Searching for middle ground with PEPA

Jane Hillston
Laboratory for Foundations of Computer Science
The University of Edinburgh, Scotland

29th June 2003

Jane Hillston Searching for middle ground with PEPA SPN Workshop

Introduction

e The PEPA formalism

e Integration via tools

— Solvers
— Specification

e Integration at the formalism level

e Outlook and on-going work

Jane Hillston Searching for middle ground with PEPA SPN Workshop

Performance Evaluation Process Algebra (PEPA)

e Models are constructed from components which engage in activities.

Q, ‘r) B
component/

action type derivative

or name -
activity rate
parameter of an,
exponential distribution)

e The language is used to generate a CTMC for performance modelling.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

Performance Evaluation Process Algebra (PEPA)

e Models are constructed from components which engage in activities.

Q, ‘r) B
component/

action type derivative

or name s
activity rate
parameter of an,
exponential distribution)

e The language is used to generate a CTMC for performance modelling.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

Performance Evaluation Process Algebra (PEPA)

e Models are constructed from components which engage in activities.

Q, ‘r) B
component/

action type derivative

or name o
activity rate
parameter of an,
exponential distribution)

e The language is used to generate a CTMC for performance modelling.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

Performance Evaluation Process Algebra (PEPA)

e Models are constructed from components which engage in activities.

Q, ‘r) L
component/

action type derivative

or name -
activity rate
parameter of an,
exponential distribution)

e The language is used to generate a CTMC for performance modelling.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

Performance Evaluation Process Algebra (PEPA)

e Models are constructed from components which engage in activities.

Q, ‘r) B
component/

action type derivative

or name -
activity rate
parameter of an,
exponential distribution)

e The language is used to generate a CTMC for performance modelling.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

Performance Evaluation Process Algebra (PEPA)

e Models are constructed from components which engage in activities.

Q, ‘r) B
component/

action type derivative

or name -
activity rate
parameter of an,
exponential distribution)

e The language is used to generate a CTMC for performance modelling.

PEPA MODEL

Jane Hillston Searching for middle ground with PEPA SPN Workshop

Performance Evaluation Process Algebra (PEPA)

e Models are constructed from components which engage in activities.

Q, ‘r) B
component/

action type derivative

or name -
activity rate
parameter of an,
exponential distribution)

e The language is used to generate a CTMC for performance modelling.

SOS rules
PEPA MODEL

Jane Hillston Searching for middle ground with PEPA SPN Workshop

Performance Evaluation Process Algebra (PEPA)

e Models are constructed from components which engage in activities.

Q, ‘r) B
component/

action type derivative

or name -
activity rate
parameter of an,
exponential distribution)

e The language is used to generate a CTMC for performance modelling.

SOS rules | ABELLED MULTI-
TRANSITION SYSTEM

PEPA MODEL

Jane Hillston Searching for middle ground with PEPA SPN Workshop

Performance Evaluation Process Algebra (PEPA)

e Models are constructed from components which engage in activities.

Q, ‘r) B
component/

action type derivative

or name -
activity rate
parameter of an,
exponential distribution)

e The language is used to generate a CTMC for performance modelling.

SOS rules LABELLED MULTI- state transition
- TRANSITION SYSTEM diagram

PEPA MODEL

Jane Hillston Searching for middle ground with PEPA SPN Workshop

Performance Evaluation Process Algebra (PEPA)

e Models are constructed from components which engage in activities.

Q, ‘r) B
component/

action type derivative

or name -
activity rate
parameter of an,
exponential distribution)

e The language is used to generate a CTMC for performance modelling.

SOS rules | ABELLED MULTI- state transition CONTINUOUS TIME
TRANSITION SYSTEM diagram MARKOV CHAIN Q

PEPA MODEL

Jane Hillston Searching for middle ground with PEPA SPN Workshop

The syntax of PEPA

S u= (sequential components
(o, r).8 (prefix

| S+ S (choice
i (identifier

N——r N N NS

P = (model components
P BL<I P (cooperation

| P/L (hiding
i (identifier

N— N N NS

Jane Hillston Searching for middle ground with PEPA SPN Workshop

Tools and Integration

PEPA

Jane Hillston Searching for middle ground with PEPA SPN Workshop

Tools and Integration

PEPA

Jane Hillston Searching for middle ground with PEPA SPN Workshop

Tools and Integration

(M obius)

