
Mapping coloured stochastic Petri nets to
stochastic process algebras

Jane Hillston
Laboratory for Foundations of Computer Science

The University of Edinburgh, Scotland

28th June 2003

Joint work with Linda Brodo, Stephen Gilmore and Corrado Priami

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

1

Overview

• Introduction

• Mapping PEPA nets to Stochastic CCS

– PEPA nets
– Stochastic CCS
– Example

• Translation functions

• Future Work and Conclusions

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

3

Stochastic Process Algebra
Attractive features of process algebras

• Compositionality
• Formal definition
• Parsimony

+ Quantification

• Actions have duration
• Probabilistic branching

Performance Evaluation Process Algebra (PEPA)

Models are constructed from components who engage in activities

(α, r).P
����* HHHHY

6

action type
or name

component/
derivative

activity rate
(parameter of an

exponential distribution)

PEPA MODEL LABELLED MULTI-
TRANSITION SYSTEM

CONTINUOUS TIME
MARKOV CHAIN Q

- -SOS rules state transition
diagram

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

3

PEPA
S ::= (α, r).S | S + S | A
P ::= S | P ��

L
P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competition between components (race policy)

COOPERATION: P ��
L

P α /∈ L concurrent activity (individual actions)

α ∈ L cooperative activity (shared actions)

HIDING: P/L abstraction α ∈ L ⇒ α → τ

CONSTANT: A
def= S assigning names to components

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

3

PEPA
S ::= (α, r).S | S + S | A
P ::= S | P ��

L
P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competition between components (race policy)

COOPERATION: P ��
L

P α /∈ L concurrent activity (individual actions)

α ∈ L cooperative activity (shared actions)

HIDING: P/L abstraction α ∈ L ⇒ α → τ

CONSTANT: A
def= S assigning names to components

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

3

PEPA
S ::= (α, r).S | S + S | A
P ::= S | P ��

L
P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competition between components (race policy)

COOPERATION: P ��
L

P α /∈ L concurrent activity (individual actions)

α ∈ L cooperative activity (shared actions)

HIDING: P/L abstraction α ∈ L ⇒ α → τ

CONSTANT: A
def= S assigning names to components

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

3

PEPA
S ::= (α, r).S | S + S | A
P ::= S | P ��

L
P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competition between components (race policy)

COOPERATION: P ��
L

P α /∈ L concurrent activity (individual actions)

α ∈ L cooperative activity (shared actions)

HIDING: P/L abstraction α ∈ L ⇒ α → τ

CONSTANT: A
def= S assigning names to components

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

3

PEPA
S ::= (α, r).S | S + S | A
P ::= S | P ��

L
P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competition between components (race policy)

COOPERATION: P ��
L

P α /∈ L concurrent activity (individual actions)

α ∈ L cooperative activity (shared actions)

HIDING: P/L abstraction α ∈ L ⇒ α → τ

CONSTANT: A
def= S assigning names to components

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

3

PEPA
S ::= (α, r).S | S + S | A
P ::= S | P ��

L
P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competition between components (race policy)

COOPERATION: P ��
L

P α /∈ L concurrent activity (individual actions)

α ∈ L cooperative activity (shared actions)

HIDING: P/L abstraction α ∈ L ⇒ α → τ

CONSTANT: A
def= S assigning names to components

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

3

PEPA
S ::= (α, r).S | S + S | A
P ::= S | P ��

L
P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competition between components (race policy)

COOPERATION: P ��
L

P α /∈ L concurrent activity (individual actions)

α ∈ L cooperative activity (shared actions)

HIDING: P/L abstraction α ∈ L ⇒ α → τ

CONSTANT: A
def= S assigning names to components

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

4

PEPA nets (1)

• The PEPA nets formalism uses the stochastic process algebra PEPA as the
inscription language for coloured Petri nets.

• The combination naturally represents applications with two classes of change
of state (global and local).

• Firings at the net level represent global state changes, while PEPA transitions
represent local state changes.

• Petri nets provide a graphical presentation of a model which has an easily
accessible interpretation and they also have the advantage of being supported
by an unambiguous formal interpretation. In contrast stochastic process
algebras have an explicit compositional structure.

