
University of Edinburgh
Division of Informatics

Elyjah: A security analyzer for Java implementations of
communications protocols

4th Year Project Report
Computer Science

Nicholas O’Shea
s0237477

28 February 2006

Communication protocols are consistently studied in computer science due to the
ever increasing use of communication. Years after a protocol is published it is not
uncommon for a flaw to be found. Static analysis is a tool for finding these flaws.
However it is underused by the community at large as most people are unfamiliar
with languages that are amenable to this kind of analysis. One possible language for
this purpose is the LySa process calculus. Most developers, however, will have
experience with an object orientated programming language such as Java. Being
able to implement a protocol in Java and having it automatically converted into the
LySa language opens up the technique of static analysis of communications
protocols to more of the developers who could benefit from it. This report describes a
software tool which performs this conversion taking Java implementations and
producing a model of the protocol in the LySa language which can act as input to the
LySatool. The LySatool analyses protocols relative to an attacker, who attempts to
subvert good communication by replaying messages, using any information passed
in earlier communication to decrypt or alter later messages or inject messages which
he originates.

Acknowledgements

I would like to thank: Stephen Gilmore, my project supervisor, for advice and
guidance; John Longley and the other members of my project group, for their
continued interest and constructive criticism throughout the intermediate group
project meetings; and Mikael Buchholtz et al for their work on LySa and the LySatool
without which this project wouldn’t be possible

Contents

1. Introduction... 1

1.1 Project Outline .. 1
1.2 Background Information... 1

1.2.1 Security Protocols ... 1
1.2.2 The Dolev-Yao Attacker... 3
1.2.3 Encryption and Decryption ... 3
1.2.4 Process Calculus ... 4
1.2.5 LySa .. 4
1.2.6 Static Analysis .. 7
1.2.7 LySatool.. 7
1.2.8 For- LySa .. 8
1.2.9 The Java Programming Language .. 9

2. Java Input Format .. 11

2.1. Design ... 11
2.2. Implementation ... 12

2.2.1. Network Class... 12
2.2.2. ComClass Class .. 13
2.2.3. KeyGenerationClass Class.. 15
2.2.4. Example Protocol File... 15

3. Elyjah Design... 19

3.1 Removal of extraneous activity .. 19
3.2 Parsing of main class .. 19

3.2.1 Identify class names.. 19
3.2.2 Identify keys shared before protocol begins ... 19

3.3 Parsing of principal classes... 20
3.3.1 run method .. 20
3.3.2 Encryption... 21
3.3.3 processIncoming method .. 22
3.3.4 Summary of Conversion ... 23

4. Implementation ... 25

4.1. The Java parser ... 25
4.2. Searching the abstract syntax tree... 26
4.3. Creating a XML representation of the abstract syntax tree 27
4.4. Retrieving class names.. 28
4.5. Gathering type information... 28
4.6. Removal of extraneous information.. 29
4.7. Generating LySa processes ... 30

5. Testing and Evaluation... 35

5.1. Test Suite .. 35
5.1.1. Easy-to-compute Input.. 35
5.1.2. Typical Input... 38
5.1.3. Boundary Input ... 40
5.1.4. Invalid Input.. 41

5.2. Test suite results.. 42
5.3. LySatool output of typical input ... 42

6. Conclusion ... 45

6.1. Shortcomings and Solutions ... 45
6.2. Possible Future Work.. 46
6.3. General Conclusion... 47

Bibliography .. 49

Appendix.. 51

Java Framework method headers.. 51
Test Files... 52

Elyjah input (MultipleSendReceive.java)... 53
Elyjah input (TestEasySend.java)... 55
Elyjah output (TestEasySend.lysa) ... 56
Elyjah input (TestEasySendReceive.java) .. 57
Elyjah output (TestEasySendReceive.lysa) .. 58
Elyjah input (TestEasySendEncrypt.java) .. 59
Elyjah output (TestEasySendEncrypt.lysa) .. 60
Elyjah input (TestEasySendReceiveEncrypt.java) ... 61
Elyjah output (TestEasySendReceiveEncrypt.lysa(.. 62
Elyjah input (TestEasySendReceivePublicEncrypt.java) ... 63
Elyjah output (TestEasySendReceivePublicEncrypt.lysa) 64
Elyjah input (WideMouthFrog.java)... 65
Elyjah output (WideMouthFrog.lysa)... 68
Elyjah input (WideMouthFrog2.java)... 69
Elyjah output (WideMouthFrog2.lysa)... 72
Elyjah input (NeedhamSchroeder.java) .. 73
Elyjah output (NeedhamSchroeder.lysa) .. 77

- 1 -

1. Introduction

1.1 Project Outline

Communication protocols are consistently studied in computer science due to the
ever increasing use of communication. Years after a protocol is published it is not
uncommon for a flaw to be found. Static analysis is a tool for finding these flaws.
However it is underused by the community at large as most people are unfamiliar
with languages that are amenable to this kind of analysis. One possible language for
this purpose is the LySa [2, 4, 6, 7, 11] process calculus. Most developers, however,
will have experience with an object orientated programming language such as Java.
Being able to implement a protocol in Java and having it automatically converted into
the LySa language opens up the technique of static analysis of communications
protocols to more of the developers who could benefit from it. This report describes a
software tool which performs this conversion, taking Java implementations and
producing a model of the protocol in the LySa language which can act as input to the
LySatool [1]. The LySatool analyses protocols relative to an attacker who attempts to
subvert good communication by replaying messages, using any information passed
in earlier communication to decrypt or alter later messages or inject messages which
he originates.

Figure 1 – Computation performed on Java implementation of protocol

1.2 Background Information

This section gives background information that the reader may find useful to
understand the following description of the project. The Wide Mouthed Frog protocol
will be consistently used as an example in this section to show various ways of
modelling protocols.

1.2.1 Security Protocols

A security protocol is, in this context, a series of communications between two or
more principals. A principal will usually be an independent communicating entity,
linked to other principals through some network. These communications can take
place for many reasons, such as authentication, sharing of data (secret or
otherwise), a combination of these or some larger task.

Elyjah LySatool

Protocol.java Protocol.lysa Protocol.errors

- 2 -

There is a lot of interest in security protocols because, despite clever planning, flaws
can still be found in them, even though it may take years for this flaw to become
known. A flaw in a protocol means that an attacker can either glean secure
information or mislead a principal in some way that was not intended.

There is a typical method of easily describing protocols, called protocol narrations. A
typical line of one of these narrations could be:

A  B : A, P

This line simply says, principal A sends to principal B a message containing two
parts, A’s name and a password P. This could be part of a protocol to allow A to get
access to some resource on B.

If part of the message is to be encrypted, this can be represented as follows:

B  A : B, {B, Msg}KAB

This line states that B sends a message to A consisting of its own name in plaintext
and then an encrypted block which can be decrypted using the key Kab. When
decrypted the message consists of two parts, B’s own name again and some other
message. An example of a full protocol narration is given below for the Wide
Mouthed Frog protocol.

A  S : A, {B, KAB} KAS

S  B : {A, KAB}KSB

A  B : {mess} KAB

Protocol narrations of this nature have a serious limitation. This method of describing
a communication protocol only describes what messages are sent by each principal,
omitting instructions to the receiver on what action to take upon receiving each
message. A more accurate description of a protocol would include inputs, checks
and decryptions. These extra assumptions need to be represented more formally for
static analysis of the protocol to be possible. To get an idea of the extra information
needed to model a protocol, below is a representation of the Wide Mouthed Frog
protocol taken from [6].

1: A  : A, S, A, {B, K}:KA[assuming K is a new key]

1’:  S : xA, xS, x’A, x [check xS = S; xA = x’A]
1’’: S : decrypt x as {xB, xK}:KXA

2: S  : S, xB, {xA, xK}:KXB

2’:  B : yS, yB, y [check yB = B]
2’’: B : decrypt y as {yA; yK}:KB

3: A  : A,B, {m1, … ,mk}:K
3’:  B : zA, zB, z [check zB = B; zA = yA]
3’’: B : decrypt z as {z1,…, zk}:yK

- 3 -

This additional notation now makes clear the additional work done by the receiver of
the message. Like the LySa language explained later, the first two components of
the message are the sender and then the receiver. The protocol above still
represents three messages but the processing of each message is broken down into
three steps. The first represents the sender’s actions; the final two steps show the
receiver’s actions. The second step, represented by a single apostrophe after the
message number, details the first step of work the receiver performs upon receiving
a message, namely checking certain parts of the message match expected values
as well as binding message parts to variables. The third step represented by two
apostrophes details the decryptions the receiver has to do to the message.

1.2.2 The Dolev-Yao Attacker

The security of communication protocols is often analysed with regard to a Dolev-
Yao attacker[3]. A Dolev-Yao attacker has several abilities:

 Intercept messages
 Decrypt messages
 Create new messages
 Encrypt messages
 Send messages

The goal of the attacker is to breach confidentiality and/or authentication. As well as
injecting messages which an attacker originates, it is also possible for an attacker to
replay messages that it intercepts between legitimate principals and use any
information passed in earlier communication to decrypt or alter later messages.

1.2.3 Encryption and Decryption

The art of encryption has been around since antiquity when primitive methods were
used to restrict access to data. At its most basic, encryption is the process of
modifying some information so that it is unreadable without some additional
knowledge. This extra knowledge is typically a key which is used in the encryption
and decryption process. In security circles, the term cryptovariable can also be used
instead of key. This represents the fact that the key changes the operation of the
encryption algorithm. Modern encryption can be broken down into two distinct
groups based on the type of key used, symmetric and asymmetric encryption.

Symmetric Encryption

Symmetric encryption refers to a method of encrypting data where the same key is
used for both the encryption and decryption processes. Generally, symmetric
encryption is computationally hundreds of time faster than asymmetric encryption.
However, to balance this, symmetric encryption is less secure, mainly due to the
need for each principal to have knowledge of the same dual purpose key.

- 4 -

Asymmetric Encryption

Asymmetric encryption uses two different keys, one for encrypting data and one for
decrypting data. This means that the key used for encrypting data can be known by
everyone while the other is kept secret. This allows anyone to send someone an
encrypted message and be confident that only the intended recipient can decrypt the
data. Because of this difference in the secrecy of the keys, one is known as a public
key, the other a private key.

A common analogy used to clarify the difference between these two kinds of
encryption is that of sending padlocked boxes between two people, usually named
Alice and Bob. Under symmetric encryption, Alice and Bob both have keys to the
same padlock. This padlock is used by Alice to lock a box, into which she has
already placed some secret information. This box is then sent to Bob, who uses his
key to unlock the padlock and read Alice’s message. In asymmetric encryption,
when Alice wants to send a message to Bob, she must first request Bob’s padlock.
She uses this padlock to lock a message inside a box, and send the box to Bob who
can then use his key to unlock his own padlock and read the message.

1.2.4 Process Calculus

Also known as process algebras, process calculi are a set of formal approaches to
modelling concurrent systems. Once modelled in a formal language, the systems
can be analysed and deductions made about process equivalence.

While there is a large scope of variety in various process calculi, they all have a
foundation of similar features. A common feature is that communication between two
processes takes place using message passing as opposed to shared variables. This
typically takes place using channels; however as LySa is a notable exception to this,
no time will be spent here describing these channels.

Sequential composition is represented by two processes separated by a period.
Temporal order is of importance, thus the process A.B will first complete process A
before B is activated.

Concurrent processes are separated with a vertical bar. Parallel composition
between two processes, P and Q, represented by P | Q, means that both processes
can conduct computation as well as communicate with each other.

Replication of processes is signified by an exclamation point.

Termination of a process is represented by a symbol such as a 0, nil, STOP ETC.

1.2.5 LySa

LySa is similar to the more-well known Spi-calculus and π-calculus, although it
differs from these two which preceded it in two ways. The first is the absence of
channels in the LySa language. This is replaced by the idea that all communication

- 5 -

takes place in a central medium which all processes can interact with. By not
representing channels, LySa actually makes itself more representative of networks
where attackers can eavesdrop and insert their own messages. This is fortunate as
nearly all networks, for example the internet, are of this form. Calculi which rely on
channels for communication actually add a level of security to the protocols which is
lacking in the real-world. The second difference between LySa and the previously
mentioned calculi is that pattern matching is applied to the inputs both of plain-text
and encrypted messages.

LySa Syntax

As in any process calculus, LySa is split into terms and processes with keys,
messages, nonces etc represented as closed terms.

E ::= terms
n name (n  N)
x variable (x  V)
k+, k- public and private keys
{E1, … Ek}Eo symmetric encryption (k  0)
{|E1, … Ek|}Eo asymmetric encryption (k  0)

P ::= processes
 0 nil

< E1, … Ek>.P output
(E1, … Ej;xj+1, … , xk).P input (with pattern matching)
P1 | P2 parallel composition
(v n) P restriction
! P replication
decrypt E as {E1, … Ej;xj+1, … , xk} Eo in P

symmetric decryption (with pattern matching)
decrypt E as {|E1, … Ej;xj+1, … , xk|} Eo in P

asymmetric decryption (with pattern matching)

Sending & Receiving Messages with Pattern Matching

As LySa’s communication syntax is different to other process calculi some space will
be given to running through a brief example. The format for a LySa message is as
follows: the first two parts are the source and destination respectively. The remaining
parts of the message are either encrypted or plain-text. Additionally, to declare that a
new constant is being generated for the process, the restriction process is used. In
order to send a simple message consisting of two phrases “nonce” and “msg” from
principal A to principal B, the LySa process will read:

(v nonce) (v msg) <A, B, nonce, msg>

When a message is received it performs pattern matching on the first portion of the
message and binds variables to the other parts of the message in the second

- 6 -

portion. These two portions are distinguished by a semi-colon. It is likely that
participant B will wish to perform pattern matching on the first two elements, and
possibly on the third if the “nonce” has already been shared between the two. If this
is the case the LySa process will read:

(A, B, nonce; msg)

The entire process representing both principals is thus:

(v nonce) (v msg) <A, B, nonce, msg> | (A, B, nonce; msg)

Modelling Encryption/Decryption in LySa

LySa models perfect encryption, that is to say it does not consider brute-force
attacks possible, and the only way to decrypt an encrypted message is to know the
correct key. LySa supports modelling of both symmetric (shared key) and
asymmetric (public-key encryption), and thus Elyjah should do also.

