
Optimizing P#: Translating Prolog to More Idiomatic
C#

Jonathan J. Cook
Laboratory for Foundations of Computer Science,

University of Edinburgh, Edinburgh, EH9 3JZ, U.K.
Jon.Cook@ed.ac.uk

Abstract

P# is our Prolog implementation which operates by translating Prolog to C# source code.
The C# produced by the latest version (1.1.3) of P# was very unlike the code which a hu-
man programmer might produce. In this paper we show how, aided by mode and type an-
notations, more idiomatic C# can be generated by translating tail-recursion into while loops
and applying liveness analysis to remove unnecessary variables. We apply this optimisation to
semi-deterministic and deterministic predicates which do not have non-deterministic predicates
beneath them in the call tree, since such predicates enjoy relatively simple control flow. In this
paper we demonstrate the benefit of generating C# code that is closer to that which a human
programmer might produce and which can therefore be compiled efficiently and well by a C#
compiler. This improvement in the high-level code generated by P# significantly speeds up
the execution of a range of benchmarks that we have compiled. A secondary benefit of this
approach is that the generated code is easier for a human programmer to read or to modify
without inadvertently breaking the code.

1 Introduction

Many Prolog [4] implementations compile Prolog to a high-level language. The reference system
for translation to C is wamcc [5]. Prolog implementations based on Java have been developed, for
example Prolog Café [18] and Jinni [11].

Microsoft’s .NET framework [16] allows multiple languages to interoperate by compiling them
to the .NET intermediate language, MSIL. The principal .NET language is C# [14]. C# is similar
to Java, although it has some C++ language features not found in Java.

P# [17] is our Prolog implementation, which translates Prolog to C# source code. P# is a
modified port of Prolog Café from Java to C#. By translating to C# rather than to MSIL, we
can obtain a closer integration of Prolog code with C# code. Also, much optimization is done for
us by the C# compiler, so our compiler is less complicated than a Prolog to MSIL compiler would
have to be.

P# has support for concurrency based on the ability to fork threads and to then wait for shared
variables to be instantiated on those forked threads. P# also inherits linear logic features from
Prolog Café. Discussion of the development of P# and the addition of concurrency features to P#
can be found in [6]. The version of P# described in [6] can be downloaded from the P# homepage
[17].

1

Much effort has been invested in the optimisation of Prolog implementations. A particularly
successful technique which underlies almost all Prolog implementations is the Warren Abstract
Machine (WAM) [1]. Indexing [8] is an example of an optimization of the WAM.

In this paper, we discuss a major optimisation of P#. Our optimisation is based on the ex-
ploitation of semi-deterministic predicates. A predicate is semi-deterministic if it always either
fails or succeeds with exactly one solution. If a predicate is semi-deterministic then there may be
backtracking from one clause of the predicate to the next, if an earlier clause fails at some point. A
semi-deterministic predicate which only calls other semi-deterministic predicates has the property
that an individual clause will not be executed more than once by backtracking. In such cases we
can do away with the Prolog stacks, which govern backtracking, and simulate in C# the fairly
simple flow of control which is permitted for such a predicate. A predicate is non-deterministic if
it may produce more than one solution.

A more specific class of predicates than the semi-deterministic predicates is that of the deter-
ministic predicates. A predicate is deterministic if it always succeeds exactly once. Deterministic
predicates occur frequently in idiomatic Prolog. Often, they are the result of coding a function
in Prolog. When one wishes to code a predicate which will be used as a function, one generally
expresses this as a Prolog predicate, some of whose arguments are input arguments, with the other
arguments being output arguments. Input arguments are arguments which are known to be instan-
tiated on entry into the predicate, and output arguments are those which are not instantiated on
entry into the predicate, but which will be instantiated on exit from the predicate. The property
of an argument of being input or output is referred to as its mode.

Developer experience suggests that these functional predicates often perform some simple utility,
that is, they frequently occur as leaf predicates. Such a predicate might, for example, concatenate
two lists. Another feature of leaf predicates is that, often, they are called frequently. Thus, if we
can reduce the time taken to execute such predicates, we may effect a significant optimisation.

