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Abstract. In this work we present a Bio-PEPA model describing the Nuclear
Factor κB (NF-κB) signalling pathway. In particular our model focuses on the
dynamic response of NF-κB to an external stimulus. Each biochemical species in
the pathway is represented by a specific Bio-PEPA component and the external
stimulus is abstracted by time-dependent Bio-PEPA events describing the start
and the end of the signal.
The Bio-PEPA model is a formal intermediate representation of the pathway on
which various kinds of analysis can be performed. Both stochastic and determin-
istic simulations are carried out to validate our model against the experimental
data and in-silico experiments in the literature and to verify some properties, such
as, the impact of the duration of the external stimulus and of the total NF-κB ini-
tial amount on the behaviour of some species of interest. Furthermore we use
stochastic simulation to compare the behaviour of the single cell against the aver-
age behaviour of a population of cells. Finally, sensitivity analysis is considered
to investigate the most influential parameters of the model. Importantly, the ap-
proach taken suggests that the sensitivity of some parameters alters with the time
evolution of the pathway.
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1 Introduction

Nuclear Factor κB (NF-κB) is a protein complex that regulates numerous genes that
play important roles in inter- and intra-cellular signalling, cellular stress response, cell
growth, survival and apoptosis [1,2]. The investigation of the specific mechanisms that
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(CISB) funded by the BBSRC and EPSRC in 2006.
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govern NF-κB activities is essential for the understanding of various biological pro-
cesses and for the potential use of NF-κB as a drug target. In the literature there are nu-
merous models describing different aspects of the NF-κB pathway [3,4,5,6,7,8]. These
models are based on various assumptions about the biochemical mechanisms involved
and describe specific subsets of species and interactions. Most of them are defined in
terms of Ordinary Differential Equations (ODEs) and the validation and analysis are
based on numerical integration of ODEs. Furthermore, in [9,10] Ihekwaba et al. pro-
posed a Gepasi [11]1 model of the pathway and analysed it using deterministic (i.e.
ODE-based) sensitivity analysis.

Recently, there have been various applications of process algebras for the modelling
and analysis of biochemical networks [12,13,14,15,16,17]. These formalisms were orig-
inally defined in the context of concurrent systems in computer science and are useful
in the field of systems biology too. In particular, among their various advantages and
properties, they offer a formal model of a system in terms of interacting components,
and support a compositional approach to model construction. They exemplify algorith-
mic or executable systems biology [18,19], an approach in which the intention is to
construct models which are more than simply a mathematical function which recreates
the mapping from system input to system output.

In this work we consider the process algebra Bio-PEPA [20,21] and define a Bio-
PEPA model for the NF-κB pathway earlier described by Lipniacki et al. [5] in terms
of a system of ODEs (we will refer to this as the Lipniacki model). Our choice is moti-
vated by the fact that, at the time of our study, the Lipniacki model was the most recent
concerning the NF-κB pathway and it made more realistic assumptions than previous
models. Specifically, the model is characterized by explicit handling of compartments,
with sizes derived from biological knowledge [22], and by the transport of species be-
tween compartments. Furthermore, the model takes into account some experimental
constraints on important species at the steady state (for instance, the level of free IκBα
is less than 15% of the total IκBα [22]). The pathway considered, and the data used for
the validation, derive from mouse fibroblasts [23,3].

The aim of this work is twofold. Firstly, we demonstrate the power of Bio-PEPA
as a modelling language for biochemical networks. In particular, we show how to cap-
ture some features of these networks in Bio-PEPA, such as static compartments and
the presence of external stimuli which cause the activation of some reactions, using
locations and temporal events, respectively. Furthermore, the model also benefits from
Bio-PEPA’s support for generic kinetic laws by means of functional rates, the explicit
definition of stoichiometry and recording the role of each species in a reaction.

Secondly, we use some of the analysis techniques defined for Bio-PEPA in order
to extend the existing analysis of the model. Whilst previous work focused on a set of
ODEs which were subject to numerical integration and deterministic sensitivity anal-
ysis, we perform stochastic simulation to verify the possible variability across several

1 Gepasi is a software package for modelling biochemical systems. It provides a number of
tools to fit models to data, optimize any function of the model, perform metabolic control
analysis and linear stability analysis. Gepasi translates the language of chemistry (reactions)
to mathematics (ODEs).
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runs of the model2. We first consider the average of several runs in order to obtain the
average behaviour of a population of cells and validate our results against the experi-
mental data, derived from a population of mouse fibroblasts [23,3]. Then we focus on
single simulation runs and compare them with the average of several simulation runs.
We are particularly interested in the oscillatory behaviour of nuclear NF-κB as it seems
to have an important role in essential activities of the cell [7,8]. With this in mind, we
perform some in silico experiments to investigate the impact of the duration of the sig-
nal and the influence of two inhibitors of the NF-κB, the proteins A20 and IκBα, on
the oscillations. Finally, we use sensitivity analysis on that stochastic model to isolate
the most influential parameters. This sensitivity analysis is applied using a novel al-
gorithm, based on the definition of histogram distance over the simulation runs [24],
implemented in the version of the Dizzy simulator developed at the University of Ed-
inburgh [25]. Our analysis is complementary to the previous work in [9]; in particular
the model properties are analysed from a different point of view and the differences
between the two approaches are discussed.

A preliminary study of the pathway in Bio-PEPA was presented at the Dagstuhl
seminar “Formal Methods in Molecular Biology” [26]. Here we give more details about
the pathway and the approach used and we report new analysis results and experiments,
especially with respect to the sensitivity analysis.

The rest of the paper is structured as follows. The NF-κB pathway and the Bio-
PEPA model of the pathway are described in Sect. 2 and Sect. 5, respectively. Sect. 3
report an overview of related work. Bio-PEPA is introduced in Sect. 4. In Sect. 6 the
validation of our model and some analysis results are presented. Finally, in Sect. 7 we
report some concluding remarks.

2 The NF-κB pathway

In the following we describe the pathway as captured by the Lipniacki model since it
is our reference for this work. A general schema of the pathway is reported in Fig. 1.
The main species involved in the pathway are the IκB kinase (IKK), NF-κB, the pro-
tein A20, the protein IκBα, their complexes, mRNA transcripts of A20, IκBα and a
hypothetical control gene (cgen). The species cgen represents a control gene, regulated
by NF-κB, distinct from the genes corresponding to A20 and IκBα. In the absence of
an external stimulus (i.e. normal condition), NF-κB is bound to the inhibitor protein
IκBα and remains in the cytoplasm. When an upstream stimulus (SIGNAL), such as
the Tumor Necrosis Factor (TNF) or the interleukin-1α (IL-1α), is received, the IKK
protein in the neutral form3(IKKn) is transformed into its active phosphorylated form
(IKKa) and then it is modified, under the influence of the stimulus and the protein A20,
into another inactive form (IKKi). The inactive form IKKi is different from IKKn as
it is overphosphorylated. The activation of IKK is enabled only when the stimulus is

2 Note that each run can represent the behaviour of a single cell. If we assume that each cell is
independent of the others, multiple simulation runs can approximate the average behaviour of
a population of cells.

3 Neutral refers to IKK in absence of any extracellular stimuli. Neutral IKK does not interact
with IκBα and therefore does not trigger the cascade of the NF-κB pathway.
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present whereas its inactivation is possible both in the presence of the stimulus (in this
case it is activated by A20) and also in the normal condition. When activated, IKKa can
trigger the degradation of IκBα, which has the effect of releasing free cytoplasmic NF-
κB. This enters the nucleus and upregulates the transcription of the two inhibitors, A20
and IκBα, and a large number of other genes (represented by cgen in Fig. 1). The newly
synthesized IκBα again inhibits NF-κB while A20 can inhibit IKKa by catalysing its
transformation into IKKi, which is no longer able to trigger the degradation of IκBα.

SIGNAL 0/1

IKKn

IKKa

IKKi

A20

A20t

IκBα

IKKa-IκBα

IKKa-IκBα-NF-κB

NF-κB

IκBα-NF-κB
IκBα-NF-κB

IκBαt NF-κB

IκBα

Cgent

nucleus

cytoplasm

Fig. 1. Schematic depiction of the NF-κB signalling pathway considered in the paper.
Signal 0 corresponds to the absence of the external stimulus, signal 1 corresponds to
the presence of the stimulus. The red long dashed arrows are the interactions triggered
by the signal, the brown short dashed arrows the transport reactions between compart-
ments, black continuous arrows represent all the other kinds of interaction (association
and dissociation reactions, translation of mRNAs into proteins). Compartments are de-
limited by green dotted lines.

The pathway is characterized by the following main features.