Shared Key Encryption

Encryption is added to a send message process by enclosing the encrypted section
in curly braces and adding a colon and the key afterwards. For A to send an
encrypted nonce and message to B under the key “K”, the process is:

<A, B, {nonce, mess}: K>

Decryption is a two stage process. When the message is received, it will be bound to
a variable and in the next process be decrypted. Pattern matching is also employed
here, allowing checks to be made on encrypted messages. B’s processes to receive
and decrypt the above message would therefore be:

(A, B; x). decrypt x as {nonce; msg}: K in 0.

Public Key Encryption

With public key encryption, keys are declared for encryption or decryption with either
a plus or minus sign. Additionally as well as the curly braces, vertical bars frame
encryption and decryption. In order to use the restriction process to create a key pair
for use with public key encryption the process must read:

(v +- K)

Crypto-Points

Crypto-points are a vital part of LySa’s ability to analyse protocols. A crypto-point
represents a point in the process where either an encryption or decryption takes
place. Coupled with a crypto point is an assertion for the origin or destination of the

- 7 -

encrypted message. When part of a message is encrypted, the developer can
choose to specify the current location as a crypto-point. This is done by adding the
following after an encryption:

[at a]

In the example a can be replaced with any label. Additionally the developer can then
choose to specify one or more crypto points where decryption takes place in a valid
run of the protocol. This is done as such:

[at a dest {b}]

When a decryption takes place, a crypto point is marked as above. The crypto point
where the message was encrypted in a valid run of the protocol is represented like
the example above but with ‘orig’ taking the place of ‘dest’.

1.2.6 Static Analysis

Once a protocol is represented in LySa, it can be analysed through static analysis of
the LySa code. The term static analysis means that the analysis is performed without
running the code in any way. Static analysis is increasingly recognized as a
fundamental tool for program verification, bug detection, compiler optimization,
program understanding, and software maintenance. The LySatool is one example of
static analysis; another is Elyjah itself, which will take the Java source code and
convert it into the LySa syntax.

1.2.7 LySatool

The LySatool is an automatic tool for checking the security properties of protocols.
The tool takes protocols modelled in the LySa process calculus. It then provides
feedback regarding which parts of the protocol are transmitted in secret as well as
whether an attacker can falsely achieve authentication by inserting messages at any
point. An important point to mention is that the analysis is an over approximation of
the actual behaviour thus can guarantee confidentiality and authentication
properties. The downside of this approximation is that the tool will occasionally report
faults due to attacks that are impossible to reproduce in a real world scenario.

When reporting violations of authentication properties, the LySatool uses the term
CPDY to signify a crypto-point in the Dolev–Yao attacker. To represent that an
attacker can decrypt an encrypted message the LySatool will list under the violation
of authentication properties:

(a, CPDY)

Here ‘a’ is a valid crypto-point, specified by the developer of the model. Additionally
an attacker may be able to encrypt some message which will then be decrypted by a
principal as part of a protocol. This will show up as a violation represented by:

(CPDY, b)

- 8 -

Full details of how the LySatool works can be found in [6].

1.2.8 For- LySa

For-LySa [5, 10] is a tool that addresses the same problem that this project aims to
help rectify, that of allowing non-experts to use the LySatool to analyse security
protocols. This tool allows a user to design a model of their protocol in UML which is
then converted into LySa. Much like the scope of this project the input must conform
to a fixed framework. However, while For-LySa takes a UML representation of a
protocol, Elyjah will use a Java program as its input.

Figure 2 Overview of the Wide Mouthed Frog Protocol as modelled in For-LySa. From [10]

The above shows a UML representation of the Wide Mouthed Frog protocol and
below is the structure of one of the messages.

Figure 3 Structure of Msg1 from WMF protocol. From [10]

- 9 -

It is the belief of the author that while this may be easier to understand than a plain
LySa representation, the number of developers unfamiliar with UML is sufficient
enough for it to be worth exploring other input formats.

Another advantage of the proposed software tool is that it will allow a developer to
actually run the protocol and see output at various stages. This guarantees that the
input is not a misrepresentation of the protocol. Another major disadvantage of For-
LySa is that it only works with shared key encryption severely limiting the protocols
that can be modelled with it.

1.2.9 The Java Programming Language

In order to model a protocol in Java, it is required to examine Java’s security
credentials. The most important thing to examine is the cryptography possibilities.
Java supports both symmetric and asymmetric encryption as well as digital
signatures, message digests and message authentication codes. It is worth
remembering that Java is a lot more expressive than LySa, as such only a portion of
possible Java inputs are needed to represent the entirety of LySa’s expressive
capabilities.

Java has a class called Key which provides an interface for multiple sub-interfaces
and subclasses. In order to represent the various methods of encryption that LySa
provides multiple types of Key are required. In order to represent symmetric
encryption, an implementation of the SecretKey interface is required but asymmetric
encryption will require a public/private key, generated from some key pair. The
algorithm used is of course irrelevant as LySa has no representation of algorithmic
behaviour or data. In fact, as LySa models any encryption as perfect encryption
there is no need for any real encryption in the model. Although for debugging
reasons as well as purity it is worth really encrypting messages as required. The
class diagram for the Key objects that will be used in this project is given
below.

Figure 4- Class diagram of Java's Key interface and subinterfaces

Implementing each of these three interface nodes are various classes which use
different algorithms to implement these interfaces. In order to generate an instance
of a SecretKey using the DES algorithm, a key generator first has to be initialised,
then used to generate a key as below.

Key

SharedKey PrivateKey PublicKey

- 10 -

KeyGenerator keyGen = KeyGenerator.getInstance("DES");
SecretKey key = keyGen.generateKey();

In order to generate a key pair, for use in asymmetric encryption a key pair generator
must first be created and initialised. The following code block gives details on
creating 1024 bit DSA public and private keys.

KeyPairGenerator keyGen =
KeyPairGenerator.getInstance("DSA");

keyGen.initialize(1024);
KeyPair keypair = keyGen.genKeyPair();
PrivateKey privateKey = keypair.getPrivate();
PublicKey publicKey = keypair.getPublic();

To encrypt a String object a cipher has to be created and initialised with a key. The
encryption itself works on a byte array so the String must be converted to an array of
bytes and then back again the encryption has been performed.

ecipher = Cipher.getInstance("DES");
ecipher.init(Cipher.ENCRYPT_MODE, key);
byte[] utf8 = str.getBytes("UTF8");
byte[] enc = ecipher.doFinal(utf8);
String encrypted =

new sun.misc.BASE64Encoder().encode(enc);

Finally to decrypt a string, the same key must be used to generate a decryption
cipher. As with encryption, the string must be converted to a byte array, and then
back into a string after decryption has been performed.

dcipher = Cipher.getInstance("DES");
ecipher.init(Cipher.ENCRYPT_MODE, key);
dcipher.init(Cipher.DECRYPT_MODE, key);

byte[] dec =
new sun.misc.BASE64Decoder().decodeBuffer(str);

byte[] utf8 = dcipher.doFinal(dec);
String message = new String(utf8, "UTF8");

- 11 -

2. Java Input Format

Although it would be possible for a software tool, such as Elyjah, to be able to accept
any Java program as input before converting the source code into a LySa process, it
would be beyond the scope of this project to achieve this. Such a tool would also
require much more computational power and is likely to be substantially less reliable
than one which demands a uniform input format. Thus a framework is needed to
allow developers to model protocols, while also allowing the software tool to parse
the source code and identify the security-critical operations. An implementation of a
protocol needs to be a fully-working Java program which the developer can use to
test that the protocol functions as expected before analysing its security properties.
In order for it to be possible for any tool to understand the developer’s intent, there
needs to be a standard method of achieving certain goals. As such there needs to
be set ways of encrypting/decrypting data as well as sending messages between
principals.

2.1.Design

Each principal must be modelled in a separate class which extends the Thread class
thus allowing multiple principals to be running at the same time, thereby simulating
LySa’s concurrent processes. These classes must all be within the same Java file,
thereby helping Elyjah as it will only have to parse a single file. There will also need
to be a class in this same file whose main method contains the code to set up the
principals; create any keys known prior to the commencement of a protocol; and
finally establish the network through which all principals will communicate. This
network will also need to be implemented as a separate class which is capable of
keeping references to the various principals. Finally, there needs to be a class for
generating keys as both the principals and protocol initialisation class will need to be
able to do this and should use the same implementation to do so.

There needs to be an abstract class set up which implements most of the functions
of a principal while leaving un-implemented the run method (inherited from the
Thread class) and a method to deal with an incoming message. The run method will
be used to start the protocol, for example, if principal A sends a message in a
protocol, then A’s run method will contain this code. Other functions of the class that
are required would be: to organise a key store for the three possible kinds of key:
SecretKey, PublicKey and PrivateKey; and to encrypt and decrypt blocks of
messages, allowing for crypto point annotation at these points. These methods will
be used as keywords so that the parser can pick out the key parts of the protocol. As
a developer is likely to want to be able to print out the values of variables and other
debugging information, a Logger should be set up in the abstract class to encourage
developers to use this rather than the less informative println system call.

In addition, a uniform method of dealing with incoming messages is needed. The
proposal for this project is to use case/switch blocks. A variable stores which
message is expected next and each time the processIncoming method is called this

- 12 -

variable is incremented. Pattern matching is modelled by using assertions to check
that the value at each position of the incoming vector matches expected the one.

The network class only needs methods to send a message from one principal to
another and some method of registering principals so that the correct class’
incoming message method can be called when required.

The key generation class needs to have a method to return a SecretKey for
symmetric encryption and another method to return a KeyPair for asymmetric
encryption.

Messages will be a vector of strings. The send command will need to have an
argument for this vector, the receiver and the current class (in order that the receiver
can work out who the sender is).

Encrypt and decryption methods will also work on vectors of strings and will require
optional arguments for crypto-points. This will require several different overloadings
of these methods as it is possible for the crypto point to specify only the current
location, one origin/destination, multiple origins/destinations or neither.

Method headers for all the required classes can be found in the appendix.

2.2. Implementation

This section will give details of the implementation of the Java framework that will be
used to model protocols so that Elyjah can convert them into LySa processes.

2.2.1. Network Class

The network class is primarily used to pass messages between principals. It is also
used to pass any keys that need to be known by multiple principals before a protocol
begins. In order to do this there needs to be a store of the classes and a way to
convert between the classes and the names used to identify them. This conversion
needs to take place in both directions. This is achieved through two Hashtables set
up using generics

private Hashtable<String, ComClass> classNameToClass;
private Hashtable<ComClass, String> classToClassName;

When the class is created, the constructor will initialise these Hashtables. When a
call to the register method is made, supplying a class and a name supplied as a
string, entries are made in both of these Hashtables.

When a principal needs to send a message to another principal, the send method is
used.

public void send(ComClass source, String dest, Vector tuple){

- 13 -

 ComClass destClass = classNameToClass.get(dest);
 tuple.add(0, classToClassName.get(source));
 tuple.add(1, dest);
 destClass.processIncoming(tuple);
}

As well as calling the processIncoming method of the correct class, this method
also appends two extra message parts to the beginning of the tuple of messages.
The first is the sender of the message and the second is the receiver. This puts the
message in line with a LySa process.

The class also has a shareKey method used to call the shareKey method of each
registered class. This is achieved through setting up a ListIterator of the key set of
classToClassName Hashtable.

2.2.2. ComClass Class

This is an abstract class that the principal classes extend. It provides much of the
implementation of the class while also requiring that the class implements the
processIncoming method.

public abstract void processIncoming(Vector<String> v);

The use of generics here means that when examining elements of the vector, no
cast operations are needed. However it does require that all elements are String
objects. This is a problem if the protocol requires sending a key between principals.
For this reason the class contains methods to convert a Key object into a String
object, and then methods to convert a String object into either a SharedKey or a
PublicKey object. This is not a limitation enforced solely by this model however. In
real protocols, much like this model, keys need to be converted into a transmissible
format. In order to turn a Key into a String, the object must be turned into an array of
bytes which can then be turned into a String.

byte[] keyBytes = key.getEncoded();
String keyStr = new String(keyBytes, "ISO-8859-1");

To convert a String into the correct type of Key requires different methods. To
convert a SharedKey back from a String requires converting the String into a byte
array and then creating a key specification from this byte array.

byte[] keyBytes = str.getBytes("ISO-8859-1");
SecretKey key = new SecretKeySpec(keyBytes, "DES");

To generate a PublicKey requires creating a key specification from the string
representation of the key, creating a KeyFactory object with the correct algorithm
and then generating a public key from this KeyFactory using the key specification.

X509EncodedKeySpec pubKeySpec =

- 14 -

new X509EncodedKeySpec(keyStr.getBytes("ISO-8859-1"));
KeyFactory keyFactory = KeyFactory.getInstance("RSA");
PublicKey key = keyFactory.generatePublic(pubKeySpec);

The class also has a method to receive a Key directly called registerKey, which is
to be used when a Key has already been shared before a protocol begins. The
method should only be called from within the protocol initialisation class as the
method does not map to any LySa process. This method adds a key and an
accompanying key name into a key store which is implemented as a Hashtable
which uses generics to restrict the Hashtable object’s key to a String and the
returned object to a Key, This means that when retrieving a key from the key store a
cast will still be needed to cast down to the correct type of key. Unfortunately this is
unavoidable as the key store is only homogenous to the parent class of Key.

private Hashtable<String, Key> keys = new Hashtable<String, Key>();

The class also contains an instance of a KeyGenerationClass class as well as
methods which use this to create SecretKeys and KeyPairs. These methods call the
appropriate method in the KeyGenerationClass.

One of the biggest tasks that this class needs to implement is encryption and
decryption. As this has to be possible in both symmetric and asymmetric modes this
forces the methods to accept a Key object. The first task in encryption is to turn the
Vector object into a String object. This is achieved by using an Iterator to
concatenate the parts of the vector together with a separator between them, such as
a new-line character.

String message = null;
ListIterator i = v.listIterator();
while (i.hasNext()) {

String msgPart = (String) i.next();
 if (message == null){
 message = msgPart;
 } else {
 message = message.concat(msgPart);
 }
 if (i.hasNext()){
 message = message.concat("\n");
 }
}

Once as a single String, the message can be encrypted as described in section
1.2.9. Decryption will then convert the encrypted string into a decrypted string using
the method also described in this section. From this a Vector object can be
constructed by using a StringTokenizer object to separate the string by uses of the
new line character, which was inserted when originally converting the Vector into a
String.

StringTokenizer st = new StringTokenizer(parts, "\n");

- 15 -

Vector v = new Vector();
while (st.hasMoreTokens())

v.add(st.nextToken());
return v;

Methods are also provided which include parameters for the crypto-points, however
these are not used in the Java code and these methods call the normal
encrypt/decrypt methods as required.

