
The Tao of PEPA nets

Stephen Gilmore

Joint work with
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Background

Modern enterprise software design assumes a

heterogeneous distributed system model where

mobile objects are sent from host to host.

Systems are usually structured in this way to

separate trusted participants with access rights

from untrusted participants without access rights

but also to achieve required levels of performance.

Several formalisms exist to analyse security in

mobile code systems (Secure Ambients,

Spi-calculus) but what about the performance

analysis of such systems?
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PEPA nets

The PEPA nets language is a high-level modelling

formalism for performance analysis of mobile object

systems.

A PEPA net is a stochastic Petri net with coloured

tokens. The tokens represent mobile objects with

state and behaviour.

The tokens are described using a stochastic process

algebra, Jane Hillston’s Performance Evaluation

Process Algebra (PEPA).

P ::= (α, r).P︸ ︷︷ ︸
prefix

| P + P︸ ︷︷ ︸
choice

| P BC
L
P︸ ︷︷ ︸

cooperation

| P/L︸ ︷︷ ︸
hiding

| X︸ ︷︷ ︸
variable
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Objects as tokens

Consider a File class with methods openRead(),

openWrite(), read(), write() and close().

The order in which the methods can be applied

defines a protocol for a File object.

| openRead- | read�
close

�

openWrite�|write -
close

-

We can express this as a PEPA component.

File def
= (openRead , ro).InStream
+ (openWrite, ro).OutStream

InStream def
= (read , rr ).InStream + (close, rc).File

OutStream def
= (write, rw ).OutStream + (close, rc).File
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Contexts and cells

A PEPA net is made up of PEPA contexts, one at

each place in the net.

Contexts contain static components and cells,

which store tokens.

A typical context might be the following:

File[ ] BC
L

FileReader

where the synchronisation set L in this case is
~A(File), the complete action type set of the

component, (openRead, read, close, . . . ).
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Token movement

Tokens move by participating in firings of the net.

Continuing our example, we introduce an instant

message as a type of transmissible file.

InstantMessage def
= (transmit, rt).File

Part of a PEPA net which models the passage of

instant messages is shown below.

InstantMessage[ ]
(transmit,rt )

−−−→[]−−−→ File[File]BC
L

FileReader

An instant message IM can be moved by the

transmit firing. In moving it changes state to a File
derivative, which can be read by the FileReader .
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An enabling set is a set of (token, place) pairs.

A transition t has an enabling set of firing type α,

ES(t , α), if for each input place Pi of t there is an

element (T ,Pi) in ES(t , α) such that T is a token in

the current marking of Pi , which has a one-step

α-derivative, T ′.

Example:

P1 T [T1]

P2 T [T2]

T [ ] BC
∅
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t

(α, r)
-

-
-
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Semantics: Firing Rule

When a transition t fires with type α on the basis

of the enabling set ES(t , α), then for each (T ,Pi) in

ES(t , α), T [T ] is replaced by T [ ] in the marking of

Pi , and the current marking of each output place is

updated according to φ.

P1 T [ ]

P2 T [ ]

T [T3] BC
∅
T [T4] P3

t

(α, r)
-

-
-

T1
(α,r)−→ T3, T2

(α,r)−→ T4, ES(t, α) = { (T1,P1), (T2,P2) }
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Using logic to specify performance measures

The appropriate logic for PEPA nets is one which

can specify performance measures over the places

of the net, and has the capability of expressing

requirements on tokens in addition to requirements

on the transitions and firings of the net.

We introduce the PMLν logic by means of a

two-level grammar which separates the specification

of place formulae and token formulae from the

specification of transition and firing activities.

Behaviour at the transition and firing level is

captured by formulae of a sub-logic, PMLµ.
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PMLµ

Based on probabilistic modal logic [Larsen & Skou].

φ ::= tt | ¬φ | φ1 ∧ φ2 | ∇α | 〈α〉ρφ

P |=µ tt

P |=µ ¬φ iff P 6|=µ φ

P |=µ φ1 ∧ φ2 iff P |=µ φ1 ∧ P |=µ φ2

P |=µ ∇α iff P
α−→/

P |=µ 〈α〉ρφ iff P
(α,λ)
=⇒ S for some λ ≥ ρ,

and for all P ′ ∈ S, P ′ |=µ φ.
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PMLν

ψ ::= φ | ¬ψ | ψ1 ∧ ψ2 | Pi[φ] | Pi#Ti ∼ n

where ∼ = {=, 6=, <,≤, >,≥}.

M |=ν φ iff M |=µ φ

M |=ν ¬ψ iff M 6|=ν ψ

M |=ν ψ1 ∧ ψ2 iff M |=ν ψ1 ∧M |=ν ψ2

M |=ν Pi[φ] iff Mi |=µ φ

M |=ν Pi#Ti ∼ n iff tokens(Mi, Ti) ∼ n.

tokens(P, Ti) = tokens(T [ ], Ti) = 0,

tokens(T [Ti], Ti) = 1, tokens(T [Tj ], Ti) = 0 if Tj 6= Ti

tokens(P BC
L
Q,Ti) = tokens(P, Ti) + tokens(Q,Ti)
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Tokens

SoapMessage def
= (sendclr, rsc).SentClearMessage
+ (encrypt , re).EncryptedMsg
+ (parse, rp).DOMtree

SentClearMessage def
= (copyClear,>).SoapMessage

EncryptedMsg def
= (decrypt , rd).SoapMessage
+ (sendenc, rse).SentEncMessage

SentEncMessage def
= (copyEncrypted,>).EncryptedMsg

DOMtree def
= (read , rr).DOMtree
+ (modify, rm).DOMtree
+ (export , rx).SoapMessage
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Expressing performance measures using PMLν

Probability that the user has an unread reply:

Client [∆decrypt ∨∆parse ]

Probability that the client has just sent a request:

Client#SentEncMessage = 1

Service time distribution at the server side:

Start when Server#SoapMessage = 1

Stop when Firewall#SentEncMessage = 1
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Practical performance analysis methods must

provide automated support for deriving numerical

results from a high-level specification.

Usually the high-level model is used to derive a

Continuous-Time Markov Chain (CTMC) for

performance analysis.

We can derive a CTMC directly from a PEPA net

using the PEPA Workbench for PEPA nets.

An alternative is to compile a PEPA net to an

equivalent PEPA model and then use one of the

PEPA tools.
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Solving larger PEPA nets

The motivation for compiling PEPA nets to PEPA

models is to use the range of tools available for

PEPA.

We solved the secure web service model using

• the PEPA net compiler;

• Jeremy Bradley’s Imperial PEPA compiler; and

• Will Knottenbelt’s DNAmaca Petri net

analyser.

Alternatives: Möbius, PRISM.



Conclusions

PEPA nets are a high-level modelling language

addressing the performance aspects of the design

of modern software systems.

Unlike a Petri net, tokens are programmable

components, allowing direct modelling of stateful

objects.

Evaluation contexts at the places of the net allow

the modeller to represent different areas of

computation.

Tools exist which support the PEPA nets language.



Future work

It is possible that the PEPA nets language could be

extended, necessitating extensions to the existing

tool support.

One possibility would be to add a type system

which ensures a consistent interface for tokens.

It is possible that the PMLν logic should be

extended or revised.

Undertaking real-world examples and case studies is

a good way to drive this process.



end of slide show