1. There are two compartments, the nucleus and the cytoplasm. Realistic compart-
ment sizes have been obtained from experiments and this information is taken into
account in the derivation of rates and concentrations. These data relate to mouse
fibroblasts [22]. Cytoplasmatic NF-κB, the complex nuclear IκBα-NF-κB, nuclear
and cytoplasmatic IκBα, can move from one compartment to the other.

2. mRNA transcripts move from the nucleus to the cytoplasm as soon as they are
created. Therefore, the translation of mRNA in the associated proteins happens in
the cytoplasm. Whilst transcription is stimulated by NF-κB (the inducible term in
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the ODE representation), a basic rate of transcription will be observed at all times
(the steady term in the ODE representation).

3. The external stimulus is represented by a signal. In [5] Lipniacki et al. assume
that the stimulus is of long duration (persistent); indeed it is active for 6 hours,
starting after 1 hour. Short pulse-like stimuli can also be considered to describe
specific kinds of inflammation [3,8]. The effect of the signal is to enable some
reactions (i.e. the rate becomes non-zero); specifically, the activation of IKKn and
the transformation of IKKa into IKKi.

4. There are two regulatory feedback loops: the former involves IκBα and the latter
A20. Indeed nuclear NF-κB upregulates the transcription of both proteins and these,
in turn, inhibit the activity of NF-κB. In the latter feedback loop the action of A20
on the regulation of NF-κB is not direct: A20 inactivates IKKa, this stops the degra-
dation of IκBα and, consequently, there is an increase in the inhibition of NF-κB.
We do not consider the third feedback loop in Ashall et al. [8] as in our model we
consider just one of the IκB isoforms.

Some simplifications are made in the construction of the model (the most important
ones are reported below). In particular, it involves a restricted number of species and
reactions. As explained above, the model closely follows the Lipniacki model, reflecting
the available information and making a number of assumptions in order to simplify the
analysis [5].

– First, NF-κB and IKK are protein complexes, but the details of their structure and
the complicated kinetics leading to their formation are neglected. Specifically, NF-
κB proteins are small groups of dimeric transcription factors which consist of dif-
ferent members (for instance, in mammals these are RelA, Rel, RelB, p50, p52).

– Second, the inhibitory proteins A20 and IκBαmimic the common activity of groups
of inhibitors. For instance, IκBα is just one of the possible IκB isoforms involved in
the pathway. The choice to consider only IκBα and not all the other isoforms (see
for instance Hoffmann’s model [3]) reflects the fact that this isoform is the most
active and abundant in the cell and its absence, in contrast to the other isoforms, is
lethal [27].

– Third, all the other proteins which are not considered in the model remain at their
normal (i.e. in the absence of signal) levels.

– Fourth, IKK has three different forms. Each of them undergoes degradation with
the same rate and the normal form IKKn is the only one that can be synthesised.
We can obtain the inactive form only from the active form IKKa and this is in part
independent from the external stimulation.

The Lipniacki model describes the pathway reported above in terms of a system of
ODEs, where variables stands for species concentrations (in micro molars, µM). All the
kinetic laws associated with the various interactions are simply mass-action.

In order to validate the model, Lipniacki et al. analyse its ability to reproduce the
data from experiments on mouse fibroblasts. Hoffmann et al. report measurements in-
volving wild type cells (i.e. without external stimulation) in response to persistent and
pulse-like TNF activation [3]. On the other hand, Lee et al. measure the response of
wild type and A20-deficient cells to a persistent TNF signal [23]. The experimental
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data concern the average behaviour of a cell population (106 cells in [3]). We consider
these experimental data to validate our model as well.

Due to the large number of unknown parameters, Lipniacki et al. proposed the fol-
lowing parameter estimation approach. They started from a reasonable set of parameters
obtained from the literature (for instance from the experiments in [22,23]) able to pro-
duce a correct steady state in the absence of a TNF signal. Then they proceeded with
the signal initiated by TNF and iterated until the fit to all the available data is satis-
factory. In the definition of the parameters, the difference between the nuclear and the
cytoplasmatic volumes and constraints following from experimental data are taken into
account. In particular, as the original system of ODEs is in terms of concentrations, Lip-
niacki et al. took the proportion factor between the two compartments k = Vc/Vn = 5
into account in the kinetic laws of the reactions involving reactants and products in
two different compartments, such as the transport of a species from the nucleus to the
cytoplasm. Indeed, for a given number of molecules, the corresponding concentration
of the species in the cytoplasm is k times less than the corresponding concentration in
the nucleus and both the concentrations are present in the differential equations in the
terms representing transport and interactions between compartments. The explicit and
realistic use of compartments leads to more realistic constant parameters than in the
previous model by Hoffmann et al. [3], especially with respect to the translation and the
transport rates.

3 Related work

There is a vast literature of models for the NF-κB signalling pathway [3,4,5,6,7,8], and
each model focuses on particular aspects of the pathway and refers to different sets of
available experimental data.

The first attempt to model the IκB–NF-κB signalling module was made by Hoff-
mann et al. [3]. They defined an ODE model describing the interplay between three
isoforms of the inhibitor proteins IκB (IκBα, IκBβ and IκBε) and NF-κB, under both
a persistent and short pulse-like TNF stimulus. They proved that IκBα is responsible
for a strong negative feedback loop that allows a fast turn-off of the NF-κB whereas
the other two isoforms reduce the system’s oscillations and stabilize NF-κB responses
during longer stimulation. In contrast to the Lipniacki model, they assumed that the two
compartments (i.e. the nucleus and the cytoplasm) have the same volume. This assump-
tion simplified the definition of the system of ODEs, but leads to unrealistic transport
rates. Their model is fitted against the experimental data reported in the paper and was
able to reproduce the expected behaviour. However, the model does not satisfy all the
experimental constraints; for instance constraints on the quantity of free IκBα are not
considered. Moreover it does not consider some keys species and mechanisms, such
as the protein A20 and the IKK activation/disactivation. These two proteins and the
related processes have an essential role in the pathway; indeed the knockout of A20
in mice dramatically alters the cell response to TNF stimulation due to persistent IKK
activity and causes A20-deficient cells to die prematurely [23]. These shortcomings are
addressed in the Lipniacki model and, therefore, in our work too.



Modelling and analysis of the NF-κB pathway in Bio-PEPA 7

Subsequent work by Ihekwaba et al. conducts a sensitivity analysis of the model
presented by Hoffmann et al. [9,10]. In this case the model was defined in the nota-
tion of Gepasi [11], but it is a close representation of Hoffmann et al.’s ODE model.
Thus as with that earlier model, Ihekwaba et al’s model fails A20 and IKK activa-
tion/inactivation, and supposed equal compartment sizes for the cytoplasm and the nu-
cleus. In translating the model, the authors found some discrepancies in the Hoffmann’s
supplementary material and proposed a new set of parameters for ten of the reactions
of the pathway in order to fit the available experimental data. These parameters concern
the synthesis of the various IκB isoforms and association/dissociation of complexes in-
volving NF-κB, IKK and IκB isoforms4. The Gepasi model was then mapped to ODEs
in order to obtain the temporal evolution of the species and analysed using the pa-
rameter scan capability in order to identify those parameters in the IκB–NF-κB system
(containing only the IκBα isoform) that most affect the oscillatory concentration of nu-
clear NF-κB, in terms of period (time taken for one oscillation), phase (the timing of
the beginning of the period) and amplitude (the range values attained during an oscil-
lation). Parametric sensitivity analysis was performed on all the system’s parameters:
each parameter was considered in isolation and varied in order to see the impact of its
variation on the behaviour of nuclear NF-κB. Of the 64 parameters in the model, just
nine exerted significant influence and these mainly involved IκBα and IKK. A more
advanced analysis of the parameters was reported in [10], where pairwise modulation
of the nine parameters found in the previous study was carried out. Synergistic effects
were observed: the effect of one of the parameters was strongly dependent on the values
of another parameter, proving a very strong non-linearity in the system, as expected.

A hybrid variant of the Lipniacki model is proposed by the same authors in [6]:
ordinary differential equations, used for description of fast reaction channels of pro-
cesses involving a large number of molecules, are combined with a stochastic switch to
account for the activity of the genes involved. In this way the authors improved simu-
lation efficiency and defined a model able to appropriately handle the small numbers of
transcripts. This model was defined in MATLAB and an ad hoc algorithm for the simu-
lation was implemented. In the other models defined in terms of ODEs these species are
approximated by continuous variables with very low concentrations. This simplification
is not realistic. However, for this pathway, it gives correct average behaviours.

