
A Reflector for the PRISM Probabilistic Model Checker

Stephen Gilmore
Laboratory for Foundations of Computer Science

25th November 2002

The DEGAS project connects tools for the UML software modelling language to model-checkers, static
analysers and solvers. Reflectors are used in the DEGAS project to convert the output from a verification
or analysis tool back into a format which can be used by a UML modelling tool.

This paper documents a reflector for PRISM [KNP02], a probabilistic model checker for reactive modules
and the PEPA stochastic process algebra.

This reflector assumes that the PEPA Extractor and the PEPA compiler have already been run. The
former has extracted a .pepa file from an .xmi file. The latter has extracted a .sm file from the .pepa file
and has written a log file (.log) mapping PEPA local state identifiers onto the numeric constants used in
the reactive modules notation. The output from the PRISM tool onto standard out has been captured and
saved in a .pres (PRISM results) file. The PRISM Extractor reads the .log file and the .pres file and
writes an .xml file which can be read by the PEPA Reflector.

This reflector is written in Standard ML and can be compiled with a pure Standard ML compiler such
as Moscow ML or Standard ML of New Jersey or can be compiled with the MLj compiler, which writes its
results as a zipped archive of Java class files suitable for running on the Java Virtual Machine.

The MLj wrapper for the Reflector is listed in Appendix A. The PRISM Reflector is listed in Appendix B.

Acknowledgements: The author is supported by the DEGAS (Design Environments for Global Applica-
tionS) project IST-2001-32072 funded by the FET Proactive Initiative on Global Computing.

References

[KNP02] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model checking with PRISM:
A hybrid approach. In J.-P. Katoen and P. Stevens, editors, Proc. 8th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’02), volume 2280
of LNCS, pages 52–66. Springer, April 2002.

1

A MLj wrapper for the PRISM reflector

(*

File: reflector.sml

This is the root file for the MLj compilation process and

refers the compiler to the PRISM Standard ML structure.

*)

structure reflector = struct

fun error () =

(TextIO.output(TextIO.stdErr,

"usage : java -cp reflector.zip reflector filename\n");

TextIO.flushOut(TextIO.stdErr))

_public _classtype T

{

_public _static _final _method "main" (env : Java.String option

Java.array option) =

case env of

NONE =>

error ()

| SOME env ’ =>

let

val array = Java.toArray env’

in

if Array.length array = 0

then error ()

else

case Array.sub(array , 0) of

NONE => error ()

| SOME jstr =>

PRISM.main (Java.toString jstr)

end

}

end;

2

B The PRISM reflector

(*

File: PRISM.sml

This is the PRISM reflector . It accepts as input a PRISM output

file (the transcript of messages printed to the standard output

stream) and converts this into the XML results format written

by the PEPA Workbench . This results file is then reflected using

the PEPA Reflector to produce a modified UML model in the XMI file

format.

*)

structure PRISM =

struct

val jobname = ref ""

fun member x [] = false

| member x (h as (_, x’) :: t) = x = x’ orelse member x t

exception Getcode

fun getcode x [] = raise Getcode

| getcode x ((h as (n, x’)) :: t) = if x = x’ then h else getcode x t

fun gensym seen _ [] = rev seen

| gensym seen n (h::t) =

if member h seen

then gensym ((getcode h seen) :: seen) n t

else gensym ((n, h) :: seen) (n + 1) t

exception LogToVector and LookupDef

fun logToVector log =

case rev log of

[] => raise LogToVector

| ("System" :: sys)::t =>

let val sysCoded = gensym [] 0 sys

in (Vector.fromList (map #1 sysCoded), logToVector ’ sysCoded t)

end

| _::t => raise LogToVector

and logToVector ’ sysCoded defs = Vector.fromList (makeList 0 sysCoded defs)

and makeList n sysCoded defs =

case lookup n sysCoded of

NONE => []

| SOME a => (lookupDef a defs) :: makeList (n + 1) sysCoded defs

and lookup n [] = NONE

| lookup n (h as (n’, x) :: t) = if n = n’ then SOME x else lookup n t

and lookupDef a ((h as (a’ :: localStates)) :: t) =

if a = a’ then Vector.fromList localStates else lookupDef a t

| lookupDef a _ = raise LookupDef

fun sep #" " = true

| sep #"=" = true

| sep #"(" = true

| sep #")" = true

| sep #"," = true

| sep #"{" = true

3

| sep #"}" = true

| sep #"|" = true

| sep #"\n" = true

| sep _ = false

exception fatalInputOutputError

fun error s = (TextIO.output (TextIO.stdErr , ">>> Error : " ^ s ^ "\n");

TextIO.flushOut TextIO.stdErr;

raise fatalInputOutputError)

fun tryOpenIn filename =

let val is = TextIO.openIn filename

in is

end handle _ => error ("Could not open file named : " ^ filename)

fun first is =

String.tokens sep (TextIO.inputLine is)

fun parseExtractorLog is =

if TextIO.endOfStream is

then []

else first is :: parseExtractorLog is

fun readExtractorLog () =

let val is = tryOpenIn (! jobname ^ ".log")

val result = parseExtractorLog is

in

TextIO.closeIn is;

logToVector result

end

datatype localStates = None

| Archive of localStates ref * (int * real) ref * localStates ref

fun addStateProbability

(datum as (stateNumber , probability))