The class also provides a method, check, for checking that two strings are equal,
used for the pattern matching in conjunction with assert statements. As well as
returning whether two String objects are equal or not, the method also uses the
Logger to report on cases where the two String objects are not equal. The Logger
object is set up in this abstract class so that the principal classes which extend it
have easy access to it.

2.2.3. KeyGenerationClass Class

This class contains only two methods. One for generating a SecretKey object, called
generateSharedKey, and another for creating a KeyPair object from which a
PublicKey and an accompanying PrivateKey object can be created, called
generateKeyPair. A SecretKey generation is quite simple ,requiring only one line
of code:

SecretKey key = KeyGenerator.getInstance("DES").generateKey();

To generate a KeyPair requires a bit more computation, requiring KeyGenerators
and SecureRandoms to be set up first.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA");
SecureRandom random =

SecureRandom.getInstance("SHA1PRNG", "SUN");
random.setSeed(userseed);
keyGen.initialize(1024, random);
KeyPair keypair = keyGen.genKeyPair();

2.2.4. Example Protocol File

Although the abstract class forces the developer to implement a processIncoming
method it cannot force the internal workings. Rather a framework has to be self-
enforced by the developer. The first requirement is that switch/case statements have
to be used to separate processing of different incoming messages. The other
requirement is to use the available methods where possible and to use string literals
in the message construction wherever the values are important. If a string literal is
not used, the name of the variable will be used in the LySa process instead.

- 16 -

An example of a simple protocol can be found in the appendix as
MultipleSendReceive.java. This will be used to examine a typical protocol file. The
first part to examine is the set up class:

public class MultipleSendReceive {
 public static void main(String[] args) {
 Network net = new Network();
 A a = new A(net);
 net.register("A", a);
 B b = new B(net);
 net.register("B", b);
 a.start();
 b.start();
 }
}

This method initialises, registers and starts two principals. Principal A contains a run
method typical of a simple protocol.

public void run(){
Vector v = new Vector();
v.add("password");
String msg = generateMessage(“Message1”);
v.add(msg);
e.send(this, "B", v);

}

This sends a simple message containing a plaintext password and a message. This
is sent to principal B. A will later send another message to B, with a similar format.
This means B has to be able to accept multiple messages, for this reason it is worth
looking at principal’s B processIncoming method.

 public void processIncoming(Vector<String> v){
 switch (receivedNum) {
 case 0:
 receivedNum++;
 // check first
 assert check(v.elementAt(0), "A");
 // check second
 assert check(v.elementAt(1), "B");
 // check third
 assert check(v.elementAt(2), "password");
 // assign fourth
 String msg = v.elementAt(3);
 theLogger.info(msg);
 Vector v2 = new Vector();
 v2.add("password2");
 String msg2 = generateMessage("Message2");
 v2.add(msg2);
 net.send(this, "A", v2);

- 17 -

 break;
 case 1:
 assert check(v.elementAt(0), "A");
 assert check(v.elementAt(1), "B");
 assert check(v.elementAt(2), "password3");
 String msg3 = v.elementAt(3);
 theLogger.info(msg3);
 break;
 }
 }

Encryption is easy to add on to this framework. If there is already a key shared
between two principals before the protocol begins, the following lines of code must
be added in the main method of the MultipleSendReceive class.

SecretKey key = generateSharedKey();
net.shareKey(key, "K");

Here is an example of a run method with encryption added.

public void run(){
Vector v = new Vector();
v.add("A");
v.add("B");
Vector vToBeEncoded = new Vector();
SecretKey keyAS = (SecretKey) keys.get("KAS");
String msg = generateMessage(“Encrypted Message”);
vEncoded.add(msg);
v.add(encrypt(vEncoded, keyAS, "a1", "s1"));
net.send(this, "S", v);

}

The accompanying receive process for this will be as follows.

public void processIncoming(Vector<String> v){
switch (receivedNum) {

case 0:
receivedNum++;
assert check(v.elementAt(0), "A");
assert check(v.elementAt(1), "S");
assert check(v.elementAt(2), "A");
assert check(v.elementAt(3), "B");

SecretKey key = (SecretKey) keys.get("KAS");
String msgToBeDecoded = v.elementAt(4);
Vector<String> decode =

decrypt(msgToBeDecoded, key, "s1", "a1");

String message = decode.elementAt(0);

- 18 -

}
}

}

Using this framework, all manner of protocols can be modelled, while still doing so in
a manner that will allow a systematic analysis of the source code to extract a formal
representation of the protocol.

- 19 -

3. Elyjah Design

The first step in the conversion from the Java source code, as defined above, to a
valid LySa process is to create a parser for the Java language which will return an
abstract syntax tree for a Java source file. Following this the source will need to be
analysed to create a mapping of variable names to types within a context. This will
be required as a syntactical representation of a source code will not contain typing
information for the variables that were initialised earlier in the program. It will then be
necessary to be able to search this store, not only to find out what the type of a
certain variable is, within a given context, as well as being able to find any variables
of a certain type, within a given context.

3.1 Removal of extraneous activity

The first task that needs to be done after generating an abstract syntax tree in order
to ease the conversion process is to remove any code that is not directly influential
to the communication protocol. The first and most obvious extraneous code that
needs to be removed is any debugging information. As the superclass for a principal
sets up a logger, the first thing that needs to be removed is any reference to this
logger. Following this, alternative options for debugging should also be removed
such as println method calls.

The method of removal depends on the implementation but it is expected that the
abstract syntax tree will be easier to amend than the original source code itself. With
this in mind it would be expected that to remove a block statement would amount to
setting a variable value to null.

3.2 Parsing of main class

3.2.1 Identify class names

The names of the class given in the source are not necessarily the same as the
names they will be referred to in the protocol. For this reason it is required to keep a
record of what the classes are registered as in the network class. This will require
searching through the main class to find all calls to the network’s register method
and creating a mapping between the name provided and the name of the class itself.

3.2.2 Identify keys shared before protocol begins

This process will involve searching through the syntax tree of the main class for all
calls to methods involving key generation, this will mean either
generateSecretKey or generateKeyPair. From this the LySa processes can
be written. In both message and key generation the LySa term is the Greek alphabet
symbol for Nu, ν. Thus either ν or the easier to understand English equivalent new
can be used, however it is worth noting that the LySatool will only accept new as a

- 20 -

valid keyword. From now on in this report, new will be used by convention. This
conversion will thus need to take Java and output LySa like below.

SecretKey key1 = generateSharedKey();
net.shareKey(key1, "KAS");

(new KAS)
or
(ν KAS)

3.3 Parsing of principal classes

3.3.1 run method

Each other class is then parsed in turn. The first part of a class that needs to be
checked will be whether the class contains a run method. It is expected than in any
given protocol only one class will contain this method although all classes will be
checked. If the method does exist, then the code will need to be searched for any
key generation or message generation methods. Key generation methods are as
above with the added use of asymmetric encryption. In this instance the LySa
process representing this reflects the use of asymmetric encryption by showing the
key as:

(new +- KAS)

Additionally to show the use of a message or nonce the generateMessage method
should be invoked. After checking the code block for any method calls to either
generateMessage or a key generation method, the code block should be searched
for a call to the network class’ send method. This line can then be parsed to identify
the intended receiver and the name of the vector containing the message itself. The
class name is used to identify the sender by mapping it to the name registered with
the network as discussed in section 3.2.1. The code block is then searched for all
references to the add method of the Vector to work out what the message actually
consists of. Some of the strings added to this Vector may be a representation of an
encrypted set of strings. In this scenario, further computation is needed as discussed
in section 3.3.2. This process needs to be done for every send command in the
method as some protocols may rely on multiple messages being sent off before a
reply is expected.

Thus an example conversion from Java to Elyjah for a send command would be:

// Inside A

Vector v = new Vector();
v.add("A");
v.add("B");
net.send(this, "S", v);

<A, S, A, B>

- 21 -

Additional steps must be taken in the Java when sending certain message parts. As
mentioned in section 2 a key must be first turned into a String, thus the method call
to add a key to the message would be:

v.add(sendKey(keyAB));

However this is only a variable name of the key, not the name used to identify it
within the protocol. Thus when this method call is used in a code block, a search
must be made to find the name of the principal by searching for a call to the get
method of the key store keys.

// Inside A

SecretKey keyAB =
(SecretKey)keys.get("KAB");

Vector v = new Vector();
v.add("A");
v.add("B");
v.add(sendKey(keyAB));
net.send(this, "S", v);

<A, S, A, B, KAB>

3.3.2 Encryption

There are several parts of the conversion where encryption may be used, namely
when parsing both the run and processIncoming methods of each class. For this
reason the construction of the LySa process for encryption should be provided as a
separate method. Recall that as well as the parts of the message that are to be
encrypted enclosed in curly braces, the LySa process for encryption also requires
the key and optional crypto points to be included. When encryption is being used, a
call to the encrypt method will be present instead of a String variable or String
literal inside the Vector object’s add method. This method call will give the key and
crypto points and the Vector containing the plain text message. For example:

v.add(encrypt(vToBeEncoded, key, "a", "b"));

From this line of code the crypto points will be trivial to extract, being the last two
parameters of the encrypt message call. In order to work out the contents of the
encrypted block, a similar strategy to the method of constructing the LySa send
method is used. Thus the current block of code must be searched to find all calls to
the add method of the Vector which is to be encrypted, in this case the Vector
vToBeEncoded. However further searching is required to identify what the name of
the key is as opposed to the name of the variable which represents it. This will mean
searching the code for a call to the key store’s get method which assigns the key to
this variable. This value can then be used to add the key used in the protocol. The
total code and accompanying LySa process are as follows:

- 22 -

// Inside A
Vector v = new Vector();
Vector vToBeEncoded =

new Vector();
String msg1 =

generateMessage("Message 1");
String msg2 =

generateMessage("Message 2");
vToBeEncoded.add(msg1);
vToBeEncoded.add(msg2);
SecretKey key =

(SecretKey)keys.get("KAB");
v.add(encrypt(vToBeEncoded, key,

"a", "b"));
net.send(this, "B", vB);

(new msg1) (newmsg2)
<A,B,{msg1,msg2} : K [at a dest {b}] >

In cases where asymmetric encryption is being used, the key will end with a plus
symbol. In these cases, the curly braces should additionally have vertical bars inside
of them such as the example below.

<A,B,{|msg1,msg2|} : K+ [at a dest {b}] >

3.3.3 processIncoming method

This method will be split into switch blocks so it will be easiest to parse each switch
block in turn. Normally each switch block will contain the code for processing one
incoming message as well as sending one or more messages to another principal.

The first task is to check for key and message generation, only then can the
computation proceed to composing the receive LySa process. This will be a mix of
identifying assert statements, variable declarations and decryption. The assert
statements are used to model LySa’s pattern matching, a typical assert line will
look like this:

assert check(v.elementAt(0), "S");

The only part of this line which will be used in the LySa process is the second
argument of the check method. After all of the assert statements are dealt with, the
LySa process is split with a semi-colon before the variable binding portion. In the
Java model this is represented by a line such as:

String msgToBeDecoded = v.elementAt(2);

From this line, the only portion to appear in the LySa model is the name of the
variable, in this case the String called msgToBeDecoded. A typical Java model
representation of dealing with an incoming message compared to the corresponding
LySa process will thus resemble:

- 23 -

assert check(v.elementAt(0), "S");
assert check(v.elementAt(1), "B");
String msgToBeDecoded =

 v.elementAt(2);

(S, B; msgToBeDecoded)

As hinted by the name of the variable used above, typically decryption will have to
be performed after receiving a message. Just as with receiving a message, pattern
matching is employed and implemented in the Java model in the exact same way.
The first step is still to decrypt the message, turning it from a string into a vector.
This is achieved in a command such as:

Vector<String> decode =
decrypt(msgToBeDecoded, key, "b1", "s2");

This relies on the variable msgToBeDecoded being set up as above, and a key
retrieved from the key store by means of a get method call. The string used to
retrieve the key is the one used in the LySa process. The same technique used with
the pattern matching above is used to construct the breakdown of the message. It is
also possible that the origin crypto point will be a vector as opposed to a string literal.
In this case, the LySa process must include all the constituent parts.

SecretKey key = (SecretKey) keys.get("KBS");
Vector<String> decode =
decrypt(msgToBeDecoded, key, "b1", "s2");
assert check(decode.elementAt(0), "A");
String message = decode.elementAt(1);

decrypt msgToBeDecoded as
{A; message}:KBS [at b1 orig{s2}]

Like encryption, if asymmetric encryption is being used then the curly braces must
additionally have vertical bars on the inside. After constructing any decryption
processes that need to be done, the switch block may include some send
commands, if this is the case the LySa processes for these will need to be
constructed in the same manner as discussed in section 3.3.1.

3.3.4 Summary of Conversion

To re-iterate the process contains the following steps

1. Remove all traces of extraneous activity such as logging /debugging information.
2. Identify any keys created in the main class.
3. Process run method.

 Add any key/message generation in the method
 For each send command work out the appropriate LySa command

4. Process processIncoming method.
 For each switch block: add any key/message generation
 Work out appropriate LySa command receive message
 Work out any decryption that is necessary

- 24 -

 For each send command work out appropriate LySa command.

- 25 -

4. Implementation

In order to implement this system within the allotted time frame, a pseudo extreme-
programming methodology was used. This meant having fast design, implement,
test cycles; fixing bugs when they were discovered; and only implementing the
minimal functionality needed at each point.

4.1.The Java parser

Before working on the conversion process itself, it is necessary to create a Java
parser. There are a couple of Java parser generators in wide circulation, namely
CUP and JavaCC. At first this project attempted to use the CUP parser generator.
This generator was initially recommended due to its use in some of the department’s
taught courses. However while learning about and testing the parser generator with
simple grammars worked fine, when attempting to create a parser using the full Java
grammar supplied on the CUP website errors were generated.