PEPA

—e

- \ /

Jane Hillston Searching for middle ground with PEPA SPN Workshop

Tools and Integration

PEPA

—e

-

" Mobius W

" PRISM

N

Jane Hillston

Searching for middle ground with PEPA

SPN Workshop

Tools and Integration

i M obius

Jane Hillston Searching for middle ground with PEPA SPN Workshop

Tools and Integration

[M obius W
" PRISM)
(~
Dnamaca
PEPA))
- L2
N
U
A
L J

Jane Hillston Searching for middle ground with PEPA SPN Workshop

Tools and Integration

(M obius

Jane Hillston Searching for middle ground with PEPA SPN Workshop

A first PEPA tool: The PEPA Workbench

e Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

e The PEPA syntax can be represented simply as an ML datatype.

datatype Component =

PREFIX of (Activity * Rate) * Component (x . *)
| CHOICE of Component * Component (* 4+ *)
| COOP of Component * Component * Activity list (* [=] *)
| HIDING of Component * Activity list (x / *)
| VAR of Identifier (x X *)
| DEF of Identifier * Component * Component (* = %)

Jane Hillston Searching for middle ground with PEPA SPN Workshop

A first PEPA tool: The PEPA Workbench

e Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

e The PEPA syntax can be represented simply as an ML datatype.

datatype Component =

PREFIX of (Activity * Rate) * Component (x . *)
| CHOICE of Component * Component (*x + *)
| COOP of Component * Component * Activity list (* [=] *)
| HIDING of Component * Activity list (x /| *)
| VAR of Identifier (x X *)
| DEF of Identifier * Component * Component (* = *)

Jane Hillston Searching for middle ground with PEPA SPN Workshop

A first PEPA tool: The PEPA Workbench

e Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

e The PEPA syntax can be represented simply as an ML datatype.

datatype Component =

PREFIX of (Activity * Rate) * Component (x . *)
| CHOICE of Component * Component (x + *)
| COOP of Component * Component * Activity list (* [=] *)
| HIDING of Component * Activity list (x /| *)
| VAR of Identifier (x X *)
| DEF of Identifier * Component * Component (* = *)

Jane Hillston Searching for middle ground with PEPA SPN Workshop

A first PEPA tool: The PEPA Workbench

e Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

e The PEPA syntax can be represented simply as an ML datatype.

datatype Component =

PREFIX of (Activity * Rate) * Component (x . *)
| CHOICE of Component * Component (*x + *)
| COOP of Component * Component * Activity list (* [x] *)
| HIDING of Component * Activity list (x /| *)
| VAR of Identifier (x X *)
| DEF of Identifier * Component * Component (* = *)

Jane Hillston Searching for middle ground with PEPA SPN Workshop

A first PEPA tool: The PEPA Workbench

e Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

e The PEPA syntax can be represented simply as an ML datatype.

datatype Component =

PREFIX of (Activity * Rate) * Component (x . *)
| CHOICE of Component * Component (*x + *)
| COOP of Component * Component * Activity list (* [=] *)
| HIDING of Component * Activity list (x /| *)
| VAR of Identifier (x X *)
| DEF of Identifier * Component * Component (* = *)

Jane Hillston Searching for middle ground with PEPA SPN Workshop

A first PEPA tool: The PEPA Workbench

e Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

e The PEPA syntax can be represented simply as an ML datatype.

datatype Component =

PREFIX of (Activity * Rate) * Component (x . *)
| CHOICE of Component * Component (*x + *)
| COOP of Component * Component * Activity list (* [=] *)
| HIDING of Component * Activity list (x /| *)
| VAR of Identifier (x X *)
| DEF of Identifier * Component * Component (* = *)

Jane Hillston Searching for middle ground with PEPA SPN Workshop

A first PEPA tool: The PEPA Workbench

e Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

e The PEPA syntax can be represented simply as an ML datatype.

datatype Component =

PREFIX of (Activity * Rate) * Component (x . *)
| CHOICE of Component * Component (x + *)
| COOP of Component * Component * Activity list (* [=] *)
| HIDING of Component * Activity list (x / *)
| VAR of Identifier (x X *)
| DEF of Identifier * Component * Component (x = %)

Jane Hillston Searching for middle ground with PEPA SPN Workshop

A first PEPA tool: The PEPA Workbench

e Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

e The PEPA syntax can be represented simply as an ML datatype.