Recently a new model for the NF-κB pathway has been proposed by Ashall et al. [8].
The authors define a hybrid model, similar to the one proposed in [6] and an associated
simulation algorithm, able to capture the behaviour of the pathway under repeated short
pulses of TNF at various intervals, mimicking pulsatile inflammatory signals. In order to
reproduce the new experimental results based on pulsatile stimulation they modified the
Lipniacki model. Specifically they proposed a new set of reactions to describe the IKK
activation/disactivation. Differently from the Lipniacki model, inactive IKK (IKKi) can
be transformed into neutral IKK (IKKn) and A20 is an inhibitor of this interaction.
Furthermore, a third feedback loop is added describing the influence of the isoform
IκBε on the pathway. Ashall et al. used their model to investigate the possible role
of the NF-κB oscillations in the systems and how these oscillations are affected, for
instance, by the various TNF pulse frequencies and the presence of feedback loops. In

4 Note that most of these reactions are not present in the Lipniacki model.



8 F. Ciocchetta, A. Degasperi, J.K. Heath, J. Hillston

the Lipniacki model this third loop is not considered because the focus is on the most
abundant and important isoform of IκB.

Cho et al. [4] focused on just the first part of the signalling cascade up to the activa-
tion of NF-κB, without considering the translocation into the nucleus and the activation
of the transcription of the various genes by NF-κB. The authors proposed an ODE model
describing in detail the various interactions that leads to the activation of NF-κB.

All the models reported above are defined directly in terms of systems of ODEs, as
hybrid models or as Gepasi models (and then translated into ODEs). In the literature
there are just a few applications of process algebras for the modelling and study of this
pathway [28,29]. In both these papers the focus was on the modelling of the pathway
using process algebras and just the validation of the model against the literature was
reported. Larcher et al. [29] represented the pathway previously described by Hoffmann
et al. [3] in BetaWB, a language based on Beta binders [15]. A clear mapping exists from
biochemical entities, such as species and reactions, into the BetaWB language. Each
species is abstracted by a bio-process, a box with an interface representing its interaction
capabilities. The interactions among species are represented by various kinds of actions
such as the formation of complexes and decomplexation, the communication between
species and the change of the interface, the deletion or creation of a box, the join and
split of boxes. The analysis is based on stochastic simulation and on the comparison
with the results in the literature. Note that in [3] the two compartments are assumed
to have the same size. The compartments are not considered explicitly in the BetaBW
model but their equal size is reflected in the derivation of the number of molecules
and stochastic rates. In [28] Hillston and Duguid defined a PEPA [30] model for the
pathway presented in Cho et al. [4]. The level of abstraction is higher than the one in
the work by Larcher et al., in particular, species are abstracted by processes and all
the reactions by interactions between processes. Hillston and Duguid considered the
reagent-centric style of PEPA, on which Bio-PEPA is based. However, in PEPA it is not
possible to defined some features of biochemical systems, such as stoichiometry and
events. Furthermore, in the standard version, PEPA does not support functional rates.
In [28], the map from the PEPA model into the associated ODE model is presented and
ODE numerical integration results are shown.

4 Bio-PEPA

In this section we give a short description of Bio-PEPA [20,21], a language that has
been developed for the modelling and analysis of biological systems. Recently Bio-
PEPA has been extended to incorporate events [31] and to support biological locations
[32], two features which will be useful in developing our model of the NF -κB pathway.

The main descriptive components of a Bio-PEPA system are the species (or sequen-
tial) components, describing the behaviour of each species, and the model component,
describing the interactions between the various species. The species initial amounts are
given in the model component.

The syntax of the Bio-PEPA components is defined as:

S ::= (α, κ) op S | S + S | C | C@L with op = ↓ | ↑ | ⊕ | 	 | �



Modelling and analysis of the NF-κB pathway in Bio-PEPA 9

P ::= P BC
H

P | S [x]

where S is the species component and P is the model component. We assume a count-
able set of model components C, a a countable set of locations L and a countable set of
action types A. These three sets are disjoint. In the prefix term (α, κ) op S , the action
type α is ranged over by the setA and abstracts a reaction of the network, κ ∈ N is the
stoichiometry coefficient of species S in reaction α and the prefix combinator “op” rep-
resents the role of S in the reaction. Specifically, ↓ indicates a reactant (i.e. the amount
of the species decreases), ↑ a product (i.e. the amount of the species increases), ⊕ an
activator (i.e. the species activates the reaction without modifying its amount), 	 an
inhibitor (i.e. the species inhibits the reaction without modifying its amount) and � a
generic modifier. The general modifier operator is useful to indicate species that are in-
volved in a reaction without changing their concentration but which cannot be classified
as activators or inhibitors (e.g. a gene during transcription). We can use “(α, κ) op ” as
an abbreviation for “(α, κ) op S ”. The operator “+” expresses the choice between pos-
sible actions, and the constant C is defined by an equation C

def
= S . The notation C@L

indicates that the species represented by the component C is in the location L.
The process P BC

H
Q denotes synchronisation between components P and Q, the set

H ∈ 2A determines those action types on which the operands are forced to synchro-
nise, with BC

∗
denoting a synchronisation on all common action types. Note that the

synchronization of components on a given action type α represents the participation of
the corresponding species in the same reaction (abstracted by the action type α). In the
model component S [x], the parameter x ∈ R+ represents the initial value. The reader is
referred to [21] for further details of the language and its semantics.

In addition to species and model components, a Bio-PEPA system is characterised
by a context containing the constant parameters, the functional rates, the locations, the
possible events and auxiliary information about the species.

The parameters are defined in the model by means of a set of parameter definitions
K . Each parameter is defined by “kname = value unit”, where “kname < C” is the param-
eter name, “value” denotes a positive real number and the (optional) “unit” denotes the
unit associated with the parameter.

In order to collect the information about the dynamics of the system, we associate
a functional rate fα with each action type α. The set of functional rates is denoted FR.
The function fα can depend on parameters, names of species components and possi-
bly on simulation time and represents the kinetic law of the associated reaction as a
mathematical expression. The mathematical expressions are defined in terms of math-
ematical operators or predefined functions, expressing well-known kinetic laws such
as mass-action, Hill kinetics and Michaelis-Menten. In the former case the names of
the parameters and the names of the species components involved in the reaction must
be given whereas with the predefined kinetic laws the components/species are derived
from the context.

Locations represent both biological compartments (such as nucleus, cytoplasm, · · · )
and membranes. Membranes represent the boundaries of compartments and may or
may not be explicitly included. Every model must have at least one compartment. Each
location is described by “L : s unit, kind”, where L is the (unique) location name,
“s” expresses the size and can be either a positive real number or a more complex



10 F. Ciocchetta, A. Degasperi, J.K. Heath, J. Hillston

mathematical expression depending on time t; the (optional) “unit” denotes the unit
of measure associated with the location size, and “kind” ∈ {M,C} expresses if it is a
membrane or a compartment, respectively. Although the relative position of locations is
assumed to be static, their size may change with time by expressing the volume or area
as a function of time. In this latter case only specific kinds of analysis are supported
(i.e. numerical integration of ODEs).

A key reaction involving location is the translocation of a species S from one lo-
cation Li to the location L j. This is simply abstracted by a reaction S @Li → S @L j,
where S @Li is the reactant and S @L j is the product.

Events are constructs that represent changes in the system due to some triggering
conditions. This allows biochemical perturbations to the system to be represented, such
as the timed introduction of reagents or the modulation of system components by ex-
ternal stimuli. A Bio-PEPA event has the form (id, trigger, event assignment, delay),
where:

– event id is the event identifier,
– trigger is a mathematical expression that, when it evaluates to true, makes the event

fire. It can be composed of one or more conditions involving the components of the
Bio-PEPA model and/or time;

– event assignment list is a list of changes (assignments) to elements of the system
in response to the event;

– delay is the length of time between when the event fires and when the event as-
signments are executed. delay is either 0 (immediate events) or a positive real value
(delayed events). In the model we consider in this paper we consider just immediate
temporal events, i.e., they are not delayed and their trigger involves time.

Note that events are added to the language as a distinct set of elements and the rest
of the syntax is unchanged in order to keep the specification of the model as simple
as possible. This approach is particularly useful when the same biochemical system
is studied under different experimental regimes as the list of events can be modified
without any changes to the rest of the system. Details of analysis supporting events are
reported in [31].

Finally, a set N is defined in order to collect some auxiliary information about the
species used in some kinds of analysis supported by Bio-PEPA.

In order to illustrate Bio-PEPA syntax, we show how a simple network can be speci-
fied in Bio-PEPA. This network is composed of the following two reactions (in chemical
reaction form):

S + E −→ P + E ; P −→

The former is an enzymatic reaction describing the transformation of a substrate S into
the product P with the help of the enzyme E and the latter is the degradation of the
product P. The kinetic law for the enzymatic reaction is fE = vM ·E·S

(KM+S ) whereas for the
degradation it is fdeg = k · P. All the species are in the same location L.