Opening files... Parsing specification from standard
input... Error Syntax error at Symbol: SUPER in line 196 /
column 33 Error Illegal use of reserved word Error Syntax
error at Symbol: SUPER in line 534 / column 1 Error Illegal
use of reserved word Error Syntax error at Symbol: SUPER in
line 537 / column 4 Error Syntax Error Closing files... ---
---- CUP v0.10k TUM Edition 20050516 Parser Generation
Summary ------- 6 errors and 0 warnings 106 terminals, 218
non-terminals, and 535 productions declared, producing 0
unique parse states. 0 terminals declared but not used. 0
non-terminals declared but not used. 0 productions never
reduced. 0 conflicts detected (0 expected). No code
produced. ---

After investigation it was revealed that there is an incompatibility between the latest
version of the CUP parser generator and the Java grammar file supplied. This is due
to the latest version of the CUP parser generator including support for generics
which was not available in previous versions, significantly the version the Java
grammar file was written for. This causes a problem as the grammar now supports
types such as:

ArrayList<? super Container>,

This means that super is now a keyword, resulting in the errors seen above. Thus
the workarounds involve either using a previous version of the parser generator or
changing all uses of the keyword super within the Java grammar file and all inputs to

- 26 -

avoid the clash. Both of these options were less than optimal, so it was decided to
try using the JavaCC parser generator instead.

Just like the CUP parser generator, the JavaCC parser generator’s website contains
a file for the Java grammar. However in this project a parser is not sufficient, a
means of navigating an abstract syntax tree is also required. JavaCC by itself will
only return whether an input file is successfully parsed. There is an add-on for
JavaCC known as JJTree which allows the generated parsers to produce syntax
trees. In order to generate a parser to do this there are several stages of
computation. First a JJTree file is converted to a JavaCC file which is then converted
to a java source file before finally being converted to a class file by the normal Java
compiler.

Figure 5 - Parser Generator Construction Process

The supplied Java grammar file from the website comes in the form of a JavaCC file
which had to be converted into a file suitable for JJTree by modifying the parser
code in the grammar file.

JJTree defines a Java interface, Node, which all parse tree nodes must implement.
This interface provides methods for navigating through a tree of nodes using
methods to traverse to the parent as well as through the children of a node. These
methods are called jjtGetParent and jjtGetChild, this method takes as an
argument an integer used to specify which child to traverse to. This interface is
implemented by a SimpleNode object which is created automatically by JJTree. This
class can then be extended or modified as needed. For this project, the class was
modified to increase the error handling capabilities and change the return values of
the tree traversal methods from Node to SimpleNode to eliminate the need for
casting in Elyjah.

Using JJTree, after a source file is parsed the root of the abstract syntax tree is
returned as a SimpleNode. It is then possible to navigate the abstract syntax tree
much as any other tree. Classes, methods and even single lines of code have a tree
structure so a single SimpleNode can be used as a pointer to any part of the code.

4.2.Searching the abstract syntax tree

jjtree javacc

Java1.5.jjt Java1.5.jj Parser.java

- 27 -

It will be necessary to search through the abstract syntax tree in order to find certain
nodes. This will be done by iterating through the children of a node and running the
method on each of them in turn. For an example see the imaginary method below.

public static void methodName(SimpleNode node){
if (node.toString().equals(nodeName) {

// Process Node
} else {

for (int i = 0; i < node.jjtGetNumChildren(); ++i) {
SimpleNode n = node.jjtGetChild(i);
if (n != null) {

methodName(n);
}

}
}

}

Many of the methods described below will take the form of the above template. This
method is called on the root of some block of code, such as a single line, a method,
a switch block or a whole class. The current node is then checked to see if it
contains the required string, nodeName in the above example. If so then some
additional processing will be performed else this method is then called on the
children of the node. The values generated by methods of this sort are usually stored
in static Vectors allowing the original method to create Iterator objects to iterate
through the values of the Vector.

4.3.Creating a XML representation of the abstract syntax tree

In order to examine the abstract syntax tree as well as store trees for later analysis,
a method was developed which would print out the abstract syntax tree as an XML
file. This allows easy analysis of the abstract syntax tree and storage of entire
programs in the XML representation. This takes the form of the template given
above but instead of searching for a node with a particular value, every node will be
processed.

public static void dumpXML(SimpleNode node, String pre) {
 if (node.jjtGetNumChildren() == 1) {

 System.out.println(pre+"<"+node.toString()+">");
 dumpXML(node.jjtGetChild(0), pre + " ");
 System.out.println(pre + "</"+node.toString()+">");

 } else if (node.jjtGetNumChildren() != 0) {
 System.out.println(pre+"<"+node.toString()+">");
 for (int i = 0; i < node.jjtGetNumChildren(); ++i) {
 SimpleNode n = node.jjtGetChild(i);

 if (n != null) {
 dumpXML(n, pre+" ");

 }
 }
 System.out.println(pre+"</"+node.toString()+">");

 }else{
 System.out.println(pre+"<"+node.toString()+" />");

 }
}

- 28 -

4.4.Retrieving class names

As each class will later be parsed individually it will later be necessary to possess a
list of the classes in the input file along with pointers to the nodes at the top of these
blocks’ syntax trees.

A class name can be found by searching the syntax tree for a node containing the
string ClassOrInterfaceDeclaration. Once this node is found the name of the class is
located in the first child of this node, such as below.

<ClassOrInterfaceDeclaration>
<A />

As an example of how this searching and tree traversal is implemented, the first few
lines of this method are given. If the class name is the same as the name of the file,
then it is marked as the protocol set-up class and is parsed differently. The rest of
the method follows the template given in Section 4.2.

public static void getClasses(SimpleNode node){
if (node.toString().equals(nodeName) {

String className = node.jjtGetChild(0).toString();
 classes.put(className, node);

As discussed in Section 3.2.1, it is also necessary to have a mapping between the
name of classes and the name used to register them with the Network class. This is
achieved by searching the main method of the protocol set-up class for all calls to
the register method of the Network class. Both arguments from this method call
should then be extracted and used to create a HashTable using the actual class
name as the key and the String used to register it as the object. An additional
HashTable is also used to map between the class name and the root of the class.

4.5.Gathering type information

Once the abstract syntax tree has been generated, it is necessary to create a
mapping of variable names to types within certain contexts. For this, several classes
were created. The first is a class, Variable, which is designed to store the following
details of a single variable:

 Variable name;
 The type of the variable
 Name of the method the variable is in, (Global if not in a class)
 Name of the class the variable is in

The second is a class, VariableStore, which contains a vector of variables as well as
methods to add a variable to the store and various methods to search through the
vector. These methods return the type of a variable given its name and location, the
name of any variables of a given type within a certain location as well as all the
variables in a method. In order to populate this store, the abstract syntax tree is

- 29 -

parsed to look for any variable declaration block. An XML representation of a
LocalVariableDeclaration block statement looks like:

<BlockStatement>
<LocalVariableDeclaration>

<ReferenceType>
<PrivateKey />

</ReferenceType>
<VariableDeclaratorId>

<privateKey />
</VariableDeclaratorId>
<PrimaryPrefix>

<Name>
<keypair />
<getPrivate />

</Name>
</PrimaryPrefix>
<PrimarySuffix />

</LocalVariableDeclaration>
</BlockStatement>

In addition to local variable declarations, variables are also declared in the
parameters of methods and as a field of a class. All three methods will have different
syntax trees and need to be processed differently. After finding a variable
declaration block statement such as this, by searching further up the tree until finding
a class or method declaration the class and method name can be found.

The methods provided by the VariableStore class are: add, takes name, type,
method name and class name of a variable and adds it to the store; search, takes
type, method and class name of a variable and returns Vector of variable matching
the description; resolve, takes name, method and class name of a variable and
returns the type; methodsInClass takes the name of a class and returns a Vector
of the methods available in the class.

4.6.Removal of extraneous information

In order to facilitate removal of extra information, primarily logging information, two
methods are provided, remove and removeAll. The method named remove takes
four arguments: a pointer to a section of the abstract syntax tree; the name of an
object to remove; and the names of both the class and method to remove them from.
The tree is then parsed to look for uses of the object. When a reference to the object
is found, the block statement containing the call is removed using the removeChild
method provided by the SimpleNode class.

In order to remove all uses of an object type, such as the Logger object, the
removeAll method can be used. This method takes a single argument, a string
representing the name of the object type to be removed. The removeAll method

- 30 -

then iterates through every class, calls the methodsInClass method from the
VariableStore class to return all the methods in that class and then calls the search
method from the VariableStore class to find what names are given to that type in
each method. The remove method is then called with all of this information

4.7.Generating LySa processes

In order to generate a LySa process, several helper methods are needed. The main
LySa process generation is performed in the getLysaOutput method. Conversion
from the Java source to the LySa process requires searching through the Java input
for uses of certain objects and methods.

lysaAppend(String toAppend) method

This method is used to append a String to the LySa process generated for the
protocol. The LySa process for each principal is stored in a separate element of a
Vector. The value of the element of the Vector being written in is determined by a
global variable which is incremented after each class has been processed.

dumpLysa () method

This method outputs the LySa processes generated by calls to the lysaAppend
method above. A ListIterator is created to iterate over the values of the Vector used
to store each principal’s LySa process. Parallel composition between the LySa
processes is then added. Based on arguments given to Elyjah at the time of the
running, the output will either be to the console or written to a lysa file.

findBSs(SimpleNode node, String prefix, String suffix) method

In the abstract syntax tree, a line of code is represented as a BlockStatement. This
method returns a Vector of SimpleNodes each pointing to a BlockStatement and
takes as arguments a pointer to a section of the abstract syntax tree and two strings,
one for a prefix of a method call (which class or object the method belongs to) and a
suffix (which method is being called).This method is used to return a list of all block
statements containing a particular method call of a particular object. For example,
this can be used to return abstract syntax representations of all calls to the add
method of a particular Vector object in a block of code.

findDecryptionProperties(SimpleNode node) method

This method takes a SimpleNode representing the root of a method or some other
block of code. This method searches for all calls to the decrypt method in this code
block. It then extracts the key information from each of these method calls. The three
pieces of information that need to be extracted are the key used, the name of the
String being decrypted and the name of the Vector object the decrypted message is
stored in. If crypto points are specified, then these will also be extracted at this point.

- 31 -

All of this information is stored in Vector objects. This means that if there are several
decrypt method calls in the code block, all of them will be extracted and processed
in turn.

seperateSwitchBlocks(SimpleNode node) method

This method will take a SimpleNode pointing to the root of a code block and return
pointers to the separate switch blocks allowing each to be parsed independently.
Pointers to the roots of each switch block are stored in a vector allowing them to be
processed one by one. This is used to split the input file’s processIncoming method
into separate blocks, for which the LySa process for each process can be generated
independently.

getNewExpressions(SimpleNode node) method

This method is called on each code block before generating the rest of the LySa
process. The job of this method is to create LySa restriction processes. There are
three different methods in the Java framework that must be converted into a LySa
restriction process. This method looks for the generateMessage,
generateSharedKey and generateKeyPair methods in a code block. When a
generateMessage method is found, a LySa restriction process is appended using
the variable name the message is bound to. If a key generation method is found then
the generated key is resolved using a call to the resolveKey method, a LySa
restriction process is then generated using the returned key name.

resolveKey(String keyName, SimpleNode codeBlock) methods

This method is used to resolve the name of a key given the name of the variable
used to hold a key and a pointer to the root of the code block the variable is used in,
In order to resolve a key, the variable name used to store the key must be converted
to the string representation used to identify the key in the protocol. This is because in
different methods, there is no guarantee that the developer will use the same
variable name to store the same key. The name used to identify the key in the
protocol can be retrieved from registerKey method calls or get method calls to
the key store. For example, if the resolveKey method was called giving the name
“key” and the surrounding block of code contained the method call given below, this
method would return the String “KAS”.

SecretKey key = (SecretKey) keys.get("KAS");

The string used to access the key is also appended with a + or – to signify the key is
a public or private key respecitvely, if this is not already part of the string used to
represent the key in the key store.

encryptionBlock(SimpleNode block, SimpleNode containingBlock) method

- 32 -

As encryption can occur at multiple places in a Java model of a protocol, it is most
efficient to have a separate method to deal with generating a LySa encryption
process. This method takes two SimpleNode objects as parameters, one pointing to
a BlockStatement containing the encrypt method call, the other the surrounding
block of code, either the run method or switch block. The arguments of the
encrypt method reveal the Vector being encrypted and the key used to perform the
encryption.

Firstly a String object which will later be the result of this method is created initialised
to opening curly braces, “{“. If the key used to encrypt the message is a PublicKey,
then vertical bars must be appended this string. The contents of the Vector being
encrypted can then be worked out through a call to the findBSs method using the
Vector name and “add” as the method’s arguments. This populates a Vector
containing all lines of code containing a call to the Vector’s add method. This Vector
is used to create a ListIterator to process each add method call. If the item being
added is a string literal, then this value is added to the return String. If the item
added is a string variable then the name of the variable is added to the return String.
If the item is a call to the sendKey method, then the resolveKey method is called
on the argument of the sendKey method. The returned String from the resolveKey
method is then added to the return String. If the item is a call to the encrypt
method then the returned String from a recursive call to this method is added. If the
key used is a PublicKey then another vertical bar is needed, either way a closing
curly brace is added to the return String.

After these curly braces, the name of the key must be appended. To do this the
resolveKey method must be applied to the variable used to store the key. After
this the crypto point must be appended by examining the third and fourth arguments
to the encrypt method.

findDecryptionProperties(SimpleNode node) method

This method is used to generate several Vector objects containing the key properties
of decrypt method calls. This method scans a code block searching for calls to the
decrypt method. For each method call found, the following properties need to be
mined: the name of the string being decoded; the name of the Vector the decrypted
message is stored in; and the name of the key used to decrypt the message. Where
possible, the values from the crypto points will also be stored in separate vectors. In
each Vector, the i-th position will hold a single property of the same call to the
decrypt property.

getLysaOutput() method

There are two getLysaOutput methods in Elyjah, one without arguments, one that
accepts a SimpleNode as an argument. The first is called in the Elyjah’s main
method after all the extraneous information has been removed. This method will then
call the getNewExpressions method on the protocol set up class and then call the

- 33 -

second getLysaOutput method on each principal class in turn by providing the
SimpleNode representing the root of the class as the method’s argument.

getLysaOutput(SimpleNode classRoot) method

The first operation in each class is to identify the name of the variable used to
contain the Network class; this is discovered with a call to the search method from
the VariableStore class. Once this is known, the first task is to discover whether
there is a run method in the class, if so this method is processed first. Firstly the
getNewExpressions method is called on this method. The findBSs method is
then used to retrieve a Vector of SimpleNodes, each representing a call to the send
method of the local instance of the network class. A ListIterator is then created to
work through this Vector, using a while loop to process each send method call in
turn.