datatype Component =

PREFIX of (Activity * Rate) * Component (x . *)
| CHOICE of Component * Component (* 4+ *)
| COOP of Component * Component * Activity list (* [=] *)
| HIDING of Component * Activity list (x / *)
| VAR of Identifier (x X *)
| DEF of Identifier * Component * Component (* = %)

Jane Hillston Searching for middle ground with PEPA SPN Workshop

Beyond ML

e With the ML edition of the PEPA Workbench it was possible to solve small
models using exterior solvers such as Maple and Matlab.

e However, users of the workbench wanted to make more detailed models (with
larger state spaces).

e The ML edition of the PEPA Workbench could not solve Robert Holton's
robotic workcell model efficiently enough so we interfaced it with an external
solver written in C.

e Other users wanted to run the workbench on Solaris, Windows and Linux
machines so we ported the Workbench and the solver to Java.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

_@ fThe PEFA Workbench [Java edition, 21-1-2003]

Status |[Complete

File Options Run 5Show |Solver | Experiment Simulate

Solve for steady state solution

>4 P14
=% P1s
& PlE
ST P14
8Pl
9Pl
20 Fl4
&1 P14
&2 P1%
&3 P14
B4 P15
&5 P14
B& P14
&7 PL1s
&8 P14
&2 P14
FOP14
F1Fl4
2 P14

S5et steady state solver parameters
<Iregldl> 514" <]reg v p repls e 515

<{regldls 514 <{req] Solve for transient solution replShs 515
<iregl4}> 514" <{reg] Set transient solver parameters replsis 515

<{regldi= 514" <{reqg] . . . replsi= 515
Solve via successive over-relaxation
<{regl4dl> 514" <{reg] replsl> 515

<{regl4}> 514 <iregl| SeLSOR solver parameters repl5}s 515
<{regldl> 514 «<{regle, repld)> DEL1S: <{repléls 516" <{regls, replSls> 515
<{regl4dl> 514 <{regle, repl4dl> DB1G <{replél> 516 <{regl%, replsi= 515%°
<fregldls 314 «{regle, repld)> DBE1e <{replel> 316" <{regls, replsls 515°
<{regl4dl> 514 <{regle, repld}> DB1G <{replél= 516" <{regls, replSlt> 515
<fregldis 514" <{reqle, repldts DB1S <{replels 316" <{reql%, replsis 515"
<{regl4di= 514" <{regle, repld}= DB1S <{repl&}= 516" <{reqls, replSl=> 515
<{regldi= 514" <{regle, repldl> DBl1e <{replel> 516 <{regls, replSt> 5151
<{regl4dl> 514" <{regle, repld}> DBle <{repl&}=> 51&"' <{regls, replSls> 515"
<{regldi= 514" <{regle, repldl> DBl1e <{replels> 516" <{reqls, replsls= 515
<{regl4dl> 514 <{regle, repld)> DEL1S <{replél> 516" <{regls, replSlts> 5151
<{regl4di= 514 <{regle, repldls DBE1G <{replels 516" <{regls, replSts 5151
<fregl4d}s 314" <{regle, repld}> DBLS <{reple}s> 516" <{reqls, replsl= 515
<{regl4dl>= 514" <{regle, repld}> DB1& <{repl&}= 51&" <{reqls, replSl> 515"

[»

KN

=

| ¥]

States found T2 Transitions found 240
Mumber of iterations Error value

Jane Hillston

Searching for middle ground with PEPA

SPN Workshop

PEPA in Mobius

e Graham Clark implemented an editor for PEPA in the Mobius multi-paradigm
modelling framework, extending PEPA to PEPA;. with guards and parameters.

Consume[a,b] = [a > 0] => (outa, ar).Consumela-1,Db]
+ [(b > 0) & (a == 0)] => (outb, br).Consumel[a,b-1];

Breakdown = (outa, T).Breakdown
+ (fail,fr).(recover,RecoverRate) .Breakdown ;

System = Consume[5,4] <outa> Breakdown;

Jane Hillston Searching for middle ground with PEPA SPN Workshop

PEPA in Mobius

e Graham Clark implemented an editor for PEPA in the Mobius multi-paradigm
modelling framework, extending PEPA to PEPA;. with guards and parameters.