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

6

PEPA nets (2)

Net structure The net structure is represented in the usual way (state machines).
Tokens The tokens are PEPA components, which have a cyclic behaviour, made

up of activities taken from two distinct alphabets: transitions and firings.
Places Each place is a PEPA context consisting of static components and cells.

Cells are typed by the alphabet of the tokens which may be placed in the cell.
Initial Marking Which cells are occupied in the starting state.
Firing Rule A net level transition may fire if there is a token in the input place

offering the firing action of the correct name and there is a unoccupied cell of
the correct type in the output place.

The PEPA nets language enforces the property that communication between
components at different places is not allowed — remote communication must be
implemented via a combination of migration and local communication.

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

6

Stochastic CCS (CCSS)

T ::= 0 | (α, r).C | C + C | C|C | C \ L | fix
(
X = C

)
NIL: 0

PREFIX: (α, r).C designated first action

CHOICE: C + C competition between components (race policy)

COMPOSITION: C|C parallel composition of processes

RESTRICTION: C \ L internalises the names in L and their complements.

RECURSION: fix
(
X = C

)
recursive process, where X is the recursion variable

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

6

Stochastic CCS (CCSS)

T ::= 0 | (α, r).C | C + C | C|C | C \ L | fix
(
X = C

)
NIL: 0

PREFIX: (α, r).C designated first action

CHOICE: C + C competition between components (race policy)

COMPOSITION: C|C parallel composition of processes

RESTRICTION: C \ L internalises the names in L and their complements.

RECURSION: fix
(
X = C

)
recursive process, where X is the recursion variable

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

6

Stochastic CCS (CCSS)

T ::= 0 | (α, r).C | C + C | C|C | C \ L | fix
(
X = C

)
NIL: 0

PREFIX: (α, r).C designated first action

CHOICE: C + C competition between components (race policy)

COMPOSITION: C|C parallel composition of processes

RESTRICTION: C \ L internalises the names in L and their complements.

RECURSION: fix
(
X = C

)
recursive process, where X is the recursion variable

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

6

Stochastic CCS (CCSS)

T ::= 0 | (α, r).C | C + C | C|C | C \ L | fix
(
X = C

)
NIL: 0

PREFIX: (α, r).C designated first action

CHOICE: C + C competition between components (race policy)

COMPOSITION: C|C parallel composition of processes

RESTRICTION: C \ L internalises the names in L and their complements.

RECURSION: fix
(
X = C

)
recursive process, where X is the recursion variable

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

6

Stochastic CCS (CCSS)

T ::= 0 | (α, r).C | C + C | C|C | C \ L | fix
(
X = C

)
NIL: 0

PREFIX: (α, r).C designated first action

CHOICE: C + C competition between components (race policy)

COMPOSITION: C|C parallel composition of processes

RESTRICTION: C \ L internalises the names in L and their complements.

RECURSION: fix
(
X = C

)
recursive process, where X is the recursion variable

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

6

Stochastic CCS (CCSS)

T ::= 0 | (α, r).C | C + C | C|C | C \ L | fix
(
X = C

)
NIL: 0

PREFIX: (α, r).C designated first action

CHOICE: C + C competition between components (race policy)

COMPOSITION: C|C parallel composition of processes

RESTRICTION: C \ L internalises the names in L and their complements.

RECURSION: fix
(
X = C

)
recursive process, where X is the recursion variable

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

6

Stochastic CCS (CCSS)

T ::= 0 | (α, r).C | C + C | C|C | C \ L | fix
(
X = C

)
NIL: 0

PREFIX: (α, r).C designated first action

CHOICE: C + C competition between components (race policy)

COMPOSITION: C|C parallel composition of processes

RESTRICTION: C \ L internalises the names in L and their complements.

RECURSION: fix
(
X = C

)
recursive process, where X is the recursion variable

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

6

Stochastic CCS (CCSS)

T ::= 0 | (α, r).C | C + C | C|C | C \ L | fix
(
X = C

)
NIL: 0

PREFIX: (α, r).C designated first action

CHOICE: C + C competition between components (race policy)

COMPOSITION: C|C parallel composition of processes

RESTRICTION: C \ L internalises the names in L and their complements.