(tree as ref None) =

tree := Archive (ref None, ref datum , ref None)

| addStateProbability

(datum as (stateNumber , probability))

(tree as ref (Archive (left, value as ref (s’, p’), right))) =

if stateNumber = s’

then value := (s’, p’ + probability)

else if stateNumber < s’

then addStateProbability datum left

else addStateProbability datum right

exception GetStateProbability

fun getStateProbability

stateNumber

(tree as ref None) =

raise GetStateProbability

| getStateProbability

stateNumber

(tree as ref (Archive (left, value as ref (s’, p’), right))) =

if stateNumber = s’

then p’

else if stateNumber < s’

4

then getStateProbability stateNumber left

else getStateProbability stateNumber right

datatype resultsTree = Empty

| Node of resultsTree ref * (int * localStates ref) ref * resultsTree ref

fun addResult

(result as (componentNum , datum as (stateNumber , probability)))

(tree as ref Empty) =

let val newResult = ref None

in addStateProbability datum newResult;

tree := Node (ref Empty , ref (componentNum , newResult), ref Empty)

end

| addResult

(result as (componentNumber , datum as (stateNumber , probability)))

(tree as ref (Node (left, value as ref (c’, r’), right))) =

if componentNumber = c’

then addStateProbability datum r’

else if componentNumber < c’

then addResult result left

else addResult result right

exception GetResult

fun getResult

(query as (componentNumber , stateNumber))

(tree as ref Empty) =

raise GetResult

| getResult

(query as (componentNumber , stateNumber))

(tree as ref (Node (left, value as ref (c’, r’), right))) =

if componentNumber = c’

then getStateProbability stateNumber r’

else if componentNumber < c’

then getResult query left

else getResult query right

val results = ref Empty

fun printXMLresults os =

let

val (offsets , defns) = readExtractorLog ()

fun printProbability component stateNumber =

let

val prob = getResult (component , stateNumber) results

fun unML #"~" = "-" | unML c = str c

val formattedProb = String.translate unML (Real.toString prob)

in

TextIO.output (os, " <Probability >");

TextIO.output (os, formattedProb);

TextIO.output (os, "</ Probability >\n")

end

fun printStates component stateNumber localStates =

if stateNumber = Vector.length localStates

then () (* vectors number from zero *)

else let

in

TextIO.output (os, " <State Name =\"" ^

5

Vector.sub(localStates , stateNumber) ^ "\">\n");

printProbability component stateNumber;

TextIO.output (os, " </ State>\n");

printStates component (stateNumber + 1) localStates

end

fun printComponents n =

if n = Vector.length offsets then () (* vectors number from zero *)

else let

val componentNumber = Vector.sub(offsets , n)

val localStates = Vector.sub(defns , componentNumber)

val ns = Int.toString n

in

TextIO.output (os, " <Component Name =\" " ^ ns ^ "\">\n");

printStates n 0 localStates;

TextIO.output (os, " </ Component >\n");

printComponents (n + 1)

end

in

TextIO.output (os, "<?xml version =\" 1.0\" encoding =\"ISO -8859-1\ "?>\n");

TextIO.output (os, "< PEPA_Workbench_Results >\n");

printComponents 0;

TextIO.output (os, "</ PEPA_Workbench_Results >\n")

end

fun printInt os NONE = TextIO.output (os, ">>> ERROR : parsing integer\n")

| printInt os (SOME i) = TextIO.output (os, Int.toString i ^ "\n")

fun printReal os NONE = TextIO.output (os, ">>> ERROR : parsing real\n")

| printReal os (SOME r) = TextIO.output (os, Real.toString r ^ "\n")

exception Record

fun record componentNumber [] p = ()

| record componentNumber ((SOME h)::t) p =

(addResult (componentNumber , (h, p)) results;

record (componentNumber +1) t p)

| record _ _ _ = raise Record

exception Accumulate

fun accumulate (stateVector , SOME probability) = record 0 stateVector probability

| accumulate (_, NONE) = raise Accumulate

fun separator #":" = true

| separator #"(" = true

| separator #"," = true

| separator #")" = true

| separator #"=" = true

| separator #"\n" = true

| separator _ = false

exception Format

fun format acc [last] = (rev acc, Real.fromString last)

| format acc (h::t) = format (Int.fromString h :: acc) t

| format _ [] = raise Format

fun parse line = format [] (tl (String.tokens separator line))

fun startsWithNumeral [] = false

6

| startsWithNumeral (h::t) = Char.isDigit h

fun state line = startsWithNumeral (explode line)

fun process is os =

let

in while not (TextIO.endOfStream is) do

let val line = TextIO.inputLine is

in if state line

then accumulate (parse line)

else ()

end;

printXMLresults os

end

fun main basename =

let val inputStream = tryOpenIn (basename ^ ".pres")

val outputStream = TextIO.openOut (basename ^ ".xml")

in jobname := basename;

process inputStream outputStream;

TextIO.closeIn inputStream;

TextIO.closeOut outputStream

end

end;

7