Consume[a,b] = [a > 0] => (outa, ar).Consumela-1,Db]
+ [(b > 0) & (a == 0)] => (outb, br).Consumel[a,b-1];

Breakdown = (outa, T).Breakdown
+ (fail,fr).(recover,RecoverRate) .Breakdown ;

System = Consume[5,4] <outa> Breakdown;

Jane Hillston Searching for middle ground with PEPA SPN Workshop

PEPA in Mobius

e Graham Clark implemented an editor for PEPA in the Mobius multi-paradigm
modelling framework, extending PEPA to PEPA;. with guards and parameters.

Consume[a,b] = [a > 0] => (outa, ar).Consumela-1,Db]
+ [(b>0) & (a == 0)] => (outb, br).Consumela,b-1];

Breakdown = (outa, T).Breakdown
+ (fail,fr).(recover,RecoverRate) .Breakdown ;

System = Consume[5,4] <outa> Breakdown;

Jane Hillston Searching for middle ground with PEPA SPN Workshop

PEPA in Mobius

e Graham Clark implemented an editor for PEPA in the Mobius multi-paradigm
modelling framework, extending PEPA to PEPA;. with guards and parameters.

Consume[a,b] = [a > 0] => (outa, ar).Consumela-1,Db]
+ [(b>0) & (a == 0)] => (outb, br).Consumela,b-1];

Breakdown = (outa, T).Breakdown
+ (fail,fr).(recover,RecoverRate) .Breakdown ;

System = Consume[5,4] <outa> Breakdown;

Jane Hillston Searching for middle ground with PEPA SPN Workshop

Atnmicr_Cum posed (Fleward TStudies tSolvers Thnalytical -z

Mult iProcessorExanple it
Edit
File Edit Globals Help
— Inport
MEMT = CHETMT, =), CrelMt, -1, Heml, T
Memz i= (getMz, =), (relMz,-). Hema,
Ll
Bus 1= [getM,q1), CrelMl, r) Bus; :
+ [QetMZ, gZ). (relME, r) Bus,;
Froc = CQetM1, =), Cuse, uid, CreTMt =0, Cupdate , p1), Cthink,t). Proc; S
+ (getM2, =), (use,u2r, (relM2, -1, Cupdate,p2), Cthink,t), Proc; LR

S o= {getMt, getMz, relMt, relM2k;

i system ;= (Proc | Proc | Proc) <5: BUs <5x [Memd | Memz)

H1ltras

UltraE0M Mabivs PEPA Editor 1.0 alpha

_ MultiProcessorBxample Version Humber: 1

Jane Hillston Searching for middle ground with PEPA SPN Workshop

PEPA and PRISM

e PRISM is a probabilistic model checker which supports modelling in DTMCs,
CTMCs and MDPs with PTCL and CSL model checking.

e The matrix storing the state space of the system is expressed as an MTBDD
built using the CUDD package.

e Support for the PEPA language in PRISM was provided in two steps:

1. extending the PRISM input language with a new system construct providing
the PEPA composition operators for synchronisation over activity sets and
hiding; and

2. compiling the PEPA language into the extended PRISM language.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

CERISM T30

Model

Options

Engine

b I ~Properties

iskfhomefIifcsz fstaipub

Exit Cirl-Q k :

20 PCE0PC40 PCS0 PCEOS]L
ariables: PC10 _STATE PC20_STATE PCE0_STATE PC40_5T]
Gtates: 768

[»

ersion: 1.3.1
Cate: Mon Jun 0% 11:21:46 BST 2003

Building maodel. ..

MTEDD wariables used (10r, 10c) PC10O_STATE QO PC10_STATE. O PC2O_STATE QO PCZQSTATE O PCR0_STATE O PCR0

Camputing reachakle states. ..

-

| #

Jane Hillston Searching for middle ground with PEPA SPN Workshop

10

PEPA modelling with PRISM

e PEPA modelling with PRISM has proved to be very effective in practice. The
largest PEPA model so far solved has been solved with PRISM.

e However, there are a number of places where the user needs to understand the
tool chain thoroughly:

— The PEPA-to-PRISM compiler rejects (valid) PEPA models which use
active/active synchronisation or anonymous components;

— The compiler can fail during compilation with Java stack overflow;

— PRISM can reject models which the PEPA-to-PRISM compiler outputs;

— The CUDD package can fail with out-of-memory errors and need to be
reconfigured.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

11

PEPA and IPC/Dnamaca

The Imperial PEPA compiler (IPC) compiles PEPA models into Petri nets which
are solved with the Dnamaca solver. Dnamaca provides a number of numerical
solvers and outperforms PRISM on small PEPA models.