RECURSION: fix
(
X = C

)
recursive process, where X is the recursion variable

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

7

Benefits of the Mapping
We explore the relationship between coloured stochastic Petri net and process
algebras by mapping PEPA nets into the foundational process algebra, Milner’s
CCS enhanced with timing information (CCSS).

• The communication rules of PEPA nets are rather new but the algebra is
simple and well-understood. This gives us a way to consider the new language
features using established proven analysis methods.

• The encoding provides a route to process algebra-based verification tools such
as model-checkers and theorem provers.

• The encoding may expose previously unknown properties of the PEPA nets
language which can be used profitably to develop new proof techniques.

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

8

Quality of the Mapping

• The aim is to provide a mapping which respects the construction of the PEPA
net, i.e. it would be unsatisfactory to trivially expand the given PEPA net to
its full state space and then translate this into a sequential CCSS term.

• We seek a compositional mapping in which the size of the CCSS description
which we generate is proportional to the size of the description of the input
PEPA net, not proportional to the size of its state space.

Net ; CCSS

↓ ↓
LTS 1 LTS 2

↓ ↓
CTMC 1 ≡ CTMC 2

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

9

Small Example: lights on and off

T

T

T

P P

(go,T)

(return,T)

1
2

1

2

Consider a net with two places and a single token which circulates between the
places, starting in place P1. At each place there is a switch which controls a
light which is either on or off (initially off). The token circulates around the net
flipping the switch, moving to the other place, and then repeating this behaviour.

)(,)(,)(,)(,

)(,)(,)(,)(,

r1 r2 r3

r4

r5r6r7

r8

+ + +

++++

+

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

10

Example as a PEPA net

Token def= (on, r1).(go, r2).(on, r3).(return, r4).

(off , r5).(go, r6).(off , r7).(return, r8).Token

Switch def= (on,>).(off ,>).Switch

P1[t]
def= Switch ��

{on,off }
Token[t]

P2[t]
def= Switch ��

{on,off }
Token[t]

System
def= (P1[Token], P2[])

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

11

Example in CCSS

System
def= (((fix (TokenMob = (go, 1).(return, 1).(go, 1).(return, 1)

TokenMob)

| fix (Token = (on@1, r1).(go, r2).(on@2, r3).(return, r4).

(off @1, r5).(go, r6).(off @2, r7).(return, r8).Token)

) \{go, return }

| fix
(
P1 = fix

(
Switch = (on@1, 1).(off @1, 1).Switch

))
| fix

(
P2 = fix

(
Switch = (on@2, 1).(off @2, 1).Switch

))
) \{ on@1, off @1, on@2, off @2 }

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

11

Example in CCSS

System
def= (((fix (TokenMob = (go, 1).(return, 1).(go, 1).(return, 1)

TokenMob)

| fix (Token = (on@1, r1).(go, r2).(on@2, r3).(return, r4).

(off @1, r5).(go, r6).(off @2, r7).(return, r8).Token)

) \{go, return }

| fix
(
P1 = fix

(
Switch = (on@1, 1).(off @1, 1).Switch

))
| fix

(
P2 = fix

(
Switch = (on@2, 1).(off @2, 1).Switch

))
) \{ on@1, off @1, on@2, off @2 }

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

11

Example in CCSS

System
def= (((fix (TokenMob = (go, 1).(return, 1).(go, 1).(return, 1)

TokenMob)

| fix (Token = (on@1, r1).(go, r2).(on@2, r3).(return, r4).

(off @1, r5).(go, r6).(off @2, r7).(return, r8).Token)

) \{go, return }

| fix
(
P1 = fix

(
Switch = (on@1, 1).(off @1, 1).Switch

))
| fix

(
P2 = fix

(
Switch = (on@2, 1).(off @2, 1).Switch

))
) \{ on@1, off @1, on@2, off @2 }

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

11

Example in CCSS

System
def= (((fix (TokenMob = (go, 1).(return, 1).(go, 1).(return, 1)

TokenMob)

| fix (Token = (on@1, r1).(go, r2).(on@2, r3).(return, r4).