In section 2, we introduce the compilation scheme which was originally used for all P# predi-
cates. In section 3, we describe and explain a modified compilation scheme which is used for certain
predicates. Section 3 ends with a discussion of how we now compile the Eight Queens Problem.
In section 4, we present and discuss performance data which demonstrates the improvement in
efficiency which can be obtained by translating to more idiomatic code. In the remaining sections
we discuss future and related work and give conclusions.

2 P#’s Original Compilation Scheme

P# originally compiled all predicates using a continuation passing scheme which was inherited
from Prolog Café [3]. This scheme was in turn inherited from jProlog [12], and is referred to as
binarization [20]. A supervisor function calls each predicate to be executed, and each predicate
called returns the next predicate to be called. A conjunction of goals in the body of a predicate is
coded by returning a chain of predicate calls. Disjunction is handled by the run-time system. As
an example, consider the Prolog predicate:

a(X) :- b(X), c(2).
a(X).

This is compiled to the following C# code:

namespace JJC.Psharp.Predicates {
using ...

2

public class A_1 : Predicate {
static internal readonly Predicate A_1_1 = new Predicates.A_1_1();
static internal readonly Predicate A_1_2 = new Predicates.A_1_2();
static internal readonly Predicate A_1_sub_1 = new Predicates.A_1_sub_1();
public Term arg1;
...
public override Predicate exec(Prolog engine) {

engine.aregs[1] = arg1;
engine.cont = cont;
return call(engine);

}
public virtual Predicate call(Prolog engine) {

engine.setB0();
return engine.jtry(A_1_1, A_1_sub_1);

}
...

}

sealed class A_1_sub_1 : A_1 {
public override Predicate exec(Prolog engine) {

return engine.trust(A_1_2);
}

}

sealed class A_1_1 : A_1 {
static internal readonly IntegerTerm s1 = new IntegerTerm(2);
public override Predicate exec(Prolog engine) {

Term a1;
Predicate p1;
a1 = engine.aregs[1].Dereference();
Predicate cont = engine.cont;
p1 = new Predicates.C_1(s1, cont);
return new Predicates.B_1(a1, p1);

}
}

sealed class A_1_2 : A_1 {
public override Predicate exec(Prolog engine) {

return engine.cont;
}

}
}

This code is almost identical to that produced by Prolog Café, except that it is C#, not Java,
and uses namespaces. The P# runtime system contains a class Term, which has subclasses:
IntegerTerm, DoubleTerm (for floats), ListTerm, StructureTerm, SymbolTerm (for atoms),
VariableTerm and CsObjectTerm (for interoperation with C#) which represent different types of

3

Prolog terms.
Having been generated by the P# compiler, this C# code together with the code for the other

predicates in the user’s program and the P# Dynamic Link Library (DLL) is presented to the C#
compiler, resulting in an executable.

3 Idiomatic Compilation

We now discuss how this compilation scheme can be changed so that certain predicates are compiled
to C# code which is closer to the code which a C# developer would have produced. This new
compiler has several phases. The first phase compiles each predicate into an abstract syntax tree
representation of a C# class containing a method called idiomatic() which consists of a block
for each clause. Within each block, input variables are first extracted from the arguments, then
each goal is executed in turn and finally output variables are copied back into the arguments. The
second phase attempts to convert any recursive calls in the idiomatic() method into jumps back
to the first block of the idiomatic method. If this proves possible, the third phase attempts to
convert the body of the method into a while loop. The fourth phase then performs a liveness
analysis, and the final phase converts the abstract syntax tree to C# code.

We will refer to those predicates which are compiled to more idiomatic C# as idiomatic pred-
icates, and to those which will continue to use the original compilation scheme as non-idiomatic
predicates. If we are going to translate some semi-deterministic predicates into more idiomatic
C#, then we will find that when control passes from a non-idiomatic predicate to an idiomatic
predicate, the arguments must be converted accordingly. A significant improvement in efficiency
should be obtained if idiomatically compiled predicates work with native ints rather than with
IntegerTerms. Thus when calling an idiomatic predicate which uses integers from non-idiomatic
code we should convert the IntegerTerms to ints. In order to call a non-idiomatic predicate
from an idiomatic one, we would have to start a new Prolog interpreter—which would lead to an
unacceptable performance penalty.

