constructing an equiva-
lent PEPA model. In this way, the compilation is performed in
linear time, with respect to the size of the original PEPA net
description.

As a concrete example, The PEPA Workbench for PEPA nets
compiles the secure Web service example presented earlier
from a PEPA net into an equivalent PEPA process algebra
model in 0.02 seconds on a 1.6GHz Pentium IV processor
machine with 256Mb of memory, running Red Hat Linux 7.1.
The GNUtime command version 1.7 was used to obtain this
timing information. The time reported is elapsed real (wall
clock) time used by the process.

The PEPA tools are available for download from the PEPA
Web site located athttp://www.dcs.ed.ac.uk/pepa/

together with documentation, example models and copies of
papers on PEPA and PEPA nets.

8. CONCLUSIONS
Building performance models of realistic real-world systems
is an activity which requires careful attention to detail in order
to accurately model the intended behaviour of the system. Pro-
ceeding with care during this part of the modelling process is
a wise investment of effort. If the initial performance model
contains errors then all of the computational expense incurred
in solving the model and all of the intellectual effort invested
in the analysis and interpretation of the results obtained would
at best be wasted. In general interpreting a model with errors
could lead to making flawed economic or strategic decisions
based on erroneous conclusions made from erroneous results.
For this reason we consider it important to work with struc-
tured, high-level modelling languages which directly support
the concepts and idioms of the application domain, such as
code mobility. In this paper we have shown how a mobile code
modelling language, PEPA nets, can be mapped into another
language, the stochastic process algebra PEPA, where mobil-
ity is not directly expressible in the language and there is no
notion of physically or logically separated locations being a
barrier to communication.

Our translation from PEPA nets to PEPA has enough subtleties
that it was worthwhile to implement it in a software tool to
prevent making mistakes that could easily be made if applying
the method by hand. We extended our existing workbench for
PEPA nets for this purpose. We applied this to a case study of
modelling a secure Web Service.

Acknowledgements:Gilmore, Hillston and Kloul are supported
by the DEGAS (Design Environments for Global ApplicationS)
project IST-2001-32072 funded by the Future and Emerging
Technologies Proactive Initiative on Global Computing. Their
collaboration with Ribaudo was supported by the Dipartimento
di Informatica, Universit̀a degli Studi di Torino. Marina Rib-
audo is supported by the FIRB project WEBMINDS (Wide-
scalE, Broadband, MIddleware for Network Distributed Ser-
vices). The authors have benefitted from their collaboration
with Linda Brodo and Corrado Priami on mapping PEPA nets
into the stochasticπ-calculus and Stochastic CCS. The PEPA
to PRISM compiler was developed in collaboration with Gethin
Norman and Dave Parker of The University of Birmingham.

9. REFERENCES
[1] S. Gilmore, J. Hillston, L. Kloul, and M. Ribaudo.

PEPA nets: A structured performance modelling
formalism. To appear inPerformance Evaluation.
Extended version of [2], 2003.

[2] S. Gilmore, J. Hillston, and M. Ribaudo. PEPA nets: A
structured performance modelling formalism. In
T. Field, P.G. Harrison, J. Bradley, and U. Harder,
editors,Proceedings of the 12th International
Conference on Modelling Tools and Techniques for
Computer and Communication System Performance
Evaluation, number 2324 in Lecture Notes in Computer
Science, pages 111–130, London, UK, April 2002.
Springer-Verlag.

[3] J. Hillston.A Compositional Approach to Performance
Modelling. Cambridge University Press, 1996.

[4] S. Gilmore and J. Hillston. The PEPA Workbench: A
Tool to Support a Process Algebra-based Approach to
Performance Modelling. InProceedings of the Seventh
International Conference on Modelling Techniques and
Tools for Computer Performance Evaluation, number
794 in Lecture Notes in Computer Science, pages
353–368, Vienna, May 1994. Springer-Verlag.

[5] M. Odersky and P. Wadler. Pizza into Java: Translating
theory into practice. InProceedings of the 24th ACM
Symposium on Principles of Programming Languages
(POPL’97), Paris, France, pages 146–159. ACM Press,
New York (NY), USA, 1997.

[6] Fotis Stathopoulos. Enhancing the PEPA Workbench
with simulation and experimentation facilities. Master’s
thesis, School of Computer Science, Division of
Informatics, The University of Edinburgh, 2001.

[7] G. Clark.Techniques for the Construction and Analysis
of Algebraic Performance Models. PhD thesis, The
University of Edinburgh, 2000.

[8] Kim Guldstrand Larsen and Arne Skou. Bisimulation
through probabilistic testing.Information and
Computation, 94(1):1–28, 1991.

[9] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton.
Verifying continuous time Markov chains. In
Computer-Aided Verification, volume 1102 ofLNCS,
pages 169–276. Springer-Verlag, 1996.

[10] G. Clark, T. Courtney, D. Daly, D. Deavours,
S. Derisavi, J. M. Doyle, W. H. Sanders, and P. Webster.
The Möbius modeling tool. InProceedings of the 9th
International Workshop on Petri Nets and Performance
Models, pages 241–250, Aachen, Germany, September
2001.

[11] G. Clark and W.H. Sanders. Implementing a stochastic
process algebra within the M̈obius modeling framework.
In L. de Alfaro and S. Gilmore, editors,Proceedings of
the first joint PAPM-PROBMIV Workshop, volume 2165
of Lecture Notes in Computer Science, pages 200–215,
Aachen, Germany, September 2001. Springer-Verlag.

[12] M. Kwiatkowska, G. Norman, and D. Parker.
Probabilistic symbolic model checking with PRISM: A
hybrid approach. In J.-P. Katoen and P. Stevens, editors,
Proc. 8th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS’02), volume 2280 ofLNCS, pages 52–66.
Springer, April 2002.

[13] F. Somenzi.CUDD: CU Decision Diagram Package.
Department of Electrical and Computer Engineering,
University of Colorado at Boulder, February 2001.

[14] J.T. Bradley, N.J. Dingle, S.T. Gilmore, and W.J.
Knottenbelt. Derivation of passage-time densities in
PEPA models using IPC: The Imperial PEPA Compiler.
In Proceedings of the 11th IEEE/ACM International
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunications Systems, University
of Central Florida, October 2003. IEEE Computer
Society Press.

[15] W.J. Knottenbelt. Generalised Markovian analysis of
timed transition systems. Master’s thesis, University of
Cape Town, 1996.