\transition{Pl_start} {
%% PEPA action type { start }
\condition{ P1 > 0 }
\action {
next -> P1 = P1 - 1;
Pl = 1).P2; = ’
(start, rl).p2; next -> P2 = P2 + 1;

+
\priority{1}
\rate{ PEPA_r1 }

Jane Hillston Searching for middle ground with PEPA SPN Workshop

Synchronisation in Dnamaca

Suppose that two copies of P synchronise on the run activity.

P2 = (run, r2).P3;

\transition{P2_run__P2_1_run} {
%% PEPA action type { run }

12

\condition{ P2 > 0 && P2_1 > O }

\action {

next -> P2_1 = P2_1 - 1;
_ next -> P3_1 = P3_1 + 1;
- next -> P2 = P2 - 1;
next -> P3 = P3 + 1;
}
\priority{1}

\rate{ PEPA_r2 }

Jane Hillston

Searching for middle ground with PEPA

SPN Workshop

13

PEPA modelling with IPC and Dnamaca

e More of the PEPA language is supported by IPC/Dnamaca than by PRISM.
Active/active synchronisation and anonymous components are supported.

e However, there are still a number of places where the user needs to understand
the tool chain thoroughly:

— The IPC compiler can fail during compilation with Haskell memory

exhaustion:
— Dnamaca can reject models which IPC outputs; and
— Dnamaca’s numerical procedures can fail to converge.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

14

Dnamaca features and PEPA extensions

e Because Dnamaca supports non-Markovian modelling, beyond the models
which are expressible in PEPA, it would be possible to support PEPA extensions
with Dnamaca:

— PEPA guards and parameters;
— Weighted (WSCCS-style) PEPA;
— PEPA nets with priorities;

— Semi-Markov PEPA:

Jane Hillston Searching for middle ground with PEPA SPN Workshop

15

PEPA and Stochastic Petri nets

Since the initial development, the relationship between PEPA and stochastic Petri
nets has been studied and investigated.

e Marina Ribaudo developed an SPN semantics for PEPA in her thesis [1994].

e She also investigated the relationship between the aggregation offered within
PEPA and that offered by Stochastic Well-formed Nets [1995].

e Donatelli, Hermanns, Hillston and Ribaudo informally investigated the
expressiveness of the two formalisms via case study [1995].

e Hillston, Recalde, Ribaudo and Silva developed a compositional mapping from
bounded SPNs to PEPA models [2001].

Jane Hillston Searching for middle ground with PEPA SPN Workshop

16

Petri nets and process algebras

e Petri nets provide a graphical presentation of a model which has an easily
accessible interpretation and they also have the advantage of being supported
by an unambiguous formal interpretation.

e Stochastic process algebras lack the attractive graphical presentation of Petri
nets. In contrast though, an explicit compositional structure is imposed on the
model. This structure can be exploited for both qualitative and quantitative
analysis.

e [he present work considers using both Petri nets and process algebras together
as a single, structured performance modelling formalism.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

17

PEPA nets

e Coloured Petri nets are a high-level form of classical Petri nets. The plain
(indistinguishable) tokens of a classical Petri net are replaced by arbitrary terms
which are distinguishable.

e In stochastic Petri nets the transitions from one marking to another are
associated with a random variable drawn from an exponential distribution.
Here we consider coloured stochastic Petri nets where the colours used as the
tokens of the net are PEPA components. We refer to these as PEPA nets.

e Petri nets have previously been combined with other performance modelling
formalisms e.g. Bause's Queueing Petri nets and Haverkort's Dynamic Queueing
Networks. Other extensions of (non-stochastic) Petri nets have programmable
tokens, e.g. Valk's Elementary Object systems.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

18

Transitions in a PEPA net

e A transition in a PEPA net takes place whenever a transition of a PEPA
component can occur (either individually, or in co-operation with another
component at the same place).

(o,)
>|-| N

(6,1).P [

e Transitions of PEPA components are used to model small-scale changes of
state as components undertake activities. The PEPA net formalism does not
allow components at different places in the net to co-operate on a shared
activity so transitions have only local effect.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

18

Transitions in a PEPA net

e A transition in a PEPA net takes place whenever a transition of a PEPA
component can occur (either individually, or in co-operation with another
component at the same place).