For each send method, firstly the opening chevron, ‘<’, is added to the LySa process
by calling Elyjah’s lysaAppend method. The current class and the second
argument of the send command are used to construct the first two parts of the LySa
process. The third argument of the send method gives the name of the Vector being
sent. Elyjah’s findBSs method is then used to find all calls to the add method of
this vector. The returned Vector is once again used to create a ListIterator to process
each add method call. If the item being added is a string literal, then this value is
added to the LySa process. If the item added is a string variable then the name of
the variable is added to the LySa process. If the item is a call to the sendKey
method, then Elyjah’s resolveKey method is called on the sendKey argument.
The returned String from the resolveKey method is then added to the LySa
process. If the item is a call to the encrypt method then the returned String from
Elyjah’s encryptionBlock method is used. Finally the closing chevron and a full
stop, ‘> .’ is appended to the LySa process.

Once the run method has been processed, the same processIncoming method
of the same class must be parsed. Firstly the method is split into separate switch
blocks using Elyjah’s seperateSwitchBlocks method. Once more a ListIterator is
used to process each switch block in turn. This process involves several stages,
firstly the receive message process is generated, and then any decryption
processes, followed by any send processes.

Firstly, an opening parenthesis is appended using the lysaAppend method. In
order to construct the LySa receive process, there are two stages. The first is to find
all check method calls inside the switch block; this is done by calling the
findCheckBlockStatements method. This method is similar to the findBSs
method, but due to the different abstract syntax tree for the check block statements
requires a slightly different method. The Vector generated from this method contains
all the lines of code of the form

assert check(v.elementAt(0), "A");

- 34 -

This vector is used to create a ListIterator to run through each of these lines. From
each one the string literal second argument of the check method is added to the
LySa process, e.g A in the example above. It is possible for the second argument to
be a call to the encrypt method, if this is the case then this is dealt with by the
encryptionBlock method. When there are no more of these a semi-colon is
appended and the variable bonding part of the receive process is generated. This is
performed in a similar manner to the pattern-matching part of the receive process.
This time a call to the findAssignmentBlockStatements method allows a
ListIterator of the generated Vector to be processed. This method finds all lines of
code of the form:

String msg = v.elementAt(2);

For each assignment like above, the name of the variable the incoming String is
assigned to must be added to the LySa process. While doing this the number of the
element of the received Vector is monitored. If at any point the element being
accessed is not exactly one higher than the previous element, a warning message is
output. Finally, a closing parenthesis and a full stop is appended to the LySa
process.

After the receive message process has been completed a call is made to the
findDecryptionProperties method giving the root of the switch block. The
generated vectors should all have the same number of Strings in them, with the
exception of the crypto point ones, which may have less. A ListIterator is then
created using one of the main Vectors. For each call to decrypt append “decrypt”,
then the name of the received string to be decoded, followed by “as {“ then use the
same method as with the receive process to compose the pattern matching/ variable
binding internals. Append closing parenthesis and name of key worked out from
calling resolveKey with the variable name generated from the previous call to
findDecryptionProperties. If the key used to encrypt the message is a
PublicKey, then vertical bars must be also be appended to the LySa process inside
the curly braces.

After any LySa decryption processes needed have been generated, any send
processes are generated in the same manner as when processing the run method.
Once this process has been completed for every principal class, the LySa process
can be output to the console or a file by calling the dumpLysa method described
above.

- 35 -

5. Testing and Evaluation

This section details the steps taken to ensure that Elyjah met the specification
correctly. As the system was implemented in a pseudo extreme programming
methodology many of the bugs were caught early in the development process.
However towards the end of the project further steps were taken to ensure the
correctness of the LySa output.

5.1.Test Suite

A test suite was designed that would allow for automated testing of Elyjah. This test
suite would include input that covered four types of test data:

 Easy-to-compute input
 Typical input
 Boundary input
 Invalid input

Easy-to-compute input allows for regression testing of converting the most basic
input that the Java framework would allow. These are very simple protocols such as
one principal sending a message to another.

Typical input includes a number of real-world protocols such as the Needham-
Schroeder protocol and the Wide Mouth Frog protocol.

Boundary input for Elyjah involves passing Java models of protocols that are not
exactly as the specified input. It is expected that these inputs may not produce the
correct LySa process; however the tests will check Elyjah’s error handling
capabilities.

Invalid input will involve invalid Java models, either programs with syntax errors, or
Java programs that are not designed to be used with Elyjah in the first place. Again
the test here is to see how Elyjah handles this erroneous input as opposed to
whether the correct LySa process is generated.

All of the input files used in the test suite and the LySa output are included in the
appendix of this report.

5.1.1.Easy-to-compute Input

There are five basic tests which test the most basic functionality of the Java
framework and Elyjah itself. These tests serve as regression tests for both parts of
the system. These tests test the ability of the Java framework to send and receive
messages using both symmetric and asymmetric encryption.

- 36 -

TestEasySend.java

This file only implements one principal. This principal constructs a message with two
parts and attempts to send it to a second principal that makes no attempt to process
the incoming message. For this reason, no output is expected when run as a Java
program, although Elyjah will accept it and return a correct LySa process. The LySa
process this test should return is:

!(new msg) <A,B,A,msg>.0
|
!0

While as a whole this is not a valid protocol, the first line is the correct LySa process.
The second line is a result of a second principal without an implemented
processIncoming method.

TestEasySendReceive.java

This test is the simplest possible protocol that is a run able Java program. This file
contains implementations of two principals. The protocol involves one principal
sending a plain-text message to another. Elyjah should accept this file and return
the following LySa process.

!(new msg) <A,B,A,msg>.0
|
!(A,B;source,message).0

When run as a Java program, the following output will be expected, with the current
date and time in the appropriate places.

Date Time B processIncoming
INFO: A
Date Time B processIncoming
INFO: this is a message

TestEasySendEncrypt.java

This test, much like the first, does not produce any Java output. Just as the first test,
an attempt is made to send a message to a second principal which makes no
attempt to process the incoming message. However this message has been
encrypted with a SecretKey. When this file is input to Elyjah, the following LySa
process should be generated.

(new K) (
!(new msg) <A,B,A,{msg} : K [at a dest {b}] >.0
|
!0
)

- 37 -

TestEasySendReceiveEncrypt.java

This file is a continuation of the last test. This file has a fully implemented second
principal that decrypts the message and prints both the encrypted and decrypted
message using the Logger object. The Elyjah output using this file is the following
LySa process.

(new K) (
!(new msg) <A,B,A,{msg} : K [at a dest {b}] >.0
|
!(A,B;source,msgToBeDecoded).

decrypt msgToBeDecoded as {;message}:K [at b orig {a}] in 0
)

The Java output of this file is the following Logger printouts, with the date and time
where appropriate. The encrypted version of the message will also change with
every run, although below is a typical string.

Date Time B processIncoming
INFO: A
Date Time B processIncoming
INFO: GvpN6kBrR1tfnARiZ8hOdXmd6PYlOwhn
Date Time B processIncoming
INFO: this is a message

TestEasySendReceivePublicEncrypt.java

The final simple test, is the most basic asymmetric encryption protocol possible. This
protocol consists of two principals. One creates a public and private key pair, and
sends the public key to the second principal. The second principal then uses this key
to encrypt a message which it sends back. The first principal can then decrypt the
message using the private key. The LySa process generated by Elyjah is as follows:

!(new +- K) <A,B,K+>.(B,A;msgToBeDecoded).
decrypt msgToBeDecoded as {|;msg|}:K- [at a orig {b}] in 0

|
!(A,B;K+).(new message) <B,A,{|message|} : K+ [at b dest {a}] >.0

When this Java program is run, the first protocol will print out the encrypted and
decrypted message.

Date Time A processIncoming
INFO:
S33eIcQ2BIElRB7c7ELHdL9fFHGlHmwrjA5c4ZvB/CwG/Xe4qhV2eN93SaA
Mxt1oM/K1nMTF/VlcM6X9sEHOIOGio4K/CxyKhn550bX4JFYKokoNDOqIO
xLel7MN4IOByVOVJWLRTPweOSBSnlp9uknjax06B0iT8M7/c8rCDLE=
Date Time A processIncoming
INFO: this is the message

- 38 -

5.1.2.Typical Input

The typical input Elyjah will be used to process will be more complex protocols than
the ones presented in the previous section. The following protocols have more than
two principals and are well-known protocols covered in standard security courses.

WideMouthFrog.java

The Wide Mouth Frog protocol has already been well covered in the Background
Information of this paper. This protocol has three principals, several different
instances of symmetric encryption and allows two principals to securely
communicate utilizing the third as a trusted third party server, The LySa process
representing the WMF protocol that Elyjah should output is given below. The
generated LySa process is equivalent to a manually composed LySa process for the
WMF protocol that is given in [12].

(new KAS) (new KBS) (
!(new K) (new msg1) (new msg2) <A,S,A,{B,K} : KAS [at a1 dest {s1}] >.

<A,B,{msg1,msg2} : K [at a2 dest {b2}] >.0
|
!(S,B;msgToBeDecoded).

decrypt msgToBeDecoded as {A;KAB}:KBS [at b1 orig {s2}] in
(A,B;msgToBeDecoded2).
decrypt msgToBeDecoded2 as {;msg1,msg2}:KAB [at b2 orig {a2}] in 0

|
!(A,S,A;msgToBeDecoded).

decrypt msgToBeDecoded as {B;keyRepresentation}:KAS [at s1 orig {a1}]
in <S,B,{A,keyRepresentation} : KBS [at s2 dest {b1}] >.0

)

The Java output from running this protocol is given below. This represents the
secure information sent from principal A to principal B encoded under a symmetric
key that is sent via principal S.

Date Time B processIncoming
INFO: FIRST BIT OF MESSAGE
Date Time B processIncoming
INFO: SECOND BIT OF MESSAGE

WideMouthFrog2.java

In this second version of the Wide Mouth Frog protocol a deliberate error was
introduced. In this version, the first message from principal A to principal S is
completely unencrypted. This means that the key later used to allow A and B to
communicate securely will be available to anyone. The LySa process will therefore
be:

- 39 -

(new KAS) (new KBS) (
!(new K) (new msg1) (new msg2) <A,S,A,B,K>.

<A,B,{msg1,msg2} : K [at a2 dest {b2}] >.0
|
!(S,B;msgToBeDecoded).

decrypt msgToBeDecoded as {A;KAB}:KBS [at b1 orig {s2}]in
(A,B;msgToBeDecoded2).
decrypt msgToBeDecoded2 as {;msg1,msg2}:KAB [at b2orig {a2}] in 0

|
!(A,S,A,B;keyRepresentation).

<S,B,{A,keyRepresentation} : KBS [at s2 dest {b1}] >.0
)

The Java output will be the same as the legitimate Wide Mouth Frog protocol mode.

NeedhamSchroeder.java

This file models the Needham Schroeder protocol. This protocol was invented by
Roger Needham and Michael Schroeder in 1978. It allows individuals to prove their
identity while preventing eavesdropping. In the Needham Schroeder protocol, it is
required for one principal to make an amendment to a nonce provided by another
principal. This amendment is usually a simple arithmetic operation; however it is
impossible to model such a process in the LySa process calculus. Instead, all such
operations have to be modelled by encryption. This is the reason behind principal A
encrypting the nonce with a key SUCC before sending it to B, and principal B
encrypting the same nonce when pattern matching the message from A. The key
SUCC models an arithmetic operation such as successor. Performing the encryption
on the same nonce in both principals models performing some arithmetic operation
in both principals. The LySa process generated by Elyjah should thus be as follows.

(new KAS) (new KBS) (new SUCC) (
!(new nonceA) <A,S,A,B,nonceA>.(S,A;msgtoBeDecoded).

decrypt msgtoBeDecoded as {nonceA,B;K,encryptedMsgToB}:KAS in
<A,B,encryptedMsgToB>.(B,A;msgtoBeDecoded2).
decrypt msgtoBeDecoded2 as {;nonceB}:K in
(new msg1) (new msg2) <A,B,{{nonceB} :SUCC} : K>.
<A,B,{msg1,msg2} : K>.0

|
!(A,B;msgToBeDecoded).

decrypt msgToBeDecoded as {;KAB,source}:KBS in
(new nonceB) <B,A,{nonceB} : KAB>.(A,B;msgToBeDecoded2).
decrypt msgToBeDecoded2 as {{nonceB} : SUCC;}:KAB in
(A,B;msgToBeDecoded3).
decrypt msgToBeDecoded3 as {;msg1,msg2}:KAB in 0

|
!(A,S,A;destination,nonce).(new K) <S,A,{nonce,destination,K,{K,A} : KBS} : KAS>.0
)

- 40 -

The output from the logger object should be as below. This represents the secure
communication decrypted at B.

Date Time B processIncoming
INFO: FIRST BIT OF MESSAGE
Date Time B processIncoming
INFO: SECOND BIT OF MESSAGE

5.1.3.Boundary Input

Boundary input for this system refers to a Java file that is a valid protocol
implementation using the framework design but with deliberate flaws that may
disrupt Elyjah’s attempts to convert the model into a LySa process. There are three
areas identified where this is possible. In an ideal implementation these flaws should
not make a difference to the LySa process generated but appropriate error catching
will be sufficient for this project.

Extraneous cast statements

Inserting a cast statement where it is not needed will not change the Java model’s
meaning but will change the abstract syntax tree of the line. An extraneous cast
statement is one where the returned type is already the same as the required type
but a cast is made to this type anyway, for example:

String message = (String) “this is a message”;

This should not affect the generation of LySa processes but it is expected that Elyjah
will not be able to cope due to the difference in the syntax tree.

Wrong ordering of statements

While the order of some statements will not make any difference, an area where they
may make a difference is when constructing the receive and decrypt LySa
processes. When constructing send and encrypt processes, Strings are added to the
Vector in the order they are added, so changing the order of the add statements will
change the order of the elements in the LySa process. However, when constructing
decrypt and receive processes, it is possible to access the Vector object’s elements
out of order.

assert check(v.elementAt(1), "B");
assert check(v.elementAt(0), "S");
String msg = v.elementAt(2);

In the generated LySa process, the sender should be identified as S and the receiver
B. However, if the order of the method calls is used to define the order of the LySa
process then this order will be reversed. At the very least, there should be a warning
to the developer that the statements are out of order.

- 41 -

Missing Variable Binding

If part of a received or decrypted message is not being checked in the pattern
matching and is not used to generate a later message the developer may not bother
to bind this part of the message to a variable. This will not affect the running of the
Java model but will not produce a valid LySa process. While the LySa process will
match the model, it will not be representative of the developer’s idea. Additionally, if
this part of the message is the final part received then there is no way for Elyjah to
know the developer made a mistake.