The three species can be specified in Bio-PEPA by the following components:

S @L
def
= (α, 1)↓ P@L

def
= (α, 1)↑ + (β, 1)↓ E@L

def
= (α, 1)⊕
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The action type α abstracts the enzymatic reaction and β the degradation. The
species S is only involved in the reaction α as a reactant (i.e. it is consumed). The
enzyme E is only an activator for α. The product P can take part in both reactions. In
the case of α it is a product (i.e. it is created) and in the case of β is a reactant (i.e. it is
consumed). In all cases the stoichiometry is one.

The system is described by

S @L[xS ,0] BC
{α}

E@L[xE,0] BC
{α}

P@L[xP,0]

where xS ,0, xE,0 and xP,0 are the initial values of the three species and the functional
rates are fα = f MM(vM ,KM), i.e. Michaelis-Menten kinetics with parameters vM , KM ,
and fβ = f MA(k).

Bio-PEPA offers a formal intermediate compositional representation of biochemical
systems, on which different kinds of analysis can be carried out, through defined map-
pings into continuous-deterministic and discrete-stochastic mathematical models. The
Bio-PEPA language is supported by software tools (for instance the Bio-PEPA Work-
bench [33]) which automatically process Bio-PEPA models and generate other repre-
sentations in forms suitable for different kinds of analysis [21,34]. In particular, the
generated simulation model can be executed using MATLAB [35] and the Dizzy simu-
lation tool [36], in which both stochastic simulation algorithms and differential equation
solvers are implemented. Here we use a version of the Dizzy simulator developed at the
University of Edinburgh [25], which extends the original tool with sensitivity analy-
sis techniques and additional simulation methods. Some events, such as, for instance,
time-dependent events, can be translated into time-dependent reaction rates in the Dizzy
model (defined in terms of the step function theta, which is predefined in Dizzy). Most
stochastic algorithms and ODE solvers in Dizzy support this function.

5 A Bio-PEPA model for the NF-κB pathway

In the following we illustrate the Bio-PEPA model describing the NF-κB pathway pre-
sented in Sect. 2. We show the mapping from each biochemical entity (species, reaction,
· · · ) to Bio-PEPA. We report just the main ideas of the abstraction, the full model is re-
ported in Appendix A and available from the Bio-PEPA web page [34].

The pathway is characterised by the presence of two compartments (and the trans-
port of some species between them) and by the influence of an external signal. These
features can be easily represented in Bio-PEPA using locations and events.

Compartments The nucleus and the cytoplasm are abstracted by locations in Bio-
PEPA:

location nuc : kind = C, size = 3.33 · 10−13 l;
location cyt : kind = C, size = 1.65 · 10−12 l

They are both of kind C (i.e. compartments) and their sizes are as given in [5].
Reactions Each reaction is associated with an action type and with a functional rate.

For instance, in the case of degradation of the protein A20 we have the action type
a20 degradation and the associated functional rate:

fa20 degradation = f MA(c5)
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where f MA(r) stands for mass-action with rate constant r and c5 is the constant
degradation rate for A20.

Species Each biochemical species in the pathway is abstracted by a species component,
describing its behaviour in terms of the interactions in which it is involved.
For instance the protein A20 is represented as:

A20@cyt
def
= (a20 translation, 1) ↑ +

(a20 degradation, 1) ↓ +

(transformation IKKa into IKKi by A20, 1) ⊕

This species is in the cytoplasm and it is involved in three interactions: its trans-
lation, its degradation and as an activator for the transformation of IKKa into the
inactive form IKKi. The abbreviation presented in Section 4 is used. In all the three
cases mass-action kinetic laws are considered 5.

Model Component The species and their possible interactions are represented by the
model component:

IκBα–NF-κB@cyt[60000] BC
∗

IKKn@cyt[0] BC
∗

IKKa@cyt[0] BC
∗
· · · A20@cyt[0]

where the number between square brackets represents the initial number of molecules
of each species.

Signal The signal (TNF stimulus) is abstracted in Bio-PEPA by two time-dependent
events, representing the start and the end of the signal.

(begin signal, t = T1, signal = 1, 0);
(end signal, t = T2, signal = 0, 0)

In our case T1 = 3600 and T2 = 7 ·3600 = 25200 seconds (corresponding to 1 hour
and 7 hours, respectively) and both events are immediate.

To simplify the handling of compartments for Bio-PEPA with locations we prefer to
have the model expressed in terms of numbers of molecules, rather than concentration,
for each species. Otherwise concentrations have to be converted to account for different
volumes whenever molecules move between compartments. Considering the number of
molecules is thus more convenient. Note that the rates and initial values for species in
Lipniacki’s model [5] are expressed in concentrations (µM). In order to derive a model
in terms of molecule numbers for Bio-PEPA, the continuous concentration values are
translated into discrete numbers of molecules and the rates are modified in order to take
this transformation into account (see [37] for details).

In our model we have two compartments with different volume sizes, so we have to
define two scaling factors for the transformation from concentrations to molecules and
use them according to the location of each species and reaction. Specifically, the two
scaling factors are:

nscale = Vn · NA · 10−6 = 2 · 105 molecules/µmol · L
5 Note that in the reaction describing the transformation of IKKa into IKKi, the protein A20

remains constant and it is a sort of activator of the reaction. The reaction is described as IKKa+

A20→ IKKi + A20 with kinetic law k2 · IKKa · A20.
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cscale = Vc · NA · 10−6 ≈ 106 molecules/µmol · L

where nscale and cscale are the scaling factors, NA = 6.022 ·1023 mol−1 is the Avogadro
number and Vn and Vc, the volume sizes, for the nucleus and cytoplasm, respectively.
As the concentrations are in terms of µM instead of M we have to multiply by 10−6.
As we consider numbers of molecules, we do not need to use the factor k, used to take
into account the compartment volumes in the reactions involving species in different
compartments when concentrations are used [5].

A list of all parameter values used in our model is reported in Table 1.

Table 1. Parameters and reactions of the model. For more details see [5,6].

Parameter Value Unit Description
nscale 2 · 105 molecules/µmol · L scaling factor for the nucleus
cscale 106 molecules/µmol · L scaling factor for the cytoplasm
k 5 - cytoplasmic to nuclear volume
kprod 0.000025·cscale= 25 molecules · s−1 IKKn production rate
kdeg 0.000125 s−1 IKKa, IKKn and IKKi degradation
k1 0.0025 s−1 IKK activation rate caused by TNF
k2 0.1/cscale= 107 molecules−1 s−1 IKK inactivation rate caused by A20
k3 0.0015 s−1 IKK spontaneous inactivation rate
c1 5 · 10−7 ·k = 2.5 · 10−6 s−1 A20-inducible mRNA transcription
c2 0 molecules · s−1 A20-constitutive mRNA transcription
c3 0.0004 s−1 A20 mRNA degradation
c4 0.5 s−1 A20 translation rate
c5 0.0003 s−1 A20 protein degradation
t1 0.1 s−1 IKKa-IκBα catalysis
t2 0.1 s−1 IKKa-IκBα-NF-κB catalysis
c1a 5 · 10−7 ·k = 2.5 · 10−6 s−1 IκBα-inducible mRNA transcription
c2a 0 molecules · s−1 IκBα-constitutive mRNA transcription
c3a 0.0004 s−1 IκBα mRNA degradation
c4a 0.5 s−1 IκBα translation rate
c5a 0.0001 s−1 spontaneous, free IκBα degradation
c6a 0.00002 s−1 IκBα degradation (complexed to NF-κB)
a1 0.5/cscale= 5 · 10−7 molecules−1 s−1 IκBα-NF-κB association
a2 0.2/cscale= 2 · 10−7 molecules−1 s−1 IKKa-IκBα association
a3 1/cscale= 1 · 10−6 molecules−1 s−1 IKKa IκBα-NF-κB association
a1n 0.5/nscale= 2.5 · 10−6 molecules−1 s−1 IκBα-NF-κB association (nucleus)
c1c 5 · 10−7 · k = 2.5 · 10−6 s−1 cgen inducible mRNA transcription
c2c 0 · k = 0 molecules · s−1 cgen constitutive mRNA transcription
c3c 0.0004 s−1 cgen mRNA degradation
i1a 0.001 s−1 IκBα nuclear import
e1a 0.0005·k = 0.0025 s−1 IκBα nuclear export
e2a 0.01·k = 0.05 s−1 IκBα-NF-κB nuclear export
i1 0.0025 s−1 NF-κB nuclear import
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6 Validation and analysis

Fig. 2. Schematic view of the analyses available within the Bio-PEPA Workbench, from
the Bio-PEPA description of the system (top level) three distinct classes of analysis are
accessible (middle level): Stochastic Simulation (SSA), explicit state CTMC techniques
such as numerical solution and stochastic model checking, and ordinary differential
equations (ODEs); these analyses are supported using existing tools (bottom level).