In light of the above, it seems sensible to idiomatically compile a large a slice as possible at
the bottom of the call stack. Thus, whenever a non-idiomatic predicate calls an idiomatic one,
we convert its arguments; and an idiomatic predicate never calls a non-idiomatic one. When
an idiomatic predicate calls another idiomatic predicate there is no need for the conversion of
arguments.

The exec() method of a non-idiomatic predicate is replaced in the idiomatic case by a method
similar to the following which calls the idiomatic() method.

public override Predicate exec(Prolog engine) {
int outarg3 = 0;
bool success = idiomatic((arg1.Dereference()),

((IntegerTerm)(arg2.Dereference())).value(), out outarg3);
if(success) {

arg3.Unify(new IntegerTerm(outarg3), engine.trail);
return cont;

} else
return engine.fail();

}
}

4

In order to call an idiomatic version of a predicate from another idiomatic predicate it is essential
that we know its type and mode signature. Thus, when multiple files are compiled at different times,
it is necessary for each file to see the type and mode signatures of the others.

3.1 Generating näıve idiomatic code

We now discuss the first phase of the translation into idiomatic code. This produces code which
despite being more recognisable as C# code is still not particularly idiomatic.

In the following, we assume that each clause of a predicate which is to be idiomatically compiled
is a conjunction of goals. Disjunctions and the if-then-else construct can be compiled by creating
dummy predicates.

A semi-deterministic predicate executes as follows. The first head goal which matches the calling
query is found and then that clause begins to execute. If the end of the clause is reached with all
the goals having succeeded then the predicate succeeds and exits at that point. If at any point one
of the conjoined goals fails, and we have not encountered a cut, then we backtrack to the call to the
predicate and execute the next clause that matches the calling query. If one of the goals fails and
we have encountered a cut, then the predicate fails at that point. When all the matching clauses
have been tried and have failed, the predicate fails and the call returns.

Figure 1 illustrates this control flow. The thick horizontal lines represent the execution of the
different clauses of the predicate. The lines beginning in the middle of the horizontal lines indicate
control flows which can occur between goals in the clause. The lines beginning at the end of the
horizontal lines indicate control flows which can occur just after the final goal of the clause, that
is, success.

clause 1

clause 2

final clause

(no cut)
fail

fail
(no cut)

FAIL

SUCCEED

Figure 1: Control Flow for a semi-deterministic predicate
that only calls other semi-deterministic predicates

The difference with a predicate that may produce more than one solution because it calls
predicates which themselves may have more than one solution, is that there may be backtracking
to before a previous goal within a clause. This greatly complicates the control flow.

There are several ways in which this can be implemented. An elegant, but also inefficient,
approach is to use exceptions. Another approach would be to use
do ... while(false) blocks and jump to the next block by using a break statement. If Java
were our target language, this would be the best approach. The approach for which we opted, is

5

to use the goto construct. The goto construct is often shunned because of its tendency to produce
unstructured code, see [7]. However, it is arguably acceptable to use the goto construct in a tightly
controlled and structured way, see [13]. Indeed the C# language places significant restrictions on
the use of the goto construct. It is not permitted to jump into a different block or into or out of a
loop, for example.

We structure the code in the following way. Each clause is compiled into a block of C# code.
Each block is preceded by a label of the form clause1, clause2,

The first thing that must be done in each clause block is to find whether that clause matches
the arguments which have been passed to the predicate. In this stage, we also want to unpack any
lists or structures and extract the values of input variables embedded in such structures.