In both of these final two test cases, the actual meaning of the input is ambiguous. It
can never be determined if the developer meant to re-order the method calls or
whether they made a mistake with the numbering. Equally, when it seems like a
developer has missed out a number, they may have meant to add it later.

5.1.4. Invalid Input

The final type of test data that needs to be covered is erroneous input files. These
are files which are badly constructed Java models, Java files not designed to be
used with Elyjah or non java files. In all of these cases, Elyjah should return an error
message indicating that the files are invalid or no valid LySa process could be mined
from the file.

Badly constructed or non-Java file

In these cases, the parser should return an error message detailing the nature of the
problem. Badly parsed files should be found during the construction of the abstract
syntax tree. A parse error will take the form of the following message.

Parse error at line 17, column 9. Encountered: net
Java Parser Version 1.1: Encountered errors during parse.

This will be a regression test to make sure the parser is still functional. Any errors
with invalid Java files should be caught before any attempt is made to extract a LySa
process from the file.

Java files not designed to be processed by Elyjah

When no LySa process is found by Elyjah, instead of not outputting anything, an
error message should be displayed saying that the file was not a valid protocol
model.

- 42 -

5.2.Test suite results
This is the result of running the test files through Elyjah at the end of the
implementation.
Input File Test Result
TestEasySend.java Correct LySa process generated - Pass
TestEasySendReceive.java Correct LySa process generated - Pass
TestEasySendEncrypt.java Correct LySa process generated - Pass
TestEasySendReceiveEncrypt.java Correct LySa process generated - Pass
TestEasySendReceivePublicEncrypt.java Correct LySa process generated - Pass
WideMouthFrog.java Correct LySa process generated - Pass
WideMouthFrog2.java Correct LySa process generated - Pass
NeedhamSchroeder.java Correct LySa process generated - Pass
TestEasySendReceive.java with
extraneous cast statements

No LySa process generated but correct
error message displayed – Partial Fail

TestEasySendReceive.java with
rearranged check statements

Wrong LySa process generated but
correct error message displayed – Partial
Fail

TestEasySendReceive.java with missing
variable binding

LySa process generated according to
Java model. No attempt to fix model.

TestEasySendReceive.java with missing
semi-colon at end of line

No LySa process generated and correct
error message displayed - Pass

TestEasySendReceive.class (Non-Java
file)

No LySa process generated and correct
error message displayed - Pass

ComClass.java No LySa process generated and correct
error message displayed - Pass

Elyjah consistently generated the correct LySa process for both the easy and typical
inputs it was tested with. It also correctly dealt with invalid data and achieved a
partial success on border line data by correctly generating warnings when the input
was ambiguous or not as specified.

5.3.LySatool output of typical input
Once the Java model of a protocol has been converted into a LySa file it can be
directly input into the LySatool. In the following section the results of the analysis by
the LySatool have been summarised and explained.

WideMouthFrog.lysa

The LySatool renames many of the variables before analysing the protocol which
accounts for the value names being different between the LySa file and the output.
The LySatool output for the Wide Mouth Frog protocol is summarised below:
Values that may not be confidential
{LB, LK}LKAS [at a1 dest { s1 }], {LA, LkeyRepresentation}LKBS [at s2 dest { b1 }],
{Lmsg1, Lmsg2}LK [at a2 dest { b2 }], n•, m•+, m•-, S, B, A, {l•, l•}l• [at CPDY]

Violation of authentication properties (ψ)
No violations possible

- 43 -

The first section details all the values that an attacker can read. This reveals that
while an attacker can read the encrypted values of the messages, it can’t decrypt the
message and read the plaintext messages inside.

The second section simply confirms that it is not possible for an attacker to decrypt
any messages nor can it create any messages which a principal can then be fooled
into decrypting as part of a legitimate protocol.

WideMouthFrog2.lysa

With the deliberate error introduced in this protocol, it would be expected to receive a
different result when using this file with the LySatool.

Values that may not be confidential
K, B, {LA, LkeyRepresentation}LKBS [at s2 dest { b1 }], {Lmsg1, Lmsg2}LK [at a2 dest {
b2 }], n•, m•+, m•-, S, A, keyRepresentation, {l•, l•}l• [at CPDY], msg1, msg2

Violation of authentication properties (ψ)
(CPDY, b2), (a2, CPDY)

Here we can see that by making this one change the protocol is completely
compromised. The first section reveals that the message that A is attempting to send
to B is not confidential. Additionally, an attacker can pose as A and send B a
message of its own.

NeedhamSchroeder.lysa

Values that may not be confidential
nonceA, B, {l•, l•, LK, L71}LKAS, {LK, LA}LKBS, {LnonceB}LKAB, {L29}LK, {Lmsg1,
Lmsg2}LK, n•, m•+, m•-, S, A, {l•, l•}l• [at CPDY], {l•, l•, l•, l•}l• [at CPDY], {l•}l• [at
CPDY]

Violation of authentication properties (ψ)
No violations possible

The analysis of this protocol is very similar to that of the Wide Mouth Frog protocol.
The first section reveals that an attacker can read any of the decrypted messages
but can not read the contents. The second section reveals that, like the WMF
protocol, an attacker can not decrypt any of the messages or create their own that a
principal will decrypt.

- 44 -

- 45 -

6. Conclusion

6.1.Shortcomings and Solutions

Using the test suite revealed that Elyjah works in all situations where the Java input
is exactly as specified. However in cases where the Java input was not exactly as
expected, possible shortcomings were identified. The first such shortcoming occurs
when the order of the elementAt method calls to a Vector object are not in
ascending numerical order. In these instances, the Java model will work correctly but
the LySa process is not correctly generated. The following table shows two Java
code blocks that produce different LySa processes but running the code will produce
the same result.
assert check(v.elementAt(0), "S");
assert check(v.elementAt(1), "B");
String msg = v.elementAt(2);

Currently produces LySa Process:
(S, B; msg)

assert check(v.elementAt(1), "B");
assert check(v.elementAt(0), "S");
String msg = v.elementAt(2);

Currently produces LySa Process:
(B, S; msg)

While Elyjah will produce an error code at this point, it would be possible to produce
a correct LySa process. This could be achieved by storing the String to be added to
the LySa process in a temporary Vector at the position it was removed from, then
creating a ListIterator to add of the contents of this temporary Vector, when all the
elements have been filled.

A second area where Elyjah can be improved is when a developer misses out a
variable binding in a receive or decrypt process. If this variable is not used in the
construction of any other message, then it does not matter what name is assigned to
that part of the message. The following two Java blocks should be able to produce
the same LySa process providing the variable msg2 is not used again.
assert check(v.elementAt(0), "S");
assert check(v.elementAt(1), "B");
String msg = v.elementAt(2);
String msg2 = v.elementAt(3);
String msg3 = v.elementAt(4);

Currently produces LySa Process:
(S, B; msg, msg2)

assert check(v.elementAt(0), "S");
assert check(v.elementAt(1), "B");
String msg = v.elementAt(2);
String msg3 = v.elementAt(4);

Currently produces LySa Process:
(S, B; msg2)

Currently Elyjah produces the same warning generated with out-of-order Vector
elementAt methods. However, if possible, the missing variable in the above
example could be filled. This could be achieved by adding a randomly named
variable in place of the missing one.

However, in both of these cases, it may be that the developer made an honest
mistake and mistyped the number of the elementAt method’s argument.
Attempting to second guess the developer’s model in these cases is likely to
produce a LySa model that does not represent the developer’s vision for the

- 46 -

protocol. For this reason, Elyjah makes no attempt to implement the proposed
solutions above and restricts itself to providing warnings.

6.2.Possible Future Work

Even though the project goals have been met, there are many ideas that could be
used to extend Elyjah in order to increase its functionality. One idea would be an
addition which allows a graphical simulation of the Java model of the protocol. This
allows the user’s protocol to be represented pictorially such that a user can see
messages passed between principals. There are a number of methods of
representing protocols graphically. One option would be to represent the principals
as nodes of a graph with messages travelling along edges between the nodes. It
should be possible to observe the contents of a message as the message is being
transmitted. This would also be useful as an educational tool. A similar display idea
is used in the Framework Animations of Distributed Algorithms project maintained by
the Centre for Research in IT and Education from Trinity College Dublin’s computer
science department. This allows a developer to observe a simulation of a distributed
algorithm with messages being passed between different principals. Another option
would be to display the protocol as an animated sequence diagram. This allows the
full protocol to be seen on the screen at the same time while still showing the timing.

Figure 6 – Screen capture of the Framework Animations of Distributed Algorithms from
https://www.cs.tcd.ie/Fionnuala.ODonnell/Framework/index.htm

- 47 -

Although challenging, it may also be possible to show the results of the LySatool in
this pictorial representation. The difficulty here is that an attack is often a many stage
process and the point of attack is often separated from the point where an error in
the protocol is made. However, using the crypto points it would be possible to
illustrate where an attacker can violate the authentication properties.

Another option for further development would be to extend Elyjah to output Meta
LySa. Meta LySa is an extension of LySa which adds indexed constructs to all
names, variables, and crypto-points. This allows for a concise representation of
multiple copies of processes. Meta LySa can be converted to LySa through syntactic
expansion a process automatically performed by the LySatool. Analysis of a Meta
LySa process may reveal additional flaws in a protocol that analysis of a single copy
of a protocol does not reveal. This is because an attacker may use messages from
one instance of a protocol against a separate instance.

6.3.General Conclusion

The original aim of this project was to create a software tool to convert Java
implementations of communication protocols into a process calculus which can then
be analysed. Based on the evidence presented in the Section 5, Elyjah clearly meets
this goal. Using Elyjah, developers can for the first time translate a working model of
a protocol into LySa. Developers can use the system to help them implement
protocols securely as well as learn more about communication protocols and the
attacks that can be performed on them.

Through this project, a framework for easily modelling protocols in the Java
language has also been developed. This framework helps developers to implement
protocols by providing most of the required functionality while providing the flexibility
to allow any protocol to be modelled.

There are no major flaws in the system although it can be improved to increase the
robustness. Elyjah provides a strong foundation for future work. Both the Java
framework and Elyjah itself can be extended to provide more functionality. I believe
further development on Elyjah would be worthwhile. Over the past few years static
analysis has been increasingly used in a range of fields with ever growing success.
Interest in security is equally high at the moment. Over the course of this project I
have come to understand why more developers do not use these formal techniques.
This is mainly due to the lack of literature available regarding LySa targeted towards
complete novices of process algebras. With such little information available for
ordinary developers, further development of tools like Elyjah could really help to
introduce more people to these formal methods.

- 48 -

- 49 -

Bibliography

[1] M. Buchholtz User's Guide for the LySatool version 2.01
Retreived August 2005 from:
http://www2.imm.dtu.dk/cs_LySa/lysatool/lysatool-2.01.pdf

[2] C. Bodei, M. Buchholtz, P. Degano, M. Curti, C. Priami, F. Nielson, H. Riis
Nielson: Performance Evaluation of Security Protocols Specified in LySa
Proceedings of the 2nd Workshop on Quantitative Aspects of Programming
Languages (QAPL 04), ENTCS vol. 112, p 167-189, 2005.

[3] D. Dolev, & A. C. Yao, On the Security of Public Key Protocols
IEEE Transactions on Information Theory Vol IT-29, No2. March 1983 pp
198-208

[4] C. Bodei, M. Buchholtz, P. Degano, F. Nielson. & F. Riis Nielson
Automatic Validation of Protocol Narration
Proceedings of the 16th IEEE Computer Security Foundations Workshop
(CSFW’03) pp 126-140. IEEE Computer Society Press. 2003.

[5] M. Buchholtz, C. Montangero, L. Perrone & S. Semprini For-LySa: UML
for Authentication Analysis
Global Computing: IST/FET International Workshop, GC 2004, LNCS vol.
3267, p. 93-106, Springer Verlag, 2005

[6] C. Bodei, M. Buchholtz, P. Degano, F. Nielson & H. Riis Nielson Static
Validation of Security Protocols
Journal of Computer Security.

[7] M. Buchholts, S. Gilmore, J. Hilston & F. Nielson Securing statically-
verified communications protocols against timing attacks
Proceedings of First International Workshop on Practical Applications of
Stochastic Modelling (PASM 04)

[8] L. Gong Inside Java 2 Platofrm Security: Architecture, API Design and
Implementation
Addison-Wesley (ISBN: 0-201-31000-7)

[9] A. Appel Modern compiler implementation in Java / 2nd ed.
Cambridge : Cambridge University Press, 2002

[10] C. Montangero, L. Perrone, and S. Semprini For-LySa: UML for
Authentication Analysis
DEGAS IST-2001-32072

[11] C. Bodei, M. Buchholtz, M. Curti, P. Degano F. Nielson, H. Riis Nielson, C.
Priami On Evaluating the Performance of Security Protocols

- 50 -

[12] S. Gilmore Securing statically-verified communications protocols against
timing attacks
Modelling, Methods and Tools November 14 2005 lecture note
http://homepages.inf.ed.ac.uk/stg/teaching/mmt/slides/pepa_lysa.pdf

- 51 -

Appendix

Java Framework method headers

ComClass Methods

 public abstract void processIncoming(Vector<String> v);
 public void shareKey(Key key, String name)
 public void registerKey(Key key, String name)
 public KeyPair generateKeyPair(long userseed)
 public SecretKey generateSharedKey()
 public String generateMessage(String message)
 public boolean check(Object a, Object b)
 public String sendKey(Key key)
 public SecretKey receiveSecretKey(String str)
 public PublicKey receivePublicKey(String str)
 public String encrypt(Vector v, Key key, String at, Vector<String> dest)
 public Vector decrypt(String str, Key key, String at, Vector<String> orig)
 public String encrypt(Vector v, Key key, String at, String dest)
 public Vector decrypt(String str, Key key, String at, String orig)
 public String encrypt(Vector v, Key key)
 public Vector decrypt(String str, Key key)

KeyGenerationClass Methods

 public static KeyPair generateKeyPair(long userseed)
 public static SecretKey generateSharedKey()

Network Class Methods

 public Network()
 public void send(ComClass source, String dest, Vector tuple)
 public void register(String name, ComClass comClass)
 public void shareKey(Key key, String name)

- 52 -

Test Files

In the following pages are the Java files used in Section 5 to test Elyjah. After each
file is the LySa file generated from this file. As well as these test cases the
MultipleSendReceive,java example referenced in Section 2.2.4 is included here.