(off @1, r5).(go, r6).(off @2, r7).(return, r8).Token)

) \{go, return }

| fix
(
P1 = fix

(
Switch = (on@1, 1).(off @1, 1).Switch

))
| fix

(
P2 = fix

(
Switch = (on@2, 1).(off @2, 1).Switch

))
) \{ on@1, off @1, on@2, off @2 }

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

11

Example in CCSS

System
def= (((fix (TokenMob = (go, 1).(return, 1).(go, 1).(return, 1)

TokenMob)

| fix (Token = (on@1, r1).(go, r2).(on@2, r3).(return, r4).

(off @1, r5).(go, r6).(off @2, r7).(return, r8).Token)

) \{go, return }

| fix
(
P1 = fix

(
Switch = (on@1, 1).(off @1, 1).Switch

))
| fix

(
P2 = fix

(
Switch = (on@2, 1).(off @2, 1).Switch

))
) \{ on@1, off @1, on@2, off @2 }

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

11

Example in CCSS

System
def= (((fix (TokenMob = (go, 1).(return, 1).(go, 1).(return, 1)

TokenMob)

| fix (Token = (on@1, r1).(go, r2).(on@2, r3).(return, r4).

(off @1, r5).(go, r6).(off @2, r7).(return, r8).Token)

) \{go, return }

| fix
(
P1 = fix

(
Switch = (on@1, 1).(off @1, 1).Switch

))
| fix

(
P2 = fix

(
Switch = (on@2, 1).(off @2, 1).Switch

))
) \{ on@1, off @1, on@2, off @2 }

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

11

Example in CCSS

System
def= (((fix (TokenMob = (go, 1).(return, 1).(go, 1).(return, 1)

TokenMob)

| fix (Token = (on@1, r1).(go, r2).(on@2, r3).(return, r4).

(off @1, r5).(go, r6).(off @2, r7).(return, r8).Token)

) \{go, return }

| fix
(
P1 = fix

(
Switch = (on@1, 1).(off @1, 1).Switch

))
| fix

(
P2 = fix

(
Switch = (on@2, 1).(off @2, 1).Switch

))
) \{ on@1, off @1, on@2, off @2 }

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

12

The mapping (1)

• In order to keep information about the net structure within the flat process
algebra structure we introduce differentiated names for activities, to indicate
the location within which an activity takes place. Thus an on activity occurring
in place P1 becomes, on translation, on@1.

• Similarly we need to represent the structure of the net (from each token’s
perspective), as another process algebra component, which can be thought of
as storing the itinerary of the token.

• The mapping is compositional because we do form a component for each place,
and two components for each token, reflecting the structure of the PEPA net
description.

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

13

The mapping (2)

Tokens Each token gives rise to two tightly-coupled CCSS processes: one encodes
the behaviour of the token, the other encodes the locations in which the token
may be found.

Static Components By their nature these components do not participate in
firings, and the transitions can be straightforwardly translated.

Places There are two aspects to the translation of each place in the net:
1. the instantiation of the static components of the place, which involves

specialising local transition names; and
2. the representation of the arcs from this place to other places as a collection

of process definitions in which only firing activities are performed.
Initial Marking The right choice of names must be made so that specialised

activities reflecting the initial marking are enabled in the starting state.

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

14

Current limitations of the mapping

• Various limitations must be placed on the PEPA nets considered in the mapping
to avoid the use of multiway synchronisation which cannot be represented by
the CCS composition operator. For example, we restrict that tokens must be
sequential components.

• Since we wish to impose the physical restriction on communication which is
fundamental to PEPA nets, it is essential that activities which might arise in
different places of the net are differentiated as explained earlier. Moreover it is
necessary to consider PEPA nets in which all tokens are different.

• Restrictions are also placed on the use of the PEPA hiding operator within
places. These are needed to make a mapping to the restriction operator
possible (names by which tokens interact cannot be hidden).