For each argument of the predicate, we recurse through the structure of the argument, keep-
ing track at each point of the path through the structural tree of that argument to the current
point. Thus on encountering the head: p(f([X,Y], 5)), when processing the first argument,
on reaching the variable Y we have a path of list(tail, structure(f/2, 1, arg(1))).
This means that we start with the first argument. This is a structure with functor f/2, we take
its first argument. This is a list, and we take its tail. In the C# code this is translated into:
Term Y = arg1[1].Tail.

In reaching this point, we will have already generated code which checks that the first argument
really does have a functor of f/2, and that its first argument is a list. The code, assuming that it
occurs in the first clause, is as follows:

if(!((arg1.Functor() != null) && (arg1.Functor().Equals("f"))
(arg1.Arity() == 2) && (arg1[1].IsList()))) goto clause2;

When the value of 5 is reached a C# statement is produced which tests that this part of the
argument is 5: if(!(arg1[2].Equals(5))) goto clause2;.

In order that all this works, the class Term in the runtime system of P# is extended with several
methods and properties. The Head and Tail properties return the head and tail of a ListTerm,
failing with an exception if passed something other than a ListTerm. The Term class becomes an
indexer, so that if the Term, t is a StructureTerm, then t[2] returns the second argument of the
structure.

An Equals(string s) method is added to the Term class. This returns true if the Term is a
SymbolTerm representing a symbol with functor s and arity 0. A similar method is provided, which
deals with integers. Finally an Equals(Term t) method is provided which performs a content
equality test.

Next, all of the variables which might be used within the clause are declared and those which
are input values are initialised to the arguments passed to the idiomatic method.

As the clause is a conjunction of goals, each is executed in turn, using a goto to jump to the
next clause if a goal fails. At the point that a cut occurs a Boolean variable called cut, which
is initially set to false, is set to true. At the start of each clause after the first, we test the cut
variable, and return false if cut is true, indicating that the predicate has failed. If there are any
output arguments, then they must be set to default values before the method returns, thus in order
to fail we jump to a block at the end of the method labelled fail:.

For example, if a/2 is idiomatic, then the call a(1, 2) is translated to

if(!Predicates.A_2.idiomatic(1, 2)) goto <nextclause>;

We translate the Prolog relational infix predicates: =:=, =\=, <, =<, > and >= directly into their
corresponding C# operators which have the same semantics.

6

After all of the goals have been executed, we need to assign the value held by variables repre-
senting output arguments to the output arguments of the idiomatic method. The idiomatic method
returns true or false on success or failure respectively.

3.2 Tail Recursion Converted to Iteration

Often a predicate will contain a recursive call. In this case we have to decide between translating
the call into recursion or iteration in the C# code. Recursion is easier from an implementation
point of view, however iteration is preferable as it avoids the risk of stack overflow and is often more
efficient. The only case where translation to iterative code can be done in a natural way is when
the recursive call occurs as the final goal in the final clause. This is because at such a point we can
merely jump back to the first clause having modified the arguments appropriately and maintain the
same semantics for the code. Fortunately, for efficiency reasons, tail recursion is the most common
form of recursion in Prolog code.

In order to translate a recursive call into iterative code, it is also necessary that any output argu-
ment in the head of the tail-recursive clause, is matched by an identical output argument in the re-
cursive call itself. For example, if we have a predicate p/2 where only the second argument is an out-
put argument, then the clause: p(X, Y) :- X1 is X - 1, p(X, [Y]) cannot be converted
to iterative code (using the current scheme), whereas p(X, Y) :- X1 is X - 1, p(X1, Y)
can. In this latter case the code generated for the recursive call, prior to liveness analysis and
rewriting as a while loop, will be: arg1 = X1; goto clause1;.

The conversion to iteration would not be performed by the C# compiler if it were not performed
by the idiomatic code generator.

3.3 Rewriting Blocks as a while Loop

In cases where the tail recursive optimisation has been applied, the intermediate code generated
often contains code of the following form:

clause1: {
if(<Condition>) goto clause2;
<Code Block 1>
return true;

}
clause2: {

<Code Block 2>
goto clause1;

}

Code of this form can be rewritten as the following, provided that there are no other goto
statements in the code:

while(<Condition>) { <Code Block 2> }
<Code Block 1>
return true;

Usually, there are other gotos however, namely statements of the form if(cut) goto fail;
which occur in the C# code for all but the first clause. Since the fail: block is usually small, it
is acceptable to in-line this block wherever a goto fail occurs.