- 53 -

Elyjah input (MultipleSendReceive.java)

/*
 * MultipleSendReceive.java
 *
 * Created on 16 November 2005, 11:13
 *
 */
import java.util.Vector;
import javax.crypto.*;
/**
 *
 * @author Nicholas O"Shea
 */
public class MultipleSendReceive extends KeyGenerationClass{
 public static void main(String[] args) {
 Network net = new Network();
 A a = new A(net);
 net.register("A", a);
 B b = new B(net);
 net.register("B", b);
 a.start();
 b.start();
 }
}

class A extends ComClass {
 Network net;

 public A (Network net){
 this.net = net;
 }

 public void run(){
 Vector v = new Vector();
 v.add("password");
 String msg = generateMessage("Message1");
 v.add(msg);
 net.send(this, "B", v);
 }

 public void processIncoming(Vector<String> v){
 switch (receivedNum) {
 case 0 :
 assert check(v.elementAt(0), "B");
 assert check(v.elementAt(1), "A");
 assert check(v.elementAt(2), "password2");
 String msg2 = v.elementAt(3);
 Vector v2 = new Vector();
 theLogger.info(msg2);
 v2.add("password3");
 String msg3 = generateMessage("message 3");

- 54 -

 v2.add(msg3);
 net.send(this, "B", v2);
 break;
 }
 }

}
class B extends ComClass {
 Network net;

 public B (Network net){
 this.net = net;
 }

 public void processIncoming(Vector<String> v){
 switch (receivedNum) {
 case 0:
 receivedNum++;
 // check first
 assert check(v.elementAt(0), "A");
 // check second
 assert check(v.elementAt(1), "B");
 // check third
 assert check(v.elementAt(2), "password");
 // assign fourth
 String msg = v.elementAt(3);
 theLogger.info(msg);
 Vector v2 = new Vector();
 v2.add("password2");
 String msg2 = generateMessage("Message2");
 v2.add(msg2);
 net.send(this, "A", v2);
 break;
 case 1:
 assert check(v.elementAt(0), "A");
 assert check(v.elementAt(1), "B");
 assert check(v.elementAt(2), "password3");
 String msg3 = v.elementAt(3);
 theLogger.info(msg3);
 break;
 }

 }
}

- 55 -

Elyjah input (TestEasySend.java)

/*
 * TestEasySend.java
 *
 * Created on 16 November 2005, 11:13
 *
 */
import java.util.Vector;
import javax.crypto.*;
/**
 *
 * @author Nicholas O"Shea
 */
public class TestEasySend extends KeyGenerationClass {
 public static void main(String[] args) {
 Network net = new Network();
 A a = new A(net);
 net.register("A", a);

 B b = new B(net);
 net.register("B", b);

 b.start();
 a.start();
 }
}

class A extends ComClass {
 Network net;

 public A (Network net){
 this.net = net;
 }

 public void run(){
 Vector v = new Vector();
 v.add("A");
 String msg = generateMessage("this is a message");
 v.add(msg);
 net.send(this, "B", v);

 }

 public void processIncoming(Vector<String> v){
 switch (receivedNum) {
 case 0 :
 }
 }

- 56 -

}
class B extends ComClass {
 Network net;

 public B (Network net){
 this.net = net;
 }

 public void processIncoming(Vector<String> v){
 switch (receivedNum) {
 case 0 :
 }
 }

}

Elyjah output (TestEasySend.lysa)
!(new msg) <A,B,A,msg>.0
|
!0

- 57 -

Elyjah input (TestEasySendReceive.java)

/*
 * TestEasySendReceive.java
 *
 * Created on 16 November 2005, 11:13
 *
 */
import java.util.Vector;
import javax.crypto.*;
/**
 *
 * @author Nicholas O"Shea
 */
public class TestEasySendReceive extends KeyGenerationClass {
 public static void main(String[] args) {
 Network net = new Network();
 A a = new A(net);
 net.register("A", a);
 B b = new B(net);
 net.register("B", b);

 b.start();
 a.start();
 }
}

class A extends ComClass {
 Network net;

 public A (Network net){
 this.net = net;
 }

 public void run(){
 Vector v = new Vector();
 v.add("A");
 String msg = generateMessage("this is a message");
 v.add(msg);
 net.send(this, "B", v);

 }

 public void processIncoming(Vector<String> v){
 switch (receivedNum) {
 case 0 :
 }
 }

}

- 58 -

class B extends ComClass {
 Network net;

 public B (Network net){
 this.net = net;
 }

 public void processIncoming(Vector<String> v){
 switch (receivedNum) {
 case 0 :
 assert (check(v.elementAt(0), "A"));
 assert (check(v.elementAt(1), "B"));
 String source = v.elementAt(2);
 String message = v.elementAt(3);

 theLogger.info(source);
 theLogger.info(message);
 }
 }

}

Elyjah output (TestEasySendReceive.lysa)
!(new msg) <A,B,A,msg>.0
|
!(A,B;source,message).0

- 59 -

Elyjah input (TestEasySendEncrypt.java)

/*
 * TestEasySendEncrypt.java
 *
 * Created on 16 November 2005, 11:13
 *
 */
import java.util.Vector;
import javax.crypto.*;
/**
 *
 * @author Nicholas O"Shea
 */
public class TestEasySendEncrypt extends KeyGenerationClass {
 public static void main(String[] args) {
 Network net = new Network();
 A a = new A(net);
 net.register("A", a);
 B b = new B(net);
 net.register("B", b);

 SecretKey key = generateSharedKey();
 net.shareKey(key, "K");

 b.start();
 a.start();
 }
}

class A extends ComClass {
 Network net;

 public A (Network net){
 this.net = net;
 }

 public void run(){
 Vector v = new Vector();
 v.add("A");
 String msg = generateMessage("this is a message");
 Vector vEnc = new Vector();
 vEnc.add(msg);
 SecretKey key = (SecretKey) keys.get("K");
 v.add(encrypt(vEnc, key, "a", "b"));
 net.send(this, "B", v);

 }

 public void processIncoming(Vector<String> v){

- 60 -

 switch (receivedNum) {
 case 0 :
 }
 }

}
class B extends ComClass {
 Network net;

 public B (Network net){
 this.net = net;
 }

 public void processIncoming(Vector<String> v){
 switch (receivedNum) {

 }
 }

}

Elyjah output (TestEasySendEncrypt.lysa)
(new K) (
!(new msg) <A,B,A,{msg} : K [at a dest {b}] >.0
|
!0
)

- 61 -

Elyjah input (TestEasySendReceiveEncrypt.java)

/*
 * TestEasySendReceiveEncrypt.java
 *
 * Created on 16 November 2005, 11:13
 *
 */
import java.util.Vector;
import javax.crypto.*;
/**
 *
 * @author Nicholas O"Shea
 */
public class TestEasySendReceiveEncrypt extends KeyGenerationClass {
 public static void main(String[] args) {
 Network net = new Network();
 A a = new A(net);
 net.register("A", a);
 B b = new B(net);
 net.register("B", b);

 SecretKey key = generateSharedKey();
 net.shareKey(key, "K");

 b.start();
 a.start();
 }
}

class A extends ComClass {
 Network net;

 public A (Network net){
 this.net = net;
 }

 public void run(){
 Vector v = new Vector();
 v.add("A");
 String msg = generateMessage("this is a message");
 Vector vEnc = new Vector();
 vEnc.add(msg);
 SecretKey key = (SecretKey) keys.get("K");
 v.add(encrypt(vEnc, key, "a", "b"));
 net.send(this, "B", v);

 }

 public void processIncoming(Vector<String> v){

- 62 -

 switch (receivedNum) {
 case 0 :
 }
 }

}
class B extends ComClass {
 Network net;

 public B (Network net){
 this.net = net;
 }

 public void processIncoming(Vector<String> v){
 switch (receivedNum) {
 case 0 :
 assert (check(v.elementAt(0), "A"));
 assert (check(v.elementAt(1), "B"));
 String source = v.elementAt(2);
 String msgToBeDecoded = v.elementAt(3);
 SecretKey key = (SecretKey) keys.get("K");
 Vector<String> decode = decrypt(msgToBeDecoded, key, "b",
"a");
 String message = decode.elementAt(0);

 theLogger.info(source);
 theLogger.info(msgToBeDecoded);
 theLogger.info(message);
 }
 }

}

Elyjah output (TestEasySendReceiveEncrypt.lysa(
(new K) (
!(new msg) <A,B,A,{msg} : K [at a dest {b}] >.0
|
!(A,B;source,msgToBeDecoded). decrypt msgToBeDecoded as {;message}:K [
at b orig {a}] in 0
)

- 63 -

Elyjah input (TestEasySendReceivePublicEncrypt.java)

/*
 * TestEasySendReceivePublicEncrypt.java
 *
 * Created on 16 November 2005, 11:13
 *
 */
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.util.Vector;
import javax.crypto.*;
/**
 *
 * @author Nicholas O"Shea
 */
public class TestEasySendReceivePublicEncrypt extends KeyGenerationClass {
 public static void main(String[] args) {
 Network net = new Network();
 A a = new A(net);
 net.register("A", a);
 B b = new B(net);
 net.register("B", b);

 b.start();
 a.start();
 }
}

class A extends ComClass {
 Network net;

 public A (Network net){
 this.net = net;
 }

 public void run(){
 Vector v = new Vector();
 KeyPair keyPair = generateKeyPair(1024);
 PublicKey keyPublic = keyPair.getPublic();
 PrivateKey keyPrivate = keyPair.getPrivate();
 registerKey(keyPublic, "K+");
 registerKey(keyPrivate, "K-");
 v.add(sendKey(keyPublic));

 net.send(this, "B", v);

 }

- 64 -

 public void processIncoming(Vector<String> v){
 switch (receivedNum) {
 case 0 :
 assert (check(v.elementAt(0), "B"));
 assert (check(v.elementAt(1), "A"));
 String msgToBeDecoded = v.elementAt(2);
 PrivateKey key = (PrivateKey) keys.get("K-");
 Vector<String> decode = decrypt(msgToBeDecoded, key, "a",
"b");
 String msg = decode.elementAt(0);

 theLogger.info(msgToBeDecoded);
 theLogger.info(msg);
 }
 }

}
class B extends ComClass {
 Network net;

 public B (Network net){
 this.net = net;
 }

 public void processIncoming(Vector<String> v){
 switch (receivedNum) {
 case 0 :
 assert (check(v.elementAt(0), "A"));
 assert (check(v.elementAt(1), "B"));

 PublicKey key = receivePublicKey(v.elementAt(2));
 registerKey(key, "K");

 Vector vMsg = new Vector();
 Vector vEnc = new Vector();
 String message = generateMessage("this is the message");
 vEnc.add(message);
 vMsg.add(encrypt(vEnc, key, "b", "a"));
 net.send(this, "A", vMsg);
 }
 }

}

Elyjah output (TestEasySendReceivePublicEncrypt.lysa)
!(new +- K-) <A,B,K+>.(B,A;msgToBeDecoded). decrypt msgToBeDecoded as
{|;msg|}:K- [at a orig {b}] in 0
|
!(A,B;K+).(new message) <B,A,{|message|} : K+ [at b dest {a}] >.0

- 65 -

Elyjah input (WideMouthFrog.java)

/*
 * WideMouthFrog.java
 *
 * Created on 16 November 2005, 11:13
 *
 */
import java.util.Vector;
import javax.crypto.*;
/**
 *
 * @author Nicholas O"Shea
 */
public class WideMouthFrog extends KeyGenerationClass {
 public static void main(String[] args) {
 Network net = new Network();
 A a = new A(net);
 net.register("A", a);
 B b = new B(net);
 net.register("B", b);
 S s = new S(net);
 net.register("S", s);

 SecretKey keyA = generateSharedKey();
 SecretKey keyB = generateSharedKey();

 a.shareKey(keyA, "KAS");
 s.shareKey(keyA, "KAS");
 b.shareKey(keyB, "KBS");
 s.shareKey(keyB, "KBS");

 a.start();
 b.start();
 s.start();
 }
}

class A extends ComClass {
 Network net;

 public A (Network net){
 this.net = net;
 }

 public void run(){
 Vector v = new Vector();
 v.add("A");
 Vector vEncoded = new Vector();
 vEncoded.add("B");

- 66 -

 SecretKey keyAB = generateSharedKey();
 SecretKey keyAS = (SecretKey) keys.get("KAS");
 registerKey(keyAB, "K");
 vEncoded.add(sendKey(keyAB));
 v.add(encrypt(vEncoded, keyAS, "a1", "s1"));
 net.send(this, "S", v);

 // Message to B
 Vector vB = new Vector();
 Vector vBEncoded = new Vector();
 String msg1 = generateMessage("FIRST BIT OF MESSAGE");
 String msg2 = generateMessage("SECOND BIT OF MESSAGE");
 vBEncoded.add(msg1);
 vBEncoded.add(msg2);
 vB.add(encrypt(vBEncoded, keyAB, "a2", "b2"));
 net.send(this, "B", vB);

 }

 public void processIncoming(Vector v){
 switch (receivedNum) {
 case 0 :
 }
 }

}
class B extends ComClass {
 Network e;

 public B (Network e){
 this.e = e;
 }

 public void processIncoming(Vector<String> v){
 switch (receivedNum) {
 case 0:
 receivedNum++;
 // check first
 assert check(v.elementAt(0), "S");
 // check second
 assert check(v.elementAt(1), "B");
 // check third
 // assign fourth
 SecretKey key = (SecretKey) keys.get("KBS");
 String msgToBeDecoded = v.elementAt(2);
 Vector<String> decode = decrypt(msgToBeDecoded, key,
"b1", "s2");

 assert check(decode.elementAt(0), "A");
 //String keyRepresentation = decode.elementAt(1);

 SecretKey keyAB = receiveSecretKey(decode.elementAt(1));

- 67 -

 registerKey(keyAB, "KAB");

 break;
 case 1:
 receivedNum++;
 // check first
 assert check(v.elementAt(0), "A");
 // check second
 assert check(v.elementAt(1), "B");
 String msgToBeDecoded2 = v.elementAt(2);
 SecretKey key2 = (SecretKey)keys.get("KAB");
 Vector<String> decode2 = decrypt(msgToBeDecoded2, key2,
"b2", "a2");

 String msg1 = decode2.elementAt(0);
 String msg2 = decode2.elementAt(1);
 theLogger.info(msg1);
 theLogger.info(msg2);
 }