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

15

Functional encoding of the mapping (1)
The encoding function E : Pnet → CCSS is expressed by: Eσ(M) = PCCS

where σ = 〈S, T, F,D〉 stores information about the Pnet .
Eσ

(
(P1[A1 . . . , Am], . . . , PN [Am+n, . . . , AM])

)
=(

(ΠN
i=1 SCCSi) | ΠM

j=1 (MCCSj | TCCSj) \ namesj

)
\ names

where
SCCSi = ESi

σ(Pi) ,

MCCSj = EMσ(Aj) ,

TCCSj = ET i
σ(Aj) ,

namesj = fnp(MCCSj) ,

and names = {α@i | α ∈ spec Aj Pi ∅ ∀i ∈ [1 . . . N],∀j ∈ [1 . . .M]}

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

15

Functional encoding of the mapping (1)
The encoding function E : Pnet → CCSS is expressed by: Eσ(M) = PCCS

where σ = 〈S, T, F,D〉 stores information about the Pnet .
Eσ

(
(P1[A1 . . . , Am], . . . , PN [Am+n, . . . , AM])

)
=(

(ΠN
i=1 SCCSi) | ΠM

j=1 (MCCSj | TCCSj) \ namesj

)
\ names

where
SCCSi = ESi

σ(Pi) ,

MCCSj = EMσ(Aj) ,

TCCSj = ET i
σ(Aj) ,

namesj = fnp(MCCSj) ,

and names = {α@i | α ∈ spec Aj Pi ∅ ∀i ∈ [1 . . . N],∀j ∈ [1 . . .M]}

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

15

Functional encoding of the mapping (1)
The encoding function E : Pnet → CCSS is expressed by: Eσ(M) = PCCS

where σ = 〈S, T, F,D〉 stores information about the Pnet .
Eσ

(
(P1[A1 . . . , Am], . . . , PN [Am+n, . . . , AM])

)
=(

(ΠN
i=1 SCCSi) | ΠM

j=1 (MCCSj | TCCSj) \ namesj

)
\ names

where
SCCSi = ESi

σ(Pi) ,

MCCSj = EMσ(Aj) ,

TCCSj = ET i
σ(Aj) ,

namesj = fnp(MCCSj) ,

and names = {α@i | α ∈ spec Aj Pi ∅ ∀i ∈ [1 . . . N],∀j ∈ [1 . . .M]}

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

15

Functional encoding of the mapping (1)
The encoding function E : Pnet → CCSS is expressed by: Eσ(M) = PCCS

where σ = 〈S, T, F,D〉 stores information about the Pnet .
Eσ

(
(P1[A1 . . . , Am], . . . , PN [Am+n, . . . , AM])

)
=(

(ΠN
i=1 SCCSi) | ΠM

j=1 (MCCSj | TCCSj) \ namesj

)
\ names

where
SCCSi = ESi

σ(Pi) ,

MCCSj = EMσ(Aj) ,

TCCSj = ET i
σ(Aj) ,

namesj = fnp(MCCSj) ,

and names = {α@i | α ∈ spec Aj Pi ∅ ∀i ∈ [1 . . . N],∀j ∈ [1 . . .M]}

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

15

Functional encoding of the mapping (1)
The encoding function E : Pnet → CCSS is expressed by: Eσ(M) = PCCS

where σ = 〈S, T, F,D〉 stores information about the Pnet .
Eσ

(
(P1[A1 . . . , Am], . . . , PN [Am+n, . . . , AM])

)
=(

(ΠN
i=1 SCCSi) | ΠM

j=1 (MCCSj | TCCSj) \ namesj

)
\ names

where
SCCSi = ESi

σ(Pi) ,

MCCSj = EMσ(Aj) ,

TCCSj = ET i
σ(Aj) ,

namesj = fnp(MCCSj) ,

and names = {α@i | α ∈ spec Aj Pi ∅ ∀i ∈ [1 . . . N],∀j ∈ [1 . . .M]}

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

15

Functional encoding of the mapping (1)
The encoding function E : Pnet → CCSS is expressed by: Eσ(M) = PCCS

where σ = 〈S, T, F,D〉 stores information about the Pnet .
Eσ

(
(P1[A1 . . . , Am], . . . , PN [Am+n, . . . , AM])