The Bio-PEPA model of the NF-κB pathway was implemented in the Bio-PEPA
Workbench [33] which supports a variety of analyses (see Fig. 2). We consider the ODE
MATLAB model to provide validation against the results reported in [5] and the Dizzy
model for stochastic simulation and sensitivity analysis. The simulations are carried out
using Gillespie’s direct method [37]. This choice was made on the basis of the efficiency
of that algorithm with respect to our model and the fact that its implementation within
Dizzy supports time-dependent events by means of the theta function, as discussed
at the end of Sect. 4. Nevertheless we verified that the same results are obtained if
other stochastic algorithms in Dizzy which support events are used (results not shown).
Throughout the presented analyses the unit of time is one second.

6.1 Validation

As explained above, in order to validate our model against the original ODE model [5]
and the available experimental data in [23,3] showing the behaviour of a cell population,
we consider the ODE MATLAB model obtained from the Bio-PEPA Workbench [33].

In [5], Lipniacki et al. take the following approach to time series evolution of
species. At time 0 just the complex cytoplasmic IκBα−NF-κB is present and all other
species are zero. The simulation is run until the resting cell equilibrium state is reached
(100 hours). The simulation is then run for a further seven hours, with the external
signal enabled after one hour.
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The ODE solver used is the MATLAB ode23tb [38], designed for stiff systems.
Events are handled “by hand”: stopping the simulation when the events occur and re-
setting the system of ODEs with the initial species values set to the final values obtained
from the previous simulation and changing the rates of the two reactions enabled by the
external stimulus (i.e. activation of IKK and the transformation of active IKK into in-
active IKK by means of A20) in the appropriate way. Specifically, the rate constants of
the two reactions are initially zero. At the start of the stimulus at time 1 hour these rates
are set to values different from zero and, at the end of the stimulus at time 7 hours, they
are reset to zero again.

In Fig. 3 we report the results obtained running our MATLAB ODE model with the
approach described above. The figure corresponds to the Fig. 3 in [5], obtained using
the ODE MATLAB Lipniacki model. The persistent TNF signal (subfigure [A]) causes
a pulse activation of IKK (subfigure [C]). The pulse of active IKK (IKKa) initiates the
cascade. First IκBα (subfigure [E]) and the complex IκBα−NF-κB (subfigure [F]) are
degraded; the released NF-κB moved in the nucleus and, due to the low quantity of
nuclear IκBα (subfigure [G]), it rapidly increases. Nuclear NF-κB (subfigure [H]) up-
regulates mRNA expression of both IκBα and A20 (subfigures [I] and [H]); the peaks of
the associated transcripts are followed by peaks in the corresponding free cytoplasmatic
proteins. The new synthesised IκBα binds to NF-κB and leads it out of the nucleus while
A20 triggers IKK inactivation. The two negative loops and the movement of species
between compartments are fundamental for NF-κB’s oscillations and therefore have a
large impact of the cell’s activities.

The species in our MATLAB model are expressed in terms of number of molecules
and, therefore, the species values in Fig. 3 are rescaled in terms of concentration in order
to have a more direct comparison with the figures reported in [5]. The results obtained
are identical to the ones shown in the paper. This also confirms that our conversion from
concentration to number of molecules is appropriate. The same results are obtained
when the Dizzy tool is used for the simulation.

6.2 Stochastic simulation: population vs single cell behaviour

In this section we consider the Dizzy model derived from our Bio-PEPA and we perform
stochastic simulation in order to investigate the effect of stochasticity on the behaviour
of the species in the pathway, in particular of nuclear NF-κB.

While deterministic models are good approximations of real biochemical systems
when the number of molecules is sufficiently high, at low copy numbers the effect of
random fluctuations becomes significant and so stochasticity needs to be taken into ac-
count to obtain a faithful representation of the real biochemical system [39]. This is
particularly true when the activation of genes is involved, as generally there are few
copies of each gene in the cell. For this reason, we decide to consider stochastic simu-
lation for the following analyses of the model.

Note that a single simulation of the model is a specific realization of the underlying
stochastic process and therefore can abstract the behaviour of a single cell. If we assume
that the behaviour of the cells are independent (at least with respect to the reactions
of the pathway under consideration) the comphrensive behaviour of a population of
cells can be captured by the average of a number of simulation runs. Therefore, in the
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Fig. 3. Validation of the ODE MATLAB model obtained from Bio-PEPA (concentra-
tions). The time (x value) is in seconds and the y values are concentrations (in µM).

following we report the graphs showing the average of several stochastic simulation
runs as we want to compare them with the experimental data in [23,3], which refer
to comphrensive behaviour of a population of cells. On the other hand, we consider
the single simulation runs too, in order to show the possible differences between the
behaviour of a single cell and a population of cells.

Particular attention must be given to species that are characterized by oscillatory
behaviour, indeed the study of oscillations for NF-κB is fundamental as this mecha-
nism seems to have an essential role on important activities of the cell, such as death
and immunity. The oscillations need to be largely synchronous to be observed in a cell
population, as, if they are out of phase, in the average they are damped, often to the
point of invisibility [40,8]. From ODE models in the literature [3,5] (including the ones
derived from Gepasi) we can only observe the average behaviour that, for some experi-
ments, is not representative of the behaviour of a single cell, especially with respect to
oscillations.

Fig. 4 reports the average of 100 simulation runs and the standard deviation of the
species nuclear NF-κB (top-left), cytoplasmic IκBα (top-right), cytoplasmic IκBα−NF-
κB (bottom-left) and IKKa (bottom-right). The average behaviour for these species is
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very close to the deterministic solution. This is unsurprising since the amount of these
species is indeed quite high. For nuclear NF-κB, IκBα and IκBα−NF-κB we can observe
an average oscillatory behaviour, that is less evident after the first oscillations, when the
variability between the different runs is greater. If we observe a single simulation run
for the species (in Fig. 5 the results for two species are reported), the species present
a persistent oscillatory behaviour, at least for the time interval considered. The oscilla-
tions in the various simulation runs are not completely in phase and, therefore, in the
average they tend to be damped.

These results are in agreement with the literature [8]. Indeed experimental data
concerning the pathway suggest a small degree of synchronization amongst the cell
population when we have a persistent or long pulse TNF signal, with more evident
synchronization in the first oscillations. However, in the case of shorter stimuli, the ex-
perimental results show that, under certain assumptions, a strong synchronization and
the cell population behaviour is representative of the behaviour of the single cell [40,8].

Similar results, but with smaller standard deviations, are obtained with a larger num-
ber of simulation runs (results not presented). In this case, the simulation time increases.
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Fig. 4. Stochastic simulation (Gillespie’s direct method) for nuclear NF-κB (top-
left), cytoplasmic IκBα (top-right), cytoplasmic IκBα−NF-κB (bottom-left) and IKKa
(bottom-right). For each of them the average value and the standard deviation are
shown. 100 simulation runs are considered. These species correspond to the species
in the subgraphs H, E, F and C of Fig. 3, respectively.
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Fig. 5. Single stochastic simulation runs (Gillespie’s direct method) for nuclear NF-κB
(left) and cytoplasmic IκBα–NF-κB (right). These species correspond to the species in
the subgraphs H and F of Fig. 3, and in the graphs top-left and bottom-left in Fig. 4,
respectively.

6.3 In silico experiments

We use our model to study the behaviour of the system, particularly nuclear NF-κB,
under various assumptions. In the following, we study how the duration of the TNF
stimulus affects the behaviour of the nuclear NF-κB and we investigate the regulatory
mechanisms, varying the initial total amount of the NF-κB and the inhibitory activity of
A20 and IκBα. After that, we explore the behaviour of IκBα mRNA, IKKa and nuclear
NF-κB in A20-deficient cells. Finally, we study the effect of varying both A20 and IκBα
transcription rates. This last experiment is not present in [5].

The use of stochastic simulation within our analysis means that in addition to the
cell population results, previously presented by [5], we can also analyse the behaviour
of single cells. In particular, we compare the results obtained from single simulation
runs (a single cell) to the average behaviour over many runs (a population of cells). The
results of these single runs have yet to be validated against appropriate experiments
but the data produced is ideally suited to live cell imaging techniques. This is in con-
trast to the population case (ODEs and multiple runs of stochastic simulations) which
correspond to population approaches such as western blotting. However the results pre-
sented here, whilst not yet validated, do show agreement with present knowledge of the
system.

Effect of the duration of TNF stimulus on nuclear NF-κB In the previous sections
we have assumed that the TNF stimulus is persistent and lasts for 6 out of 7 simulation
hours. It is interesting to investigate how a shorter duration stimulus can affect the nu-
clear NF-κB activity, in particular the oscillatory behaviour. Different durations describe
specific kinds of inflammation [3,8].