(a,7)
\ﬂ N

(/87 T)P U

e Transitions of PEPA components are used to model small-scale changes of
state as components undertake activities. The PEPA net formalism does not
allow components at different places in the net to co-operate on a shared
activity so transitions have only local effect.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

18

Transitions in a PEPA net

e A transition in a PEPA net takes place whenever a transition of a PEPA
component can occur (either individually, or in co-operation with another
component at the same place).

(o, 7)
P I

e Transitions of PEPA components are used to model small-scale changes of
state as components undertake activities. The PEPA net formalism does not
allow components at different places in the net to co-operate on a shared
activity so transitions have only local effect.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

18

Transitions in a PEPA net

e A transition in a PEPA net takes place whenever a transition of a PEPA
component can occur (either individually, or in co-operation with another
component at the same place).

(a, 7)
P {—

e Transitions of PEPA components are used to model small-scale changes of
state as components undertake activities. The PEPA net formalism does not
allow components at different places in the net to co-operate on a shared
activity so transitions have only local effect.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

Firings in a PEPA net

19

e Firings in a PEPA net are used to model macro-step changes of state such as
breakdowns and repairs, one thread yielding to another, or a mobile software

agent moving from one network host to another.

(a,7).P

(v, 7)
T

U

e A firing causes the transfer of one token from one place to another. The token
which is moved is a PEPA component, which causes a change in both the
input place (where existing co-operations now can no longer take place) and
the output place (where previously disabled co-operations are now enabled).

Jane Hillston

Searching for middle ground with PEPA

SPN Workshop

Firings in a PEPA net

19

e Firings in a PEPA net are used to model macro-step changes of state such as
breakdowns and repairs, one thread yielding to another, or a mobile software

agent moving from one network host to another.

(a,7r).P

(o, 7)
)l-l N

U

e A firing causes the transfer of one token from one place to another. The token
which is moved is a PEPA component, which causes a change in both the
input place (where existing co-operations now can no longer take place) and
the output place (where previously disabled co-operations are now enabled).

Jane Hillston

Searching for middle ground with PEPA

SPN Workshop

19

Firings in a PEPA net

e Firings in a PEPA net are used to model macro-step changes of state such as
breakdowns and repairs, one thread yielding to another, or a mobile software
agent moving from one network host to another.

(o, 7)
e P

e A firing causes the transfer of one token from one place to another. The token
which is moved is a PEPA component, which causes a change in both the
input place (where existing co-operations now can no longer take place) and
the output place (where previously disabled co-operations are now enabled).

Jane Hillston Searching for middle ground with PEPA SPN Workshop

19

Firings in a PEPA net

e Firings in a PEPA net are used to model macro-step changes of state such as
breakdowns and repairs, one thread yielding to another, or a mobile software
agent moving from one network host to another.

(o, 1)
ﬂ S P

e A firing causes the transfer of one token from one place to another. The token
which is moved is a PEPA component, which causes a change in both the
input place (where existing co-operations now can no longer take place) and
the output place (where previously disabled co-operations are now enabled).

Jane Hillston Searching for middle ground with PEPA SPN Workshop

20

Choice in a PEPA net

e Choices in a PEPA net occur when the token has a choice of possible behaviours
and a choice of possible output places. Choices are used to model decisions in

a system.

(o, 7) (B, s)
= (@ n)PT(39Q [~

e The outcome of a choice is governed by a race condition.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

20

Choice in a PEPA net

e Choices in a PEPA net occur when the token has a choice of possible behaviours
and a choice of possible output places. Choices are used to model decisions in

a system.

(o, 7) (B,)
I~ (@ n)-P+(39Q [—I—

e The outcome of a choice is governed by a race condition.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

20

Choice in a PEPA net

e Choices in a PEPA net occur when the token has a choice of possible behaviours
and a choice of possible output places. Choices are used to model decisions in

a system.

(o, 7) (B, 5)
P k I

e The outcome of a choice is governed by a race condition.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

20

Choice in a PEPA net

e Choices in a PEPA net occur when the token has a choice of possible behaviours
and a choice of possible output places. Choices are used to model decisions in

a system.

(o, 7) (B, 5)
P [k I

e The outcome of a choice is governed by a race condition.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

20

Choice in a PEPA net

e Choices in a PEPA net occur when the token has a choice of possible behaviours
and a choice of possible output places. Choices are used to model decisions in
a system.

e The outcome of a choice is governed by a race condition.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

20

Choice in a PEPA net

e Choices in a PEPA net occur when the token has a choice of possible behaviours
and a choice of possible output places. Choices are used to model decisions in

a system.