7

Multiple base cases and/or multiple step cases can also be handled, but we omit details here.
One major impediment to the use of while loops is instances where there are other branches

to the next clause within the code for a clause. This occurs when a non-tail recursive call is made
at some point in the body of one of the clauses. This is not a problem, provided that the non-
tail recursive call cannot fail. If it cannot fail, then the goto will never be executed. Thus, we
have a motivation for distinguishing deterministic predicates from those which are merely semi-
deterministic.

3.4 Liveness Analysis

The code produced by the above tends to have more variables than are necessary. Often code
similar to the following is produced.

int X = arg1; int _1 = arg2; int Z; Z = X + 1; arg1 = Z;

where _1 is never used. This can be replaced by arg1 = arg1 + 1 by applying liveness analysis
[2] to the code. This is a standard technique which involves analyzing which variables are live at
the same time at each point during the execution of the program. If two variables are never live at
the same time, then one of the variables can be consistently changed to the other.

Using the while loop rewrite and liveness analysis, the following predicate, len, which can be
used to find the length of a list:

len([], Z, Z).
len([_|T], A, Z) :- A1 is A + 1, len(T, A1, Z).

has the idiomatic method shown below:

public static bool idiomatic(Term arg1, int arg2, out int arg3) {
while(!(((arg1).Equals("[]")))) {

if(!(((arg1).IsList()))) { arg3 = 0; return false; }
arg1 = (arg1).Tail;
arg2 = (arg2 + 1);

}
{ arg3 = arg2; return true; }

}

The extraneous brackets, { and }, at the end of this method are necessary in some cases to avoid
a difficulty with C#’s variable scoping rules. Notice also that the liveness analysis has determined
that the head of arg1 should be removed, and that arg2 should be incremented in each iteration
of the loop.

3.5 Example Code—The Eight Queens Problem

Suppose that we are using the following code to solve the Eight Queens Problem:

queens(N,Qs) :- range(1,N,Ns), queens(Ns,[],Qs).

queens([],Qs,Qs).
queens(UnplacedQs,SafeQs,Qs) :- select(UnplacedQs,UnplacedQs1,Q),

not_attack(SafeQs,Q), queens(UnplacedQs1,[Q|SafeQs],Qs).

8

mode(not_attack(in, in)).
type(not_attack(term, int, int)).
not_attack(Xs,X) :- not_attack(Xs,X,1).

mode(not_attack(in, in, in)).
type(not_attack(term, int, int)).
not_attack([],_,_) :- !.
type(not_attack/3, 2, [N1=int]).
not_attack([Y|Ys],X,N) :- X =\= Y+N, X =\= Y-N, N1 is N+1, not_attack(Ys,X,N1).

select([X|Xs],Xs,X).
select([Y|Ys],[Y|Zs],X) :- select(Ys,Zs,X).

mode(range(in, in, out)).
type(range(int, int, term)).
range(N,N,[N]) :- !.
type(range/3, 2, [M1=int]).
range(M,N,[M|Ns]) :- M < N, M1 is M+1, range(M1,N,Ns).

This code, less the mode and type declarations, forms one of the benchmarks provided with Pro-
log Café. Observe that we have given mode and type declarations to the predicates not_attack/2,
not_attack/3 and range/3 as these are the predicates which can be idiomatically compiled. The
type declarations with one argument, refer to the types of the arguments of the predicate as a
whole. The type declarations with three arguments: the functor, the clause number and the types
of the variables, give the types for variables in the clause of that number which cannot be inferred
from the type declaration for the clause as a whole. In fact, it is possible to infer that N1 and M1
are ints, see the section on future work. If a type is not given, the generic type, term, is used.

