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Whenever we have a system consisting of a large number of
individuals we can consider treating them instead as a population.

These alternative styles of model are already available in the
systems biology arena:

I Stochastic Simulations (Gillespie et al.) are individual-based
models in which each molecule is treated separately.

I Ordinary Differential Equations are population-based models
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Population models from PEPA descriptions
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Analysis based on Continuous-time Markov Chains

Modelling with quantified process algebras

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

This example defines a system with nine reachable states:

1. P1 ‖ P1

2. P1 ‖ P2

3. P1 ‖ P3

4. P2 ‖ P1

5. P2 ‖ P2

6. P2 ‖ P3

7. P3 ‖ P1

8. P3 ‖ P2

9. P3 ‖ P3

The transitions between states have quantified duration r which
can be evaluated against a CTMC or ODE interpretation.

Jane Hillston. LFCS, University of Edinburgh.

Population models from PEPA descriptions
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Analysis based on Continuous-time Markov Chains

Modelling with quantified process algebras

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

This example defines a system with nine reachable states:

1. P1 ‖ P1

2. P1 ‖ P2

3. P1 ‖ P3

4. P2 ‖ P1

5. P2 ‖ P2

6. P2 ‖ P3

7. P3 ‖ P1

8. P3 ‖ P2

9. P3 ‖ P3

The transitions between states have quantified duration r which
can be evaluated against a CTMC or ODE interpretation.

Jane Hillston. LFCS, University of Edinburgh.
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Analysis based on Continuous-time Markov Chains

Analysis based on Continuous-time Markov Chains

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 0:

1. 1.0000

2. 0.0000

3. 0.0000

4. 0.0000

5. 0.0000

6. 0.0000

7. 0.0000

8. 0.0000

9. 0.0000

Jane Hillston. LFCS, University of Edinburgh.

Population models from PEPA descriptions
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Analysis based on Continuous-time Markov Chains

Analysis based on Continuous-time Markov Chains

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 1:

1. 0.1642

2. 0.1567

3. 0.0842

4. 0.1567

5. 0.1496

6. 0.0804

7. 0.0842

8. 0.0804

9. 0.0432

Jane Hillston. LFCS, University of Edinburgh.

Population models from PEPA descriptions
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Analysis based on Continuous-time Markov Chains

Analysis based on Continuous-time Markov Chains

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 2:

1. 0.1056

2. 0.1159

3. 0.1034

4. 0.1159

5. 0.1272

6. 0.1135

7. 0.1034

8. 0.1135

9. 0.1012

Jane Hillston. LFCS, University of Edinburgh.
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Analysis based on Continuous-time Markov Chains

Analysis based on Continuous-time Markov Chains

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 3:

1. 0.1082

2. 0.1106

3. 0.1100

4. 0.1106

5. 0.1132

6. 0.1125

7. 0.1100

8. 0.1125

9. 0.1119

Jane Hillston. LFCS, University of Edinburgh.
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Analysis based on Continuous-time Markov Chains

Analysis based on Continuous-time Markov Chains

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 4:

1. 0.1106

2. 0.1108

3. 0.1111

4. 0.1108

5. 0.1110

6. 0.1113

7. 0.1111

8. 0.1113

9. 0.1116

Jane Hillston. LFCS, University of Edinburgh.
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Analysis based on Continuous-time Markov Chains

Analysis based on Continuous-time Markov Chains

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 5:

1. 0.1111

2. 0.1110

3. 0.1111

4. 0.1110

5. 0.1110

6. 0.1111

7. 0.1111

8. 0.1111

9. 0.1111

Jane Hillston. LFCS, University of Edinburgh.
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Analysis based on Continuous-time Markov Chains

Analysis based on Continuous-time Markov Chains

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 6:

1. 0.1111

2. 0.1111

3. 0.1111

4. 0.1111

5. 0.1110

6. 0.1111

7. 0.1111

8. 0.1111

9. 0.1111

Jane Hillston. LFCS, University of Edinburgh.
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Analysis based on Continuous-time Markov Chains