(o, 7) (B,)
I~ (@ n)-P+(39Q [—I—

e The outcome of a choice is governed by a race condition.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

20

Choice in a PEPA net

e Choices in a PEPA net occur when the token has a choice of possible behaviours
and a choice of possible output places. Choices are used to model decisions in

a system.

(a,) (8, s)
k I Q

e The outcome of a choice is governed by a race condition.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

20

Choice in a PEPA net

e Choices in a PEPA net occur when the token has a choice of possible behaviours
and a choice of possible output places. Choices are used to model decisions in

a system.

(a,) (8, s)
[k I Q

e The outcome of a choice is governed by a race condition.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

21

Markings in a PEPA net

e The marking of a PEPA net is made up of a list of PEPA contexts, one at each
place in the net, where the system descriptions can also contain component
cells.

e A cell is a slot to be filled by a component of a particular type.

— Components which fill these cells can circulate as the tokens of the net.

— Components which are not in a cell are static and cannot move.

e We use the notation P[_] to denote a context or a place which could be filled
by the PEPA component P or one with the same alphabet.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

21

Markings in a PEPA net

e The marking of a PEPA net is made up of a list of PEPA contexts, one at each
place in the net, where the system descriptions can also contain component
cells.

e A cell is a slot to be filled by a component of a particular type.

— Components which fill these cells can circulate as the tokens of the net.

— Components which are not in a cell are static and cannot move.

e We use the notation P[_] to denote a context or a place which could be filled
by the PEPA component P or one with the same alphabet.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

21

Markings in a PEPA net

e The marking of a PEPA net is made up of a list of PEPA contexts, one at each
place in the net, where the system descriptions can also contain component
cells.

e A cell is a slot to be filled by a component of a particular type.

— Components which fill these cells can circulate as the tokens of the net.

— Components which are not in a cell are static and cannot move.

e We use the notation P[_] to denote a context or a place which could be filled
by the PEPA component P or one with the same alphabet.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

21

Markings in a PEPA net

e The marking of a PEPA net is made up of a list of PEPA contexts, one at each
place in the net, where the system descriptions can also contain component
cells.

e A cell is a slot to be filled by a component of a particular type.

— Components which fill these cells can circulate as the tokens of the net.

— Components which are not in a cell are static and cannot move.

e We use the notation P[_] to denote a context or a place which could be filled
by the PEPA component P or one with the same alphabet.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

21

The syntax of PEPA with cells

S = (sequential components)
(o, r).8 (prefix)

| S+ S (choice)
|7 (identifier)

P = (model components)
P BL<I P (cooperation)

P/L (hiding)

I (identifier)

P[C'] (cell)

Jane Hillston Searching for middle ground with PEPA SPN Workshop

21

The syntax of PEPA with cells

S = (sequential components)

(o, r).8 (prefix)

| S+ S (choice)
o (identifier) C = (cell terms)
P = (model components) - (empty)
P BL<I P (cooperation) | P (component)

P/L (hiding)

I (identifier)

P[C'] (cell)

Jane Hillston Searching for middle ground with PEPA SPN Workshop

22

Example: a mobile agent system

e In this example a roving agent visits three sites. It interacts with static software
components at these sites and has two kinds of interactions.

e When visiting a site where a network probe is present it interrogates the probe
for the data which it has gathered on recent patterns of network traffic.

e When it returns to the central co-ordinating site it dumps the data which it has
harvested to the master probe. The master probe performs a computationally
expensive statistical analysis of the data.

e The structure of the system allows this computation to be overlapped with the
agent’s communication and data gathering.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

22

Example: a mobile agent system

e In this example a roving agent visits three sites. It interacts with static software
components at these sites and has two kinds of interactions.

e When visiting a site where a network probe is present it interrogates the probe
for the data which it has gathered on recent patterns of network traffic.

e When it returns to the central co-ordinating site it dumps the data which it has
harvested to the master probe. The master probe performs a computationally
expensive statistical analysis of the data.

e The structure of the system allows this computation to be overlapped with the
agent’s communication and data gathering.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

22

Example: a mobile agent system

e In this example a roving agent visits three sites. It interacts with static software
components at these sites and has two kinds of interactions.

e When visiting a site where a network probe is present it interrogates the probe
for the data which it has gathered on recent patterns of network traffic.