 }
}
class S extends ComClass {
 Network e;

 public S (Network e){
 this.e = e;
 }

 public void processIncoming(Vector<String> v){
 switch (receivedNum) {
 case 0:
 receivedNum++;
 // check first
 assert check(v.elementAt(0), "A");
 // check second
 assert check(v.elementAt(1), "S");
 assert check(v.elementAt(2), "A");
 SecretKey key = (SecretKey) keys.get("KAS");
 String msgToBeDecoded = v.elementAt(3);
 Vector<String> decode = decrypt(msgToBeDecoded, key,
"s1", "a1");

 assert check(decode.elementAt(0), "B");
 //SecretKey keyAB = (SecretKey) decode.elementAt(1);
 String keyRepresentation = decode.elementAt(1);

 Vector v2 = new Vector();
 v2.add("A");
 v2.add(keyRepresentation);
 Vector v3 = new Vector();
 SecretKey key2 = (SecretKey) keys.get("KBS");
 v3.add(encrypt(v2, key2, "s2", "b1"));
 e.send(this, "B", v3);

- 68 -

 break;
 }
 }
}

Elyjah output (WideMouthFrog.lysa)
(new KAS) (new KBS) (
!(new K) (new msg1) (new msg2) <A,S,A,{B,K} : KAS [at a1 dest {s1}]
>.<A,B,{msg1,msg2} : K [at a2 dest {b2}] >.0
|
!(S,B;msgToBeDecoded). decrypt msgToBeDecoded as {A;KAB}:KBS [at b1
orig {s2}] in (A,B;msgToBeDecoded2). decrypt msgToBeDecoded2 as
{;msg1,msg2}:KAB [at b2 orig {a2}] in 0
|
!(A,S,A;msgToBeDecoded). decrypt msgToBeDecoded as
{B;keyRepresentation}:KAS [at s1 orig {a1}] in
<S,B,{A,keyRepresentation} : KBS [at s2 dest {b1}] >.0
)

- 69 -

Elyjah input (WideMouthFrog2.java)

/*
 * WideMouthFrog2.java
 *
 * Created on 16 November 2005, 11:13
 *
 */
import java.util.Vector;
import javax.crypto.*;
/**
 *
 * @author Nicholas O’Shea
 */
public class WideMouthedFrog2 extends KeyGenerationClass {
 public static void main(String[] args) {
 Network net = new Network();
 A a = new A(net);
 net.register("A", a);
 B b = new B(net);
 net.register("B", b);
 S s = new S(net);
 net.register("S", s);

 SecretKey keyA = generateSharedKey();
 SecretKey keyB = generateSharedKey();

 net.shareKey(keyA, "KAS");
 net.shareKey(keyB, "KBS");

 a.start();
 b.start();
 s.start();
 }
}

class A extends ComClass {
 Network net;

 public A (Network net){
 this.net = net;
 }

 public void run(){
 Vector v = new Vector();
 v.add("A");
 Vector vEncoded = new Vector();
 //vEncoded.add("B");
 v.add("B");
 SecretKey keyAB = generateSharedKey();

- 70 -

 SecretKey keyAS = (SecretKey) keys.get("KAS");
 registerKey(keyAB, "K");
 v.add(sendKey(keyAB));
 net.send(this, "S", v);

 // Message to B
 Vector vB = new Vector();
 Vector vBEncoded = new Vector();
 String msg1 = generateMessage("FIRST BIT OF MESSAGE");
 String msg2 = generateMessage("SECOND BIT OF MESSAGE");
 vBEncoded.add(msg1);
 vBEncoded.add(msg2);
 vB.add(encrypt(vBEncoded, keyAB, "a2", "b2"));
 net.send(this, "B", vB);

 }

 public void processIncoming(Vector v){
 switch (receivedNum) {
 case 0 :
 }
 }

}
class B extends ComClass {
 Network e;

 public B (Network e){
 this.e = e;
 }

 public void processIncoming(Vector<String> v){
 switch (receivedNum) {
 case 0:
 receivedNum++;
 // check first
 assert check(v.elementAt(0), "S");
 // check second
 assert check(v.elementAt(1), "B");
 // check third
 // assign fourth
 SecretKey key = (SecretKey) keys.get("KBS");
 String msgToBeDecoded = v.elementAt(2);
 Vector<String> decode = decrypt(msgToBeDecoded, key,
"b1", "s2");

 assert check(decode.elementAt(0), "A");
 //String keyRepresentation = decode.elementAt(1);

 SecretKey keyAB = receiveSecretKey(decode.elementAt(1));

 registerKey(keyAB, "KAB");

- 71 -

 break;
 case 1:
 receivedNum++;
 // check first
 assert check(v.elementAt(0), "A");
 // check second
 assert check(v.elementAt(1), "B");
 String msgToBeDecoded2 = v.elementAt(2);
 SecretKey key2 = (SecretKey)keys.get("KAB");
 Vector<String> decode2 = decrypt(msgToBeDecoded2, key2,
"b2", "a2");

 String msg1 = decode2.elementAt(0);
 String msg2 = decode2.elementAt(1);
 theLogger.info(msg1);
 theLogger.info(msg2);
 }

 }
}
class S extends ComClass {
 Network e;

 public S (Network e){
 this.e = e;
 }

 public void processIncoming(Vector<String> v){
 switch (receivedNum) {
 case 0:
 receivedNum++;
 // check first
 assert check(v.elementAt(0), "A");
 // check second
 assert check(v.elementAt(1), "S");
 assert check(v.elementAt(2), "A");
 SecretKey key = (SecretKey) keys.get("KAS");
 //String msgToBeDecoded = v.elementAt(3);
 //Vector<String> decode = decrypt(msgToBeDecoded, key,
"s1", "a1");
 assert check(v.elementAt(3), "B");

 //assert check(decode.elementAt(0), "B");
 //SecretKey keyAB = (SecretKey) decode.elementAt(1);
 //String keyRepresentation = decode.elementAt(1);
 String keyRepresentation = v.elementAt(4);

 Vector v2 = new Vector();
 v2.add("A");
 v2.add(keyRepresentation);
 Vector v3 = new Vector();
 SecretKey key2 = (SecretKey) keys.get("KBS");
 v3.add(encrypt(v2, key2, "s2", "b1"));
 e.send(this, "B", v3);

- 72 -

 break;
 }
 }
}

Elyjah output (WideMouthFrog2.lysa)
(new KAS) (new KBS) (
!(new K) (new msg1) (new msg2) <A,S,A,B,K>.<A,B,{msg1,msg2} : K [at a2
dest {b2}] >.0
|
!(S,B;msgToBeDecoded). decrypt msgToBeDecoded as {A;KAB}:KBS [at b1
orig {s2}] in (A,B;msgToBeDecoded2). decrypt msgToBeDecoded2 as
{;msg1,msg2}:KAB [at b2 orig {a2}] in 0
|
!(A,S,A,B;keyRepresentation).<S,B,{A,keyRepresentation} : KBS [at s2
dest {b1}] >.0
)

- 73 -

Elyjah input (NeedhamSchroeder.java)

/*
 * NeedhamSchroeder.java
 *
 * Created on 16 November 2005, 11:13
 *
 */
import java.util.Vector;
import javax.crypto.*;
/**
 *
 * @author Nicholas O"Shea
 */
public class NeedhamSchroeder extends KeyGenerationClass {
 public static void main(String[] args) {
 Network net = new Network();
 A a = new A(net);
 net.register("A", a);
 B b = new B(net);
 net.register("B", b);
 S s = new S(net);
 net.register("S", s);

 SecretKey keyA = generateSharedKey();
 SecretKey keyB = generateSharedKey();
 SecretKey succ = generateSharedKey();

 a.shareKey(keyA, "KAS");
 s.shareKey(keyA, "KAS");

 b.shareKey(keyB, "KBS");
 s.shareKey(keyB, "KBS");

 net.shareKey(succ, "SUCC");

 a.start();
 b.start();
 s.start();
 }
}

class A extends ComClass {
 Network net;
 String nonceA;

 public A (Network net){
 this.net = net;
 }

- 74 -

 public void run(){
 Vector v = new Vector();
 v.add("A");
 v.add("B");
 String nonceA = generateMessage("nonce");
 v.add(nonceA);
 net.send(this, "S", v);

 }

 public void processIncoming(Vector<String> v){
 switch (receivedNum) {
 case 0 :
 receivedNum++;
 // check first
 assert check(v.elementAt(0), "S");
 // check second
 assert check(v.elementAt(1), "A");
 String msgtoBeDecoded = v.elementAt(2);
 SecretKey keyS = (SecretKey) keys.get("KAS");
 Vector<String> decode = decrypt(msgtoBeDecoded, keyS);

 assert check(decode.elementAt(0), nonceA);
 assert check(decode.elementAt(1), "B");
 SecretKey keyAB = receiveSecretKey(decode.elementAt(2));
 registerKey(keyAB, "K");
 String encryptedMsgToB = decode.elementAt(3);

 Vector vToB1 = new Vector();
 vToB1.add(encryptedMsgToB);
 net.send(this, "B", vToB1);
 break;
 case 1 :
 receivedNum++;
 // check first
 assert check(v.elementAt(0), "B");
 // check second
 assert check(v.elementAt(1), "A");
 String msgtoBeDecoded2 = v.elementAt(2);
 SecretKey keyAB2 = (SecretKey) keys.get("K");
 Vector<String> decode2 = decrypt(msgtoBeDecoded2,
keyAB2);
 String nonceB = decode2.elementAt(0);

 Vector vToB2Enc = new Vector();
 Vector vToB2 = new Vector();
 SecretKey succ = (SecretKey) keys.get("SUCC");
 Vector vToBNonce = new Vector();
 vToBNonce.add(nonceB);
 vToB2Enc.add(encrypt(vToBNonce, succ));

- 75 -

 vToB2.add(encrypt(vToB2Enc, keyAB2));
 net.send(this, "B", vToB2);

 String msg1 = generateMessage("FIRST BIT OF MESSAGE");
 String msg2 = generateMessage("SECOND BIT OF MESSAGE");
 Vector vToB3Enc = new Vector();
 Vector vToB3 = new Vector();
 vToB3Enc.add(msg1);
 vToB3Enc.add(msg2);
 vToB3.add(encrypt(vToB3Enc, keyAB2));
 net.send(this, "B", vToB3);
 }
 }

}
class B extends ComClass {
 Network net;
 String nonceBstore;

 public B (Network net){
 this.net = net;
 }

 public void processIncoming(Vector<String> v){
 switch (receivedNum) {
 case 0:
 receivedNum++;
 // check first
 assert check(v.elementAt(0), "A");
 // check second
 assert check(v.elementAt(1), "B");
 // check third
 // assign fourth
 SecretKey key = (SecretKey) keys.get("KBS");
 String msgToBeDecoded = v.elementAt(2);
 Vector<String> decode = decrypt(msgToBeDecoded, key);

 SecretKey keyAB = receiveSecretKey(decode.elementAt(0));
 String source = decode.elementAt(1);
 registerKey(keyAB, "KAB");

 Vector vToAEnc = new Vector();
 String nonceB = generateMessage("nonceB");
 nonceBstore = nonceB;
 vToAEnc.add(nonceB);
 Vector vToA = new Vector();
 vToA.add(encrypt(vToAEnc, keyAB));
 net.send(this, "A", vToA);

 break;
 case 1:
 receivedNum++;

- 76 -

 // check first
 assert check(v.elementAt(0), "A");
 // check second
 assert check(v.elementAt(1), "B");
 String msgToBeDecoded2 = v.elementAt(2);
 SecretKey key2 = (SecretKey)keys.get("KAB");

 Vector<String> decode2 = decrypt(msgToBeDecoded2, key2);

 SecretKey succ = (SecretKey) keys.get("SUCC");
 Vector vNonce = new Vector();
 nonceB = nonceBstore;
 vNonce.add(nonceB);

 assert check(decode2.elementAt(0), encrypt(vNonce, succ));
 break;
 case 2:
 receivedNum++;
 // check first
 assert check(v.elementAt(0), "A");
 // check second
 assert check(v.elementAt(1), "B");
 String msgToBeDecoded3 = v.elementAt(2);
 SecretKey key3 = (SecretKey)keys.get("KAB");

 Vector<String> decode3 = decrypt(msgToBeDecoded3, key3);
 String msg1 = decode3.elementAt(0);
 String msg2 = decode3.elementAt(1);
 theLogger.info(msg1);
 theLogger.info(msg2);
 }

 }
}
class S extends ComClass {
 Network e;

 public S (Network e){
 this.e = e;
 }

 public void processIncoming(Vector<String> v){
 switch (receivedNum) {
 case 0:
 receivedNum++;
 // check first
 assert check(v.elementAt(0), "A");
 // check second
 assert check(v.elementAt(1), "S");

 assert check(v.elementAt(2), "A");

- 77 -

 String destination = v.elementAt(3);
 String nonce = v.elementAt(4);

 SecretKey keyA = (SecretKey) keys.get("KAS");
 SecretKey keyB = (SecretKey) keys.get("KBS");

 Vector vToAEncrypted = new Vector();
 vToAEncrypted.add(nonce);
 vToAEncrypted.add(destination);
 SecretKey key = generateSharedKey();
 registerKey(key, "K");
 vToAEncrypted.add(sendKey(key));
 Vector vToBEncrypted = new Vector();
 vToBEncrypted.add(sendKey(key));
 vToBEncrypted.add("A");
 vToAEncrypted.add(encrypt(vToBEncrypted, keyB));

 Vector vToA = new Vector();
 vToA.add(encrypt(vToAEncrypted, keyA));
 e.send(this, "A", vToA);

 break;
 }
 }
}

Elyjah output (NeedhamSchroeder.lysa)
(new KAS) (new KBS) (new SUCC) (
!(new nonceA) <A,S,A,B,nonceA>.(S,A;msgtoBeDecoded). decrypt
msgtoBeDecoded as {nonceA,B;K,encryptedMsgToB}:KAS in
<A,B,encryptedMsgToB>.(B,A;msgtoBeDecoded2). decrypt msgtoBeDecoded2 as
{;nonceB}:K in (new msg1) (new msg2) <A,B,{{nonceB} : SUCC} :
K>.<A,B,{msg1,msg2} : K>.0
|
!(A,B;msgToBeDecoded). decrypt msgToBeDecoded as {;KAB,source}:KBS in
(new nonceB) <B,A,{nonceB} : KAB>.(A,B;msgToBeDecoded2). decrypt
msgToBeDecoded2 as {{nonceB} : SUCC;}:KAB in (A,B;msgToBeDecoded3).
decrypt msgToBeDecoded3 as {;msg1,msg2}:KAB in 0
|
!(A,S,A;destination,nonce).(new K) <S,A,{nonce,destination,K,{K,A} :
KBS} : KAS>.0
)