)
=(

(ΠN
i=1 SCCSi) | ΠM

j=1 (MCCSj | TCCSj) \ namesj

)
\ names

where
SCCSi = ESi

σ(Pi) ,

MCCSj = EMσ(Aj) ,

TCCSj = ET i
σ(Aj) ,

namesj = fnp(MCCSj) ,

and names = {α@i | α ∈ spec Aj Pi ∅ ∀i ∈ [1 . . . N],∀j ∈ [1 . . .M]}

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

15

Functional encoding of the mapping (1)
The encoding function E : Pnet → CCSS is expressed by: Eσ(M) = PCCS

where σ = 〈S, T, F,D〉 stores information about the Pnet .
Eσ

(
(P1[A1 . . . , Am], . . . , PN [Am+n, . . . , AM])

)
=(

(ΠN
i=1 SCCSi) | ΠM

j=1 (MCCSj | TCCSj) \ namesj

)
\ names

where
SCCSi = ESi

σ(Pi) ,

MCCSj = EMσ(Aj) ,

TCCSj = ET i
σ(Aj) ,

namesj = fnp(MCCSj) ,

and names = {α@i | α ∈ spec Aj Pi ∅ ∀i ∈ [1 . . . N],∀j ∈ [1 . . .M]}

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

16

Functional encoding of the mapping (2)
ESi

σ(P ��
L

R) = (ESi
σ(P) | ESi

σ(R)) \ L′

where L′ = {x@i | x ∈ (L\
⋃M

j=1 spec Aj Pi ∅)}
ESi

σ(P/L) = ESi
σ(P){x@new()/x@i} ∀ x ∈ L

ESi
σ(I[C]) = 0

ESi
σ(S1 + S2) = ESi

σ(S1) + ESi
σ(S2)

ESi
〈S,T,F,D〉(I) =

{
fix

(
I = ESi

〈S,T,F,D\{I
def
=P}〉

(P)
)

if (I def= P) ∈ D

I otherwise

ESi
σ((α, r).S) =

{
(α@i, 1).ESi

σ(S) if r = >
(α@i, r).ESi

σ(S) otherwise

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

16

Functional encoding of the mapping (2)
ESi

σ(P ��
L

R) = (ESi
σ(P) | ESi

σ(R)) \ L′

where L′ = {x@i | x ∈ (L\
⋃M

j=1 spec Aj Pi ∅)}
ESi

σ(P/L) = ESi
σ(P){x@new()/x@i} ∀ x ∈ L

ESi
σ(I[C]) = 0

ESi
σ(S1 + S2) = ESi

σ(S1) + ESi
σ(S2)

ESi
〈S,T,F,D〉(I) =

{
fix

(
I = ESi

〈S,T,F,D\{I
def
=P}〉

(P)
)

if (I def= P) ∈ D

I otherwise

ESi
σ((α, r).S) =

{
(α@i, 1).ESi

σ(S) if r = >
(α@i, r).ESi

σ(S) otherwise

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

16

Functional encoding of the mapping (2)
ESi

σ(P ��
L

R) = (ESi
σ(P) | ESi

σ(R)) \ L′

where L′ = {x@i | x ∈ (L\
⋃M

j=1 spec Aj Pi ∅)}
ESi

σ(P/L) = ESi
σ(P){x@new()/x@i} ∀ x ∈ L

ESi
σ(I[C]) = 0

ESi
σ(S1 + S2) = ESi

σ(S1) + ESi
σ(S2)

ESi
〈S,T,F,D〉(I) =

{
fix

(
I = ESi

〈S,T,F,D\{I
def
=P}〉

(P)
)

if (I def= P) ∈ D

I otherwise

ESi
σ((α, r).S) =

{
(α@i, 1).ESi

σ(S) if r = >
(α@i, r).ESi

σ(S) otherwise

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

16

Functional encoding of the mapping (2)
ESi

σ(P ��
L

R) = (ESi
σ(P) | ESi

σ(R)) \ L′

where L′ = {x@i | x ∈ (L\
⋃M

j=1 spec Aj Pi ∅)}
ESi

σ(P/L) = ESi
σ(P){x@new()/x@i} ∀ x ∈ L

ESi
σ(I[C]) = 0

ESi
σ(S1 + S2) = ESi

σ(S1) + ESi
σ(S2)