Analysis based on Continuous-time Markov Chains

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 7:

1. 0.1111

2. 0.1111

3. 0.1111

4. 0.1111

5. 0.1111

6. 0.1111

7. 0.1111

8. 0.1111

9. 0.1111

Jane Hillston. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Analysis based on Ordinary Differential Equations

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 0: P1 2.0000
P2 0.0000
P3 0.0000

Jane Hillston. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Analysis based on Ordinary Differential Equations

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 1: P1 0.8121
P2 0.7734
P3 0.4144

Jane Hillston. LFCS, University of Edinburgh.

Population models from PEPA descriptions
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Analysis based on Ordinary Differential Equations

Analysis based on Ordinary Differential Equations

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 2: P1 0.6490
P2 0.7051
P3 0.6457

Jane Hillston. LFCS, University of Edinburgh.

Population models from PEPA descriptions
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Analysis based on Ordinary Differential Equations

Analysis based on Ordinary Differential Equations

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 3: P1 0.6587
P2 0.6719
P3 0.6692

Jane Hillston. LFCS, University of Edinburgh.

Population models from PEPA descriptions
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Analysis based on Ordinary Differential Equations

Analysis based on Ordinary Differential Equations

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 4: P1 0.6648
P2 0.6665
P3 0.6685

Jane Hillston. LFCS, University of Edinburgh.

Population models from PEPA descriptions



Introduction Continuous State Space Models Case Study in Internet Worms Conclusions

Analysis based on Ordinary Differential Equations

Analysis based on Ordinary Differential Equations

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 5: P1 0.6666
P2 0.6663
P3 0.6669

Jane Hillston. LFCS, University of Edinburgh.

Population models from PEPA descriptions



Introduction Continuous State Space Models Case Study in Internet Worms Conclusions

Analysis based on Ordinary Differential Equations

Analysis based on Ordinary Differential Equations

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 6: P1 0.6666
P2 0.6666
P3 0.6666

Jane Hillston. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Analysis based on Ordinary Differential Equations

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 7: P1 0.6666
P2 0.6666
P3 0.6666

Jane Hillston. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Analysis based on Ordinary Differential Equations

Slightly larger example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 0: P1 3.0000
P2 0.0000
P3 0.0000

Jane Hillston. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Analysis based on Ordinary Differential Equations

Slightly larger example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 1: P1 1.1782
P2 1.1628
P3 0.6590

Jane Hillston. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Analysis based on Ordinary Differential Equations

Slightly larger example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 2: P1 0.9766
P2 1.0754
P3 0.9479

Jane Hillston. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Analysis based on Ordinary Differential Equations

Slightly larger example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 3: P1 0.9838
P2 1.0142
P3 1.0020

Jane Hillston. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Analysis based on Ordinary Differential Equations

Slightly larger example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 4: P1 0.9981
P2 0.9995
P3 1.0023

Jane Hillston. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Analysis based on Ordinary Differential Equations

Slightly larger example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 5: P1 1.0001
P2 0.9996
P3 1.0003

Jane Hillston. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Analysis based on Ordinary Differential Equations

Slightly larger example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 6: P1 1.0001
P2 0.9999
P3 1.0000

Jane Hillston. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Analysis based on Ordinary Differential Equations

Slightly larger example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 7: P1 1.0000
P2 0.9999
P3 0.9999

Jane Hillston. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Analysis based on Ordinary Differential Equations

Slightly larger example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 8: P1 1.0000
P2 1.0000
P3 1.0000

Jane Hillston. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Isn’t this just the Chapman-Kolmogorov equations?

It is possible to perform transient analysis of a continuous-time
Markov chain by solving the Chapman-Kolmogorov differential
equations:

dπ(t)

dt
= π(t)Q

[Stewart, 1994]

That’s not what we’re doing. We go directly to ODEs.