Fig. 6 shows the average over 100 stochastic runs for IKKa and nuclear NF-κB
when the stimulus lasts for 15 minutes (left), 60 minutes (middle) and 6 hours (original
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value, right). The three graphs show the same behaviour for both IKKa and nuclear
NF-κB for the first three hours. In particular, the pulse of nuclear NF-κB starts after
one hour, has a peak at 90 minutes and lasts about one hour. This similarity between the
three situations described above may be due to the fact that the pulse of NF-κB is strictly
influenced by IKKa and the behaviour of IKKa is the same for all the three cases. Indeed
IKK activation seems, at least in part, independent of the duration of the TNF stimulus.
This can be explained by the fact that the inactivation rate under the stimulus is very
high. Therefore, the inactivation of IKK is very fast and all IKKa is consumed soon
after the beggining of the stimulus. However, the duration of the stimulus has an impact
on the behaviour of NF-κB after the initial pulse: when the stimulus lasts for 15 minutes
or 1 hour nuclear NF-κB drops to a very small amount (2 or 4 molecules, respectively).
In contrast, with the longer stimulus we see a pronounced oscillation. The same results
are obtained when we consider single simulation runs, as we can see in Fig. 7, where
a single run for NF-κB with one-hour stimulus is reported. Therefore we can deduce
that shorter stimuli do not induce oscillations for nuclear NF-κB either at the level of a
single cell nor the level of a population of cells.

These results are in full agreement with the experimental data shown in [3] for wild-
type cell under TNF stimuli of short duration.

Fig. 6. IKKa (red line) and nuclear NF-κB (blue line) at and after 15 minute-long (left),
60 minute-long TNF stimulation (centre) and at and after 6 hours (right). The graphs
show the average amount over 100 simulation runs.

Study of the regulatory mechanisms First, we consider various initial amounts for
the total NF-κB. In Fig. 8 we report the average behaviour over 100 runs of the nuclear
NF-κB when the initial total NF-κB is the original value, three times the original value
and one third of the original value. These values have been chosen to reproduce the ex-
perimental data and in silico experiments in [5]. At the level of a population of cells, an
increase in the amount of total NF-κB makes the oscillation more pronounced whereas,
taken in the average, a decrease smooths out the oscillations.

In Fig. 9 we report single simulation runs (single cells) under the same assumptions.
For the larger quantity of initial NF-κB the behaviour at the level of the population of
cells and at the level of a single cell is identical. On the other hand, when smaller ini-
tial quantities are assumed, in the single cell we can observe an oscillatory trend, even
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Fig. 7. A single stochastic simulation run for nuclear NF-κB with one-hour stimulus.

Fig. 8. Nuclear NF-κB when the initial total NF-κB is 6 · 104 (original value, left), is
1.8 · 105 (three times the original value, centre), and 2 · 104 (one third of the original
value, right). The graphs show the average amount over 100 simulation runs.

though less regular than before, not observable when the average is considered. There-
fore, the initial amount of NF-κB seems essential to obtain an oscillatory behaviour,
especially when the population of cells is considered.

In order to see how the system behaves at different inhibitor levels, we elevate the
A20 and IκBα mRNA transcription rates (c1 and c1a, respectively) three-fold with re-
spect to the original value whereas the other parameters remain unchanged. As before,
these values have been selected in order to compare our results with the experiments in
[5]. The results are reported in Fig. 10. The higher level of A20 mRNA transcription
leads to a higher level of the protein A20 and therefore to a lower level of IKKa. The re-
sulting nuclear NF-κB has less damped oscillations. A similar result for nuclear NF-κB
is obtained when we elevate the IκBα mRNA transcription rate three-fold with respect
to the original value.

These results are in agreement with the ones in [5]. Concerning single simulation
runs, also for these experiments we have more persistent and sustained oscillations.
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Fig. 9. Single simulation runs for nuclear NF-κB when the initial total NF-κB is 1.8·105

(three times the original value, left) and 2 · 104 (one third of the original value, right).

Fig. 10. Nuclear NF-κB when A20 and IκBα mRNA transcription rates have the orig-
inal values (left), when A20 mRNA transcription rate is three-fold the original value
(centre) and when IκBα mRNA transcription rate is three-fold the original value (right).
The graphs show the average amount over 100 simulation runs.
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A20 deficient cells The protein A20 is strongly NF-κB responsive and has an important
inhibitory effect on the activation of NF-κB. The knockout of A206 in mouse dramat-
ically alters the cell response to TNF stimulation due to persistent IKK activities and
causes A20 deficient mice to die prematurely.

In Fig. 11 we report the stochastic simulation (average of 100 runs) for some species
of the pathway. A20 deficient cells are simulated by setting A20 mRNA transcription
rate to zero (c1 = 0). IKKa presents a level of activation in the tail after the peak.
This is different from what happens in wild-type cells (see for instance Fig. 3) and it
is mainly due to the fact that A20 is responsible for the inactivation of IKKa. This
difference in the IKK activity influences the rest of the pathway response. In particular,
this disregulates NF-κB, which then accumulates in the nucleus during TNF stimulation.
As a consequence of this, the amount of IκBα mRNA increases and at the end of the
stimulation we have twice the quantity with respect to the wild-type cells. These results
are in agreement with the published experiments.

Fig. 11. A20 deficient cells. Stochastic simulation (average of 100 runs) for IκBα
mRNA (left), IKKA (centre) and nuclear NF-κB (right).

Fig. 12 reports a single simulation run for nuclear NF-κB. For A20 deficient cells
nuclear NF-κB does not have an oscillatory behaviour also at the level of a single cell.
This confirms the importance of the A20 feedback loop on oscillations.

Study of varying both c1 and c1a In addition to the experiments reported above, where
we vary each mRNA transcription rate (c1 and c1a) in isolation, in this work we use our
model to investigate how the nuclear NF-κB is affected by varying both c1 and c1a.
Indeed, from previous investigations [5,10], each of these two parameters influences
the behaviour of nuclear NF-κB. Thus it is interesting to study their synergistic effect
on the system. This experiment is not present in [5]. In Fig. 13 we report the results
for some choices of the two parameter values. Specifically, we focus on the following
cases: both c1 and c1a are three-fold the original values (top-left), c1a is three-fold its
original value and c1 is one third of its original value (top-right), c1 is three-fold its
original value and c1a is one third of its original value (bottom-left) and, finally, both c1
and c1a are one third of the original values (bottom-right). Sustained oscillations (in the

6 We call such cells A20 deficient.
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Fig. 12. A20 deficient cells. Single stochastic simulation for nuclear NF-κB.

average) are obtained for the first and the third cases, when c1 has a higher value. On the
other hand, when c1 has lower and c1a has higher than original values the oscillations are
damped and disappear immediately after the first oscillation when both the parameters
are low. The effect of varying c1a when c1 is high is on the amplitude and the period
of the oscillations: the higher the c1a value, the greater the amplitude and narrower the
oscillations.

As observed for the previous experiments, for single simulation runs the oscillations
are more sustained and persistent (see Fig. 14), especially with respect to the smaller
values of the parameter c1a. Indeed, when c1a is a third of its original value, the oscilla-
tions observable in a single run disappear at the population level (graphs on the right in
Fig. 14 and Fig. 13, respectively).

These results have yet to be validated against appropriate experiments but they are
in agreement with the present knowledge of the system.

6.4 Sensitivity analysis

In order to improve our understanding of the influence of parameter perturbation on
species concentration, we employed Sensitivity Analysis (SA) [41]. In general this is
performed as follows:

1. An initial set of parameter values (nominal parameters) is identified. Usually these
are the values that are considered the most likely or are the result of parameter
fitting. The analysis takes place in the neighbourhood of this configuration. We will
call the model with nominal parameters the nominal model.

2. A measure or index of the sensitivity is defined, based on the aspect of the model
that is the subject of the analysis. An aspect might be the amount of a species S
at a specific time or the amplitude of an oscillation, while the index might be the
difference between the amount of S computed by the model with nominal parame-
ters and the amount of S computed by the model with perturbed parameters. This
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Fig. 13. Nuclear NF-κB under various assumptions about the A20 mRNA transcription
rate c1 and the IκBα mRNA transcription rate c1a. Both c1 and c1a three-fold the orig-
inal values (top, left), c1a three-fold the original value and c1 one third of the original
value (top, right), c1 three-fold the original value and c1a one third of the original value
(bottom, left) and both c1 and c1a one third of the original values (bottom, right). The
graphs show the average amount over 100 simulation runs.
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Fig. 14. Single simulation runs for nuclear NF-κB under various assumptions about the
A20 mRNA transcription rate c1 and the IκBα mRNA transcription rate c1a. Both c1
and c1a three-fold the original values (top, left), c1a three-fold the original value and c1
one third of the original value (top, right), c1 three-fold the original value and c1a one
third of the original value (bottom, left) and both c1 and c1a one third of the original
values (bottom, right). These graphs correspond to the ones reported in Fig. 13 with a
single simulation run instead of the average of 100 simulation runs.
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difference is an example of a sensitivity index (SI), which quantifies the influence
the parameters have on a particular aspect.