The predicate select/3 cannot be idiomatically compiled as it is non-deterministic. Since
select/3 occurs below queens/2 and queens/3 in the call tree, these two predicates cannot be
idiomatically compiled. All non-idiomatic predicates continue to be compiled using the original
Prolog Café/P# compilation scheme.

The predicate range/3 is compiled into the following method. The predicate range/3, takes
a pair of integers and produces the list of consecutive integers starting with the first integer and
ending with the second. In this example, some white-space has been removed to save space.

public static bool idiomatic(int arg1, int arg2, out Term arg3) {
bool cut = false;
clause1: {

if(!((arg2 == arg1))) { goto clause2; }
arg3 = new ListTerm(new IntegerTerm(arg1), Term.Nil);
return true;

}
clause2: {

Term Ns;
if(!(arg1 < arg2)) { goto fail; }
int M1 = (arg1 + 1);
if(!(Predicates.Range_3.idiomatic(M1, arg2, out Ns))) { goto fail; }

9

arg3 = new ListTerm(new IntegerTerm(arg1), Ns);
return true;

}
fail: { arg3 = null; return false; }

}

Notice that we could not compile this into a while loop because the output argument in the
recursive call is not the same as in the head of the clause containing the call.

The predicate not_attack/3 is translated into a while loop.

4 Performance Measurement

We benchmarked both the idiomatic and original versions of P#, against Jinni 2004 [11] (using
Sun’s Java SDK 1.4.2), MINERVA 2.4 [15] and SICStus Prolog 3.10.1 [19] as shown in Table 1.
The speed-up column gives the factor by which P# is speeded-up by the optimisation.

Table 1: Speed-up due to the use of idiomatic code and mode/type declarations (times in ms)

Benchmark idiomatic original P# Jinni Minerva SICStus
P# time P# time speed-up time time time

browse 125 1360 11 1250 703 63
poly 25 1609 6781 4.2 6172 3500 226
queens (10 all) 438 1954 4.5 1250 1609 78
queens (16 first) 203 1234 6.1 734 1078 63
nreverse (2000) 485 4922 10 8047 921 62
tak 31 10969 350 11094 3938 437
zebra 140 140 1.0 62 78 16

The tests were carried out on a 2 GHz Pentium 4 machine with 512 Mb of memory running
Windows XP Professional. All times are in milliseconds.

The zebra benchmark is not changed as its computational predicates are all non-deterministic.
The speed-ups of queens and browse are almost entirely due to the idiomatic compilation of the
not_attack/3 predicate and the list concatenation predicate respectively. All of the predicates of
the poly_25 benchmark, which computes (1 + x + y + z)25 symbolically, could be idiomatically
compiled.

It should be noted that the optimisations we employed are of particular benefit to numerical
code and that Jinni, MINERVA and SICStus Prolog did not have the benefit of mode or type
declarations. Observe that the ‘most numerical’ benchmark, tak, which computes the Takeuchi
function with arguments 24, 16 and 8, experienced the most significant speed-up. However, some
of the other benchmarks involve list operations, and these too were speeded up. The idiomatically
compiled list operation predicates can operate on heterogeneous lists.

5 Future Work

It is possible to infer more of the types than is done at present. For example, if A is an int then so
is A+1, and given A1 is A + 1, we can infer that A1 is an int. Also, the programmer currently has

10

to specify which predicates can be idiomatically compiled. Rectifying these issues will form part of
future work.

A possible extension is to convert failure driven loops in Prolog to iterative loops in C#. We
will not always be able to convert such a loop to an iterative C# loop, as it is possible that one
of the predicates called in the loop, possibly via other predicates, cannot be compiled to idiomatic
code.

We would also like to compile primitives that modify the database (assert etc.) to more idiomatic
C#, but there is a problem due to the fact that the database can be modified from non-idiomatic
code and then called from idiomatic code or vice versa.

Finally, we intend to idiomatically compile concurrent code.