Jane Hillston. LFCS, University of Edinburgh.
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[Stewart, 1994]

That’s not what we’re doing. We go directly to ODEs.
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Deriving Differential Equations

Deriving Differential Equations

I Use a more abstract state representation rather than the
CTMC complete state space.

I Assume that these state variables are subject to continuous
rather than discrete change.

I No longer aim to calculate the probability distribution over
the entire state space of the model.

Appropriate for models in which there are large numbers of
components of the same type.

Jane Hillston. LFCS, University of Edinburgh.
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Deriving Differential Equations

I Use a more abstract state representation rather than the
CTMC complete state space.

I Assume that these state variables are subject to continuous
rather than discrete change.

I No longer aim to calculate the probability distribution over
the entire state space of the model.

Appropriate for models in which there are large numbers of
components of the same type.
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Deriving Differential Equations

Differential equations from PEPA models

I In a PEPA model the state at any current time is the local
derivative or state of each component of the model.

I We can represent the state of the system as the count of the
current number of each possible local derivative or component
type.

I We can approximate the behaviour of the model by treating
each count as a continuous variable, and the state of the
model as a whole as the set of such variables.

I The evolution of each count variable can then be described by
an ordinary differential equation

(assuming rates are
deterministic).

Jane Hillston. LFCS, University of Edinburgh.
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Deriving Differential Equations

Differential equations from PEPA models

I In a PEPA model the state at any current time is the local
derivative or state of each component of the model.

I We can represent the state of the system as the count of the
current number of each possible local derivative or component
type.

I We can approximate the behaviour of the model by treating
each count as a continuous variable, and the state of the
model as a whole as the set of such variables.

I The evolution of each count variable can then be described by
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(assuming rates are
deterministic).
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Deriving Differential Equations

Differential equations from PEPA models

I In a PEPA model the state at any current time is the local
derivative or state of each component of the model.

I We can represent the state of the system as the count of the
current number of each possible local derivative or component
type.

I We can approximate the behaviour of the model by treating
each count as a continuous variable, and the state of the
model as a whole as the set of such variables.

I The evolution of each count variable can then be described by
an ordinary differential equation

(assuming rates are
deterministic).

Jane Hillston. LFCS, University of Edinburgh.
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Deriving Differential Equations

Differential equations from PEPA models

I In a PEPA model the state at any current time is the local
derivative or state of each component of the model.

I We can represent the state of the system as the count of the
current number of each possible local derivative or component
type.

I We can approximate the behaviour of the model by treating
each count as a continuous variable, and the state of the
model as a whole as the set of such variables.

I The evolution of each count variable can then be described by
an ordinary differential equation

(assuming rates are
deterministic).

Jane Hillston. LFCS, University of Edinburgh.
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Deriving Differential Equations

Differential equations from PEPA models

I In a PEPA model the state at any current time is the local
derivative or state of each component of the model.

I We can represent the state of the system as the count of the
current number of each possible local derivative or component
type.

I We can approximate the behaviour of the model by treating
each count as a continuous variable, and the state of the
model as a whole as the set of such variables.

I The evolution of each count variable can then be described by
an ordinary differential equation (assuming rates are
deterministic).

Jane Hillston. LFCS, University of Edinburgh.
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Deriving Differential Equations

Differential equations from PEPA models

I The PEPA definitions of the component specify the activities
which can increase or decrease the number of components
exhibited in the current state.

I The cooperations show when the number of instances of
another component will have an influence on the evolution of
this component.

Jane Hillston. LFCS, University of Edinburgh.
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Deriving Differential Equations

Differential equations from PEPA models

I The PEPA definitions of the component specify the activities
which can increase or decrease the number of components
exhibited in the current state.

I The cooperations show when the number of instances of
another component will have an influence on the evolution of
this component.
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Deriving Differential Equations

Differential equations from PEPA models

Let N(Cij , t) denote the number of Cij type components at time t.

Jane Hillston. LFCS, University of Edinburgh.
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Deriving Differential Equations

Differential equations from PEPA models

Let N(Cij , t) denote the number of Cij type components at time t.