3. One or more parameters are modified by a fixed value or a percentage, and SIs are
obtained. Reactions governed by parameters with high sensitivity indicate where
the model is most susceptible to variations. On the other hand, low sensitivities
indicate robustness.

A previous sensitivity analysis of the NF-κB pathway can be found in [9], where an
extensive investigation of the influences of the parameters on the amplitude and period
of the oscillations of nuclear NF-κB was presented. As described earlier, this analysis
was based on a slightly improved version of the system of ODEs presented by Hoffmann
et al. [3], described in terms of a Gepasi model. The “one-at-a-time” (OAT) method,
which consists of perturbing only one parameter of the model at a time, was used and
nine parameters out of a total of 64 where identified as the most important. This is
based on numerical integration of ODEs. Since our stochastic version of the Lipniacki
model has a lot of interactions in common with Hoffmann’s, these nine parameters find
a match in our model, allowing us to compare the results.

In our sensitivity analysis we also used an OAT approach, but three main differences
with respect to [9] should be highlighted. First, we perform the analysis on a stochastic
model, which permits a more informative analysis than in the case of ODE models, as
we shall see shortly. Second, the model we consider includes only one IκB inhibitor
(IκBα but not IκBβ and IκBε) and the additional A20 inhibitory effect on IKK. Third,
we do not use the difference in amplitude or period of oscillations of nuclear NF-κB as
a measure of sensitivity. Instead we consider the difference in amount of nuclear NF-κB
and cytoplasmic IκBα at regular time intervals.

The parameters subjected to analysis are the already mentioned nine parameters
identified in [9] (c3a , a3, a2, i1a , t1, t2, kdeg, c4a and c1a ), with the addition of three
parameters related to A20 activity (c1, c3 and c4). For the details of these parameters
see Table 1.

As sensitivity indices we use two complementary measures: the average distance
and the histogram distance of stochastic simulations. The former consists of the simple
difference in the amount of a species at a selected time, after the perturbation of one
parameter. Since we use stochastic simulations, such an amount is the average over
a certain number of runs. The latter has been introduced as a sensitivity measure in
[24]. The idea behind this distance is that an estimated probability density function
(edf) of the amount of a species at a time point can be constructed using a suitable
number of simulation runs. Such an edf will have area equal to one, like a probability
density function. The overlapping area of two edfs obtained from two different models
is then an estimate of the likelihood that the two models will reproduce the same output
(see Fig. 15). This measure was introduced originally in [42] to quantify the ability
of an approximated version of Gillespie’s SSA to replicate the original. We will call
the results of the analysis average sensitivities if obtained using average distance, or
stochastic sensitivities if obtained using histogram distance.

The complementarity of the two measures is evident. The average distance does
not contain any notion of the distribution of the runs, but it becomes necessary if the
distributions of the runs do not overlap at all (in which case the histogram distance
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average distance

histogram distance

histogram of runs
from model 1

histogram of runs
from model 2

amount of species S at t ime t0

Fig. 15. Average distance and histogram distance between two sets of simulation runs
at time t. The former represents the distance of the mean while the latter quantifies the
likelihood of run overlapping.

is always two). Therefore, the stochastic OAT sensitivity analysis applies when one
is interested in observing the change in the distribution of the amount of a particular
species at a given time. This method has been implemented in the version of the Dizzy
simulator developed at the University of Edinburgh [25].

In our analysis we observed the influence of a perturbation of 10% of the nominal
value of the parameters (as in [9]) on the amount of nuclear NF-κB and cytoplasmic
IκBα, using 200 simulation runs. The analysis is performed every 15 minutes, as the
sensitivity indices might be time dependent. Results have been grouped in four heat
diagrams, shown in Figure 16, with average distance at the top and histogram distance
below. Each diagram can be read in two ways: horizontally, for the sensitivity of a
parameter through time and vertically, to compare sensitivity of the parameters at a
specific time. A scale of colours is used to represent sensitivity indices, from dark red
(low SI), passing through yellow, to white (high SI).

The sensitivity analysis gives rise to the following observations:

– In contrast with [9], four of the nine originally identified parameters, a2, t1, t2 and
kdeg, present a low sensitivity and are clearly the least influential as they show very
little variation through time with respect to both nuclear NF-κB and cytoplasmic
IκBα. This is probably due to the introduction of the A20 feedback loop. High sen-
sitivity of the three parameters connected with A20 activity sustains this hypothesis,
suggesting a key role for this molecule.

– The stochastic sensitivities reveal that with a 10% perturbation of the considered
rates there is still significant overlap in the distributions of values obtained from the
simulations. Moreover, the trend of the stochastic sensitivities seems to agree with
the average sensitivities, suggesting a distribution of the runs around the mean.

– c1a and c4a (bottom two rows of the heat diagrams) exhibit a similar trend, with
high sensitivities when nuclear NF-κB peaks (compare with Fig. 4), suggesting that
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the rates of transcription and translation of IκBα play a major role in the deter-
mination of peak intensity. In particular, the sensitivities of c1a and c4a oscillate
in time, suggesting agreement with the nominal model (low sensitivity) alternated
to disagreement (high sensitivity) at the times when NF-κB peaks. Moreover, this
trend is complementary to the one of c3a, that presents low sensitivity when nuclear
NF-κB peaks;

– Similarly, c1 and c4, rates of A20 transcription and translation, share a similar trend,
and this appears to be dependent on the target species.

– The sensitivity of i1a, the rate of IκBα nuclear import, shows a very clear oscillatory
trend only when targeting cytoplasmic IκBα. In particular, a perturbation of i1a

yields major changes in the cytoplasmic IκBα peaks.

7 Conclusions

In this work we have presented a Bio-PEPA model for the NF-κB signalling pathway.
This is the first algorithmic model [18] of the pathway, which captures how and why the
system changes state: a much more mechanistic account of the pathway than that given
by previous representations as systems of ODEs, or even as chemical reactions since
the role of compartments and events are fully captured in the model. We have studied
it using a selection of the analysis techniques supported by the language and imple-
mented in the Bio-PEPA Workbench [43]. With our model we were able to describe in
detail important features of the system, such as compartments and the activation of NF-
κB by an external stimulus, using a recent extension of the Bio-PEPA language which
incorporates explicit representation of locations [32] and time-dependent events [31].

A main feature of Bio-PEPA is that it is a intermediate formal representation of
biochemical systems, on which various kinds of analysis can be performed. The access
to a variety of analysis techniques can foster a better understanding of the behaviour of
the system, and help to discover errors due to the use of a particular solver/simulator
[44]. Furthermore, the modeller can select the approach that is most appropriate for
specific model under study. Here we focused on deterministic simulation, stochastic
simulation and sensitivity analysis.

The system of ODEs corresponding to the Bio-PEPA model was used to validate
the system against the experimental data from the literature [23,3], which is based on a
cell population. Subsequently, we performed stochastic simulation and we considered
both the average of several runs, in order to validate the model against the well-known
population behaviour, and single runs, to analyse the behaviour of a single cell. Even
though the average behaviour is in agreement with the experimental data and the results
obtained from ODEs, some species are characterized by variability between the various
runs. In particular, the oscillations of nuclear NF-κB present in the single cells (runs)
under various assumptions disappear when the average is considered. This behaviour is
confirmed by recent experiments showing that NF-κB under persistent stimulation has
an oscillatory behaviour at the level of the single cell, but, as the oscillations are not
completely synchronized across a cell population, the oscillations are damped when
the average behaviour is considered. Note that most of the models in the literature are
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Fig. 16. Heat diagrams of the sensitivity analysis performed on selected parameters of
the NF-κB model. Red colours indicate low sensitivity, while yellow or white indicate
high sensitivity. The two diagrams above, refer to sensitivity indexes computed using
average of simulations, while the two diagrams at the bottom refer to the stochastic
approach, that considers a density distance.
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described in terms of systems of ODEs [3,5] or as hybrid systems [6] or Gepasi models
[9] and therefore the focus is generally on the average behaviour of cells. The single
cell approach facilitated by the stochastic simulation emulates the data generated from
live cell imaging techniques, as opposed to those obtained from population studies such
as western blotting [45,46].

In addition to reproducing and discussing a number of in-silico experiments, sensi-
tivity analysis was applied to investigate the most influential parameters of the model.
Our results are complementary to the previous work [9]. Our model has some signif-
icant differences, such as the inclusion of a negative feedback loop, and is analysed
stochastically. As a result we observe some interesting new phenomena. Moreover, we
investigated model properties from a different point of view, using alternative sensitivity
measures with respect to [9]. In the presented analysis, we considered a local approach,
i.e. one focused around a specific point in the parameter space. This can be informa-
tive, giving an idea of the impact of parameter changes on the behaviour of the system.
Moreover, this strongly suggested that parameters have specific dependences at partic-
ular points in the time evolution of the pathway. This prediction would be amenable to
experimental test by single cell imaging methods. In the future, we plan to apply global
methods in order to explore the full parameter space (or a meaningful subset of it) and
to quantify the relationships between different parameters.