ESi
〈S,T,F,D〉(I) =

{
fix

(
I = ESi

〈S,T,F,D\{I
def
=P}〉

(P)
)

if (I def= P) ∈ D

I otherwise

ESi
σ((α, r).S) =

{
(α@i, 1).ESi

σ(S) if r = >
(α@i, r).ESi

σ(S) otherwise

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

16

Functional encoding of the mapping (2)
ESi

σ(P ��
L

R) = (ESi
σ(P) | ESi

σ(R)) \ L′

where L′ = {x@i | x ∈ (L\
⋃M

j=1 spec Aj Pi ∅)}
ESi

σ(P/L) = ESi
σ(P){x@new()/x@i} ∀ x ∈ L

ESi
σ(I[C]) = 0

ESi
σ(S1 + S2) = ESi

σ(S1) + ESi
σ(S2)

ESi
〈S,T,F,D〉(I) =

{
fix

(
I = ESi

〈S,T,F,D\{I
def
=P}〉

(P)
)

if (I def= P) ∈ D

I otherwise

ESi
σ((α, r).S) =

{
(α@i, 1).ESi

σ(S) if r = >
(α@i, r).ESi

σ(S) otherwise

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

16

Functional encoding of the mapping (2)
ESi

σ(P ��
L

R) = (ESi
σ(P) | ESi

σ(R)) \ L′

where L′ = {x@i | x ∈ (L\
⋃M

j=1 spec Aj Pi ∅)}
ESi

σ(P/L) = ESi
σ(P){x@new()/x@i} ∀ x ∈ L

ESi
σ(I[C]) = 0

ESi
σ(S1 + S2) = ESi

σ(S1) + ESi
σ(S2)

ESi
〈S,T,F,D〉(I) =

{
fix

(
I = ESi

〈S,T,F,D\{I
def
=P}〉

(P)
)

if (I def= P) ∈ D

I otherwise

ESi
σ((α, r).S) =

{
(α@i, 1).ESi

σ(S) if r = >
(α@i, r).ESi

σ(S) otherwise

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

16

Functional encoding of the mapping (2)
ESi

σ(P ��
L

R) = (ESi
σ(P) | ESi

σ(R)) \ L′

where L′ = {x@i | x ∈ (L\
⋃M

j=1 spec Aj Pi ∅)}
ESi

σ(P/L) = ESi
σ(P){x@new()/x@i} ∀ x ∈ L

ESi
σ(I[C]) = 0

ESi
σ(S1 + S2) = ESi

σ(S1) + ESi
σ(S2)

ESi
〈S,T,F,D〉(I) =

{
fix

(
I = ESi

〈S,T,F,D\{I
def
=P}〉

(P)
)

if (I def= P) ∈ D

I otherwise

ESi
σ((α, r).S) =

{
(α@i, 1).ESi

σ(S) if r = >
(α@i, r).ESi

σ(S) otherwise

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

16

Functional encoding of the mapping (2)
ESi

σ(P ��
L

R) = (ESi
σ(P) | ESi

σ(R)) \ L′

where L′ = {x@i | x ∈ (L\
⋃M

j=1 spec Aj Pi ∅)}
ESi

σ(P/L) = ESi
σ(P){x@new()/x@i} ∀ x ∈ L

ESi
σ(I[C]) = 0

ESi
σ(S1 + S2) = ESi

σ(S1) + ESi
σ(S2)

ESi
〈S,T,F,D〉(I) =

{
fix

(
I = ESi

〈S,T,F,D\{I
def
=P}〉

(P)
)

if (I def= P) ∈ D

I otherwise

ESi
σ((α, r).S) =

{
(α@i, 1).ESi

σ(S) if r = >
(α@i, r).ESi

σ(S) otherwise

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

17

Conclusions

• A compositional mapping which gives rise to isomorphic continuous time
Markov chains has been developed.

• Representation of mobility in PEPA nets and the stochastic π-calculus are
orthogonal.

• Several limitations, of varying restrictions needed to be placed on the source
language in order to map into the CCS-style target. However these reflect
basic process algebra differences of style (complementary actions vs multiway
synchronisation) rather than the key elements, PEPA net communication
patterns, which we were wishing to study.

• The translation to CCSS has formed the basis of a compiler which allows us
to use the PRISM model-checker to verify properties of PEPA net models.

Jane Hillston Mapping PEPA nets to stochastic CCS SPN Workshop