Consider the change in a small time δt:

N(Cij , t + δt) − N(Cij , t) =

−
∑

(α,r)∈Ex(Cij
)

r × min
Ckl

∈Ex(α,r)
(N(Ckl

, t))

︸ ︷︷ ︸
exit activities

δt

+
∑

(α,r)∈En(Cij
)

r × min
Ckl

∈Ex(α,r)
(N(Ckl

, t))

︸ ︷︷ ︸
entry activities

δt

Jane Hillston. LFCS, University of Edinburgh.
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Deriving Differential Equations

Differential equations from PEPA models

Let N(Cij , t) denote the number of Cij type components at time t.

Consider the change in a small time δt:
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︸ ︷︷ ︸
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Deriving Differential Equations

Differential equations from PEPA models

Let N(Cij , t) denote the number of Cij type components at time t.

Consider the change in a small time δt:
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Deriving Differential Equations

Differential equations from PEPA models

Let N(Cij , t) denote the number of Cij type components at time t.

Dividing by δt and taking the limit, δt −→ 0:

dN(Cij , t)

dt
= −

∑
(α,r)∈Ex(Cij

)

r × min
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Deriving Differential Equations

Activity matrix

Derivation of the system of ODEs representing the PEPA model
then proceeds via an activity matrix which records the influence of
each activity on each component type/derivative.

The matrix has one row for each component type and one column
for each activity type.

One ODE is generated corresponding to each row of the matrix,
taking into account the negative entries in the non-zero columns as
these are the components for which this is an exit activity.
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Background

I Internet worms (e.g. Nimbda, Slammer, Code Red, Sasser and
Code Red 2) are malicious programs that exploit operating
system security weaknesses to propagate themselves.

I While the security flaws go unpatched, the worm spreads
epidemic-like and uses large amounts of available bandwidth.

I Far more destructive is the worms’ effect on the Internet
routing infrastructure [Nicol 2003], due to overload from
nonexistent IP lookups.

I The estimated cost of computer worms and related activities
is about $50 billion a year [Slate 2004].
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An Internet-scale Problem

I We wish to study the emergent behaviour of Internet worms
as they spread to thousands and then hundreds-of-thousands
of hosts.

I Markovian process algebras are founded on an interleaving
semantics. Existing explicit state-based methods for
calculating steady-state, transient or passage-time measures
are limited to state-spaces of the order of 109.

I By transforming our stochastic process algebra model into a
set of ODEs, we can obtain a plot of model behaviour against
time for models with global state spaces in excess of 1010000

states.
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Derived forms and additional syntax

P1 ‖ P2 is a derived form for P1 BC
∅

P2.

Because we are interested in transient behaviour we use the
deadlocked process Stop.

When working with large numbers of hosts which transmit worm
infections, we write P[n] to denote an array of n copies of P
executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)
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Suceptible-Infective-Removed (SIR) model

I We apply a version of an SIR model of infection to various
computer worm attack models.

I An SIR model explicitly represents the total number of
susceptible, infective and removed hosts in a system and is
more commonly used to model disease epidemics.
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Suceptible-Infective-Removed (SIR) model

ds(t)

dt
= −β s(t) i(t)

di(t)

dt
= β s(t) i(t)− γ i(t)

dr(t)

dt
= γ i(t)
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Suceptible-Infective-Removed over a network

I This is our most basic infection model and is used to verify
that we get recognisable qualitative results.

I Initially, there are N susceptible computers and one infected
computer.

I As the system evolves more susceptible computers become
infected from the growing infective population.

I An infected computer can be patched so that it is no longer
infected or susceptible to infection.

I This state is termed removed and is an absorbing state for
that component in the system.
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Suceptible-Infective-Removed over a network

I The parameter M denotes the number of concurrent,
independent connections that the network can sustain.

I An attempted network connection can fail or timeout,
indicated by the fail action.

I This might be due to network contention or the lack of
availability of a susceptible machine to infect.