Another route to analysis of a Bio-PEPA model is via the mapping to continuous
time Markov chains (CTMC). In particular, it is possible to derive a PRISM [47,48]
model in order to verify some properties expressed as a logical formula, by model
checking. We have yet to explore the possibilities offered by this route for our NF-
κB model. Two main challenges for the use of model checking with this model are the
dimension of the state space (it is extremely large) and the presence of temporal events.
For the former, one possibility is to apply an abstract-view for the CTMC in terms of
concentration levels [49], which can substantially reduce the state space.

A final biological point is that the growing body of evidence from modelling biolog-
ical pathways is that they exhibit parameter dependences that characterise the structure
of the pathway. Most exhibit a small number of vulnerable nodes and are insensitive to
perturbation of many values. This is important for considering the development of ther-
apeutic interventions and may well reflect the evolution of the pathway via quantitative
changes in key interactions [50].
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A The Bio-PEPA Model for the NF-κB pathway

In this Appendix we report the full Bio-PEPA model of the NF-κB pathway studied in
this paper. First, the set of locations is considered. Then the set of functional rates and
the set of parameters are reported. The name of each action type describes the func-
tion of the associated reaction. The notation f MA(r) indicates that the kinetic law is
mass-action with constant rate r. After that, there is the definition of species compo-
nents and of the model component. Finally, the events describing the TNF stimulus are
defined. The effect of events is to reset the value of the parameter signal, from 0 (signal
inactive) to 1 (signal active) and vicerversa. These events enable /unable two reactions,
the transformation of IKKn into IKKa and the transformation of IKKa into IKKi with
the support of A20, represented by the action types activation IKKn and transforma-
tion IKKa into IKKi by A20, respectively (the corresponding kinetic laws depend on
the parameter signal and are 0 if the signal is 0). Here we do not report the set N with
auxiliary information for species as this information is not considered in our study. Note
that species and parameters are given in terms of number of molecules.

In order to derive a model in terms of number of molecules from the model in terms
of concentration [5], all the initial species concentrations are rescaled by the factors
nscale= 2 · 105 (species in the nucleus) and cscale= 106 (species in the cytoplasm) and
the parameters are modified accordingly. The initial concentration of the cytoplasmic
complex IκBα−NF-κB is therefore 0.06 · cscale = 60000 molecules and all the other
species are zero.

location nuc : kind = C, size = 3.33 · 10−13 l;
location cyt : kind = C, size = 1.65 · 10−12 l
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activation IKKn = [fMA(signal · k1)];
transformation IKKa into IKKi by A20 = [fMA(signal · k2)];
production IKKn = [kprod];
transformation IKKa into IKKi = [fMA(k3)];
degradation IKKn = [fMA(kdeg)];
a20t transcription by NFkBn = [fMA(c1)];
degradation IKKa = [fMA(kdeg)];
cgent transcription by NFkBn = [fMA(c1c)];
degradation IKKi = [fMA(kdeg)];
association IkBa IKKa = [fMA(a2)];
dissociation IkBaIKKa = [fMA(t1)];
a20 translation = [fMA(c4)];
association IKKa IkBaNFkB = [fMA(a3)];
a20 degradation = [fMA(c5)];
dissociation IKKaIkBaNFkB = [fMA(t2)];
a20t transcription = [c2];
association IkBa NFkB = [fMA(a1)];
a20t degradation = [fMA(c3)];
association IkBa NFkBn = [fMA(a1n)];
cgent transcription = [c2c];
transport IkBaNFkBn nucl cyt = [fMA(e2a)];
cgent degradation = [fMA(c3c)];
ikBat transcription by NFkBn = [fMA(c1a)];
dissociation IKKaIkBaNFkB = [fMA(c6a)];
transport IkBa cyt nucl = [fMA(i1a)];
transport IkBa nucl cyt = [fMA(e1a)];
transport NFkB cyt nucl = [fMA(i1)];
ikBa translation = [fMA(c4a)];
ikBa degradation = [fMA(c5a)];
ikBat transcription = [c2a];
ikBat degradation = [fMA(c3a)]
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IKKn@cyt
def
= (production IKKn, 1) ↑ + (degradation IKKn, 1) ↓ +

(activation IKKn, 1) ↓
IKKa@cyt

def
= (activation IKKn, 1) ↑ + (trans f ormation IKKa into IKKi, 1) ↓ +

(trans f ormation IKKa into IKKi by A20, 1) ↓ +

(degradation IKKa, 1) ↓ +

(association IkBa IKKa, 1) ↓ +

(dissociation IkBaIKKa, 1) ↑ +

(association IKKa IkBaNFkB, 1) ↓ +

(dissociation IKKaIkBaNFkB, 1) ↑
IKKi@cyt

def
= (trans f ormation IKKa into IKKi, 1) ↑ +

(trans f ormation IKKa into IKKi byA20, 1) ↑ +

(degradation IKKi, 1) ↓
A20@cyt

def
= (trans f ormation IKKa into IKKi by A20, 1) � +

(a20 translation, 1) ↑ + (a20 degradation, 1) ↓
IκBα@cyt

def
= (IkBa translation, 1)↑ + (IkBa degradation, 1)↓ +

(association IkBa IKKa, 1) ↓ + (association IkBa NFkB, 1) ↓+
(transport IkBa cyt nucl, 1) ↓ + (transportIkBa nucl cyt, 1) ↑

NF-κB@cyt
def
= (dissociation IkBaNFkB, 1) ↑ + (association IkBa NFkB, 1)↓+

(dissociation IKKaIkBaNFkB, 1) ↑ +

(transport NFKB cyt nucl, 1) ↓
complex1 def

= (association IkBa NFkB, 1) ↑ + (dissociation IkBaNFkB, 1) ↓ +

(association IKKa IkBaNFkB, 1) ↓ +

(transport IkBaNFkBn nucl cyt, 1) ↑
complex2 def

= (association IkBa IKKa, 1) ↑ + (dissociation IkBaIKKa, 1) ↓
complex3 def

= (association IKKa IkBaNFkB, 1) ↑ +

(dissociation IKKaIkBaNFkB, 1) ↓
IκBα@nuc

def
= (association IkBan NFkBn, 1) ↓ +

(transport IkBa IkBa cyt nucl, 1) ↑ + (transport IkBa nucl cyt, 1) ↓
NF-κB@nuc

def
= (a20 transcription by NFkBn, 1) � +

(cgent transcription by NFkBn, 1) � +

(ikBat transcription by NFkBn, 1) � +

(association IkBa NFkBn, 1) ↓ +

(transport NFkB cyt nucl, 1) ↑
complex4 def

= (association IkBa NFkBn, 1) ↑ +

(transport IkBaNFKBn nucl cyt, 1) ↓
A20t@cyt

def
= (a20 translation, 1) � + (a20t transcription, 1) ↑ +

(a20t transcription by NFkBn, 1) ↑ + (a20t degradation, 1)↓
IκBαt@cyt

def
= (ikBat transcription, 1) ↑ + (ikBat transcription by NFkBn, 1) ↑ +

(ikBat degradation, 1) ↓ + (ikBa translation, 1)�
Cgent@cyt

def
= (gent transcription, 1) ↑ + (cgent transcription by NFkBn, 1) ↓ +

(cgent degradation, 1) ↓
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where the names complex1, complex2, complex3 and complex4 stand for IκBα–NF-κB@cyt,
IKKa–IκBα@cyt, IKKa–IκBα–NF-κB@cyt and IκBα–NF-κB@nuc, respectively. The
species components A20t, IκBαt and cgent are the mRNA transcripts of the proteins
A20, IκBα and cgen and are assumed in the cytoplasm as in the original model.

IKKn@cyt[0] BC
∗

IKKa@cyt[0] BC
∗

IKKi@cyt[0] BC
∗

IKKa–IκBα@cyt[0] BC
∗

A20@cyt[0] BC
∗

IκBα@cyt[0] BC
∗

NF-κB@cyt[0] BC
∗

IκBα–NF-κB@cyt[60000] BC
∗

IKKa–IκBα–NF-κB@cyt[0] BC
∗

IκBα@nuc[0] BC
∗

NF-κB@nuc[0] BC
∗

IκBα–NF-κB@nuc[0] BC
∗

A20t@cyt[0] BC
∗

IκBαt@cyt[0] BC
∗

Cgent@cyt[0]

Events = [(begin signal, time = T1, signal = 1, 0);
(end signal, time = T2, signal = 0, 0)]

In our case T1 = 3600 and T2 = 25200 (time expressed in seconds).
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