6 Related Work

Work has been done on translating Mercury [9] to high-level C, see [10]. That paper lists the
advantages of translation to higher-level code. Generating low-level code usually leads to the Prolog
compiler having to do more work, producing less readable code and often ending up working against
the compiler of the language that Prolog is being compiled to.

As with Mercury we exploit type and mode information, but we do not attempt to idiomatically
compile non-deterministic predicates. This is because our existing scheme for compilation of such
predicates is as efficient as a more idiomatic compilation. P# generates highly idiomatic and
readable code in many instances, often being able to translate a simple predicate into a while loop.
As such simple predicates often occur as leaf predicates that are called frequently, this significantly
reduces the number method calls, and allows us to avoid this overhead.

As we do not need to implement cuts for non-deterministic predicates, there is no need to
unwind the stack when a P# cut occurs as there is when a commit occurs in a non-deterministic
Mercury predicate. Thus, with P# Prolog, testing a cut flag after each failure is an acceptable
solution.

7 Conclusion

The efficiency of P# and the readability of the code it produces can be significantly improved
by compiling to more idiomatic C# with the assistance of mode and type declarations. This is
because the C# compiler is designed to compile code written by human programmers. Particularly
significant improvements are observed for Prolog programs that are predominantly numerical. Our
compilation scheme avoids the overheads of the Prolog stacks used by the WAM in situations where
they are not necessary. Our technique tends to be able to compile those predicates which are called
most frequently. Thus, even when only a few of the program’s predicates can be idiomatically
compiled, efficiency will often still be improved.

Acknowledgments

I would like to acknowledge Mutsunori Banbara and Naoyuki Tamura, the authors of Prolog Café,
the tool on which ours is based.

I would also like to acknowledge the kind advice and assistance of Stephen Gilmore; and the
support of the EPSRC. The helpful comments of the anonymous referees are gratefully appreciated.

11

References

[1] H. Aı̈t-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT press, 1991.

[2] A. W. Appel. Modern compiler implementation in C. Cambridge University Press, 1998.

[3] M. Banbara and N. Tamura. Translating a Linear Logic Programming language into Java.
Electronic Notes in Theoretical Computer Science, 30(3), 1999.

[4] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer, 4th edition, 1994.

[5] P. Codognet and D. Diaz. WAMCC: Compiling Prolog to C. In International Conference on
Logic Programming, pages 317–331, 1995.

[6] J. J. Cook. P#: A concurrent Prolog for the .NET Framework. Software – Practice and
Experience. To appear. Available from http://www.lfcs.ed.ac.uk/jjc.

[7] E. W. Dijkstra. Goto considered harmful. Communications of the ACM, 11(3):147–8, 1968.

[8] W. Hans. A complete indexing scheme for wam-based abstract machines. In PLILP 1992,
pages 232–244, 1992.

[9] F. Henderson et al. The Mercury Language Specification. http://www.cs.mu.oz.au/
research/mercury/information/documentation.html.

[10] F. Henderson and Z. Somogyi. Compiling mercury to high-level C code. In Computational
Complexity, pages 197–212, 2002.

[11] Jinni home page. http://www.binnetcorp.com/Jinni/.

[12] jprolog home page. http://www.cs.kuleuven.ac.be/~bmd/PrologInJava/.

[13] D. E. Knuth. Structured programming with go to statements. Computing Surveys, 6(4):261–
301, 1974.

[14] J. Liberty. Programming C#. O’Reilly, 2001.

[15] MINERVA home page. http://www.ifcomputer.com/MINERVA/.

[16] The Microsoft developer .NET home page. http://msdn.microsoft.com/net.

[17] P# home page. http://www.lfcs.ed.ac.uk/psharp.

[18] Prolog Café home page. http://pascal.cs.kobe-u.ac.jp/~banbara/PrologCafe/
index-jp.html.

[19] SICStus Prolog home page. http://www.sics.se/sicstus/.

[20] P. Tarau and M. Boyer. Elementary logic programs. In P. Deransart and J. Maluszyński,
editors, Proceedings of Programming Language Implementation and Logic Programming, pages
159–173. Springer, LNCS 456, 1990.

12