e When it returns to the central co-ordinating site it dumps the data which it has
harvested to the master probe. The master probe performs a computationally
expensive statistical analysis of the data.

e The structure of the system allows this computation to be overlapped with the
agent’s communication and data gathering.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

22

Example: a mobile agent system

e In this example a roving agent visits three sites. It interacts with static software
components at these sites and has two kinds of interactions.

e When visiting a site where a network probe is present it interrogates the probe
for the data which it has gathered on recent patterns of network traffic.

e When it returns to the central co-ordinating site it dumps the data which it has
harvested to the master probe. The master probe performs a computationally
expensive statistical analysis of the data.

e The structure of the system allows this computation to be overlapped with the
agent’s communication and data gathering.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

22

Example: a mobile agent system

e In this example a roving agent visits three sites. It interacts with static software
components at these sites and has two kinds of interactions.

e When visiting a site where a network probe is present it interrogates the probe
for the data which it has gathered on recent patterns of network traffic.

e When it returns to the central co-ordinating site it dumps the data which it has
harvested to the master probe. The master probe performs a computationally
expensive statistical analysis of the data.

e The structure of the system allows this computation to be overlapped with the
agent’s communication and data gathering.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

PEPA components

Agent
Agent’
Agent”

177

Agent

Master
Master’

Probe

go, \).Agent’

zntermgate). Agent”

77

return,). Agent

(go
(
(
(dump, rq).Agent

(dump, T).Master’

(analyse, r,). Master

(monitor, ry,).Probe +
(interrogate, T).Probe

23

Jane Hillston

Searching for middle ground with PEPA

SPN Workshop

24

A mobile agent system (1)

(80, A1) (8o, Ar)

A (2 (4 (o

return, (i return, (i,
H H

Agent & (go, \).Agent’

Jane Hillston Searching for middle ground with PEPA SPN Workshop

24

A mobile agent system (2)

(go, 1) (go, \y)

A (2 (o (+

return, (i return, (i,
H H

Agent’ & (interrogate, ;). Agent”

Jane Hillston Searching for middle ground with PEPA SPN Workshop

24

A mobile agent system (3)

(80, A1) (8o, Ar)

A (2 (o (#

return, (i return, (i,
H H

77

Agent” £ (return,). Agent

Jane Hillston Searching for middle ground with PEPA SPN Workshop

24

A mobile agent system (4)

(80, A1) (8o, Ar)

(L (4 (L

return, fi return, (i,
H v

/1) def

Agent™ = (dump, ry).Agent

Jane Hillston Searching for middle ground with PEPA SPN Workshop

24

A mobile agent system (5)

(80, A1) (8o, Ar)

A (2 (4 (o

return, (i return, (i,
H H

Agent & (go, \).Agent’

Jane Hillston Searching for middle ground with PEPA SPN Workshop

24

A mobile agent system (6)

(go,)‘l) (go,)‘r)

A () (o (o

return, (i return, (i,
H H

Agent’ & (interrogate, ;). Agent”

Jane Hillston Searching for middle ground with PEPA SPN Workshop

24

A mobile agent system (7)

(80, A1) (8o, Ar)

A () (o (o

return, (i return, (i,
H H

/17

Agent” £ (return,). Agent

Jane Hillston Searching for middle ground with PEPA SPN Workshop

24

A mobile agent system (8)

(80, A1) (8o, Ar)

A (O (2 (o

return, L return, (i,
H H

/1) def

Agent™ = (dump, ry).Agent

Jane Hillston Searching for middle ground with PEPA SPN Workshop

24

A mobile agent system (9)

(80, A1) (8o, Ar)

A (2 (4 (o

return, (i return, (i,
H H

Agent & (go, \).Agent’

Jane Hillston Searching for middle ground with PEPA SPN Workshop

25

Conclusions

e Having a small, stable core language has facilitated many possibilities for us
— compiling PEPA and PEPA net models to other formalisms seems to be a
very profitable activity.

e However, there are typically many small details in the translation which need
to be taken care of.

e It is tempting to lift features of the host tool back to the PEPA level but
sometimes desirable properties of the PEPA language are lost.

e |t is important to strike a balance between exploiting opportunities and losing
theoretical properties.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

26

Acknowledgements

This work has been supported by the DEGAS (Design Environments for Global
ApplicationS) project 1IST-2001-32072 funded by the FET Proactive Initiative on

Global Computing.

Jane Hillston Searching for middle ground with PEPA SPN Workshop