I A certain number of infections will attempt to reinfect hosts;
in this instance, the host is unaffected.
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Suceptible-Infective-Removed over a network

S
def
= (infectS ,>).I

I
def
= (infectI , β).I + (infectS ,>).I + (patch, γ).R

R
def
= Stop

Net
def
= (infectI ,>).Net ′

Net ′
def
= (infectS , β).Net + (fail , δ).Net

Sys
def
= (S [N] ‖ I ) BC

L
Net[M]

where L = { infectI , infectS }
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Patch rate γ = 0.1. Connection failure rate δ = 0.5
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Patch rate γ = 0.3. Connection failure rate δ = 0.5
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Increasing machine patch rate γ from 0.1 to 0.3
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Susceptible-Infective-Removed-Reinfection (SIRR) model

I Here a small modification in the process model of infection
allows for removed computers to become susceptible again
after a delay.

I We use this to model a faulty or incomplete security upgrade
or the mistaken removal of security patches which had
previously defended the machine against attack.
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Susceptible-Infective-Removed-Reinfection (SIRR) model

S
def
= (infectS ,>).I

I
def
= (infectI , β).I + (infectS ,>).I + (patch, γ).R

R
def
= (unsecure, µ).S

Net
def
= (infectI ,>).Net ′

Net ′
def
= (infectS , β).Net + (fail , δ).Net

Sys
def
= (S [1000] ‖ I ) BC

L
Net[M]

where L = {infectI , infectS}.
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Unsecured SIR model (M = 200 network channels)
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Unsecured SIR model (M = 50 network channels)
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Unsecured SIR model (M = 20 network channels)
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Susceptible-Infective-Removed-Attack (SIR-Attack) model

I This example describes a modified SIR-Attack model. This
simulates a possible distributed denial-of-service (DDOS)
attack mode of an Internet worm.

I Some worms have bimodal behaviour — either a worm can
infect another computer or it can start an attack on a victim
computer.

I The attack may be as simple as requesting a specific web
page, or issuing a ping request.

I The combination of perhaps millions of machines making such
requests quickly overwhelms the target computer, which either
crashes under the huge load, or becomes unusably slow.
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Susceptible-Infective-Removed-Attack (SIR-Attack) model

S
def
= (infectS ,>).I

I
def
= (infectI , β).I + (infectS ,>).I + (patch, γ).R + (attack, χ).A

A
def
= (attackA, λ).A + (patch, γ).R

R
def
= Stop

Net
def
= (infectI ,>).Net ′ + (attackA,>).Net ′′

Net ′
def
= (infectS , β).Net + (fail , δ).Net

Net ′′
def
= (attackV , ρ).Net + (fail , δ).Net

V
def
= (attackV ,>).V ′

V ′ def
= (release, σ).V

Sys
def
= (S [100] ‖ I ‖ V ) BC

L
Net[M]

where L = {infectI , infectS , attackA, attackV }.
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DDOS attack that overwhelms a victim machine
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DDOS attack that briefly incapacitates a victim machine
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DDOS attack that does not saturate the victim’s capacity
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Case Study Conclusions

I The scale of the effects of Internet worms defeats attempts to
model their behaviour in very close detail, and thus impedes
the analysis which has the potential to bring understanding of
their function and distribution.

I Large-scale modelling can be effective here, because it
abstracts away from modelling of individual behaviour and
considers population-based representations.

I The scale of problems which can be modelled in this way
vastly exceeds those which are founded on explicit state
representations.
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Conclusions

The derivation of differential equations appears to offer an
interesting alternative to existing modelling approaches to
performance evaluation of large scale models.
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Future Work

I Establish the relationship between the ODE model and the
population model CTMC

I When can we use verification (ie model checking) on a CTMC
population model and expect the results to hold with respect
to the ODE population model?

I Reintroduce a stochastic element:

I Use of random or stochastic differential equations;
I Limit the continuous element to a few continuous component

types, with others having usual CTMC semantics (c.f. fluid
stochastic Petri models)
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Thank You!
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