
The Tao of PEPA nets

Stephen Gilmore

Joint work with

Jane Hillston, Lëıla Kloul and Marina Ribaudo

13th August 2003

- -

?

?
��

6

6

Background

Modern enterprise software design assumes a

heterogeneous distributed system model where

mobile objects are sent from host to host.

Background

Modern enterprise software design assumes a

heterogeneous distributed system model where

mobile objects are sent from host to host.

Systems are usually structured in this way to

separate trusted participants with access rights

from untrusted participants without access rights

but also to achieve required levels of performance.

Background

Modern enterprise software design assumes a

heterogeneous distributed system model where

mobile objects are sent from host to host.

Systems are usually structured in this way to

separate trusted participants with access rights

from untrusted participants without access rights

but also to achieve required levels of performance.

Several formalisms exist to analyse security in

mobile code systems (Secure Ambients,

Spi-calculus) but what about the performance

analysis of such systems?

PEPA nets

The PEPA nets language is a high-level modelling

formalism for performance analysis of mobile object

systems.

PEPA nets

The PEPA nets language is a high-level modelling

formalism for performance analysis of mobile object

systems.

A PEPA net is a stochastic Petri net with coloured

tokens. The tokens represent mobile objects with

state and behaviour.

PEPA nets

The PEPA nets language is a high-level modelling

formalism for performance analysis of mobile object

systems.

A PEPA net is a stochastic Petri net with coloured

tokens. The tokens represent mobile objects with

state and behaviour.

The tokens are described using a stochastic process

algebra, Jane Hillston’s Performance Evaluation

Process Algebra (PEPA).

PEPA nets

The PEPA nets language is a high-level modelling

formalism for performance analysis of mobile object

systems.

A PEPA net is a stochastic Petri net with coloured

tokens. The tokens represent mobile objects with

state and behaviour.

The tokens are described using a stochastic process

algebra, Jane Hillston’s Performance Evaluation

Process Algebra (PEPA).

P ::= (α, r).P︸ ︷︷ ︸
prefix

PEPA nets

The PEPA nets language is a high-level modelling

formalism for performance analysis of mobile object

systems.

A PEPA net is a stochastic Petri net with coloured

tokens. The tokens represent mobile objects with

state and behaviour.

The tokens are described using a stochastic process

algebra, Jane Hillston’s Performance Evaluation

Process Algebra (PEPA).

P ::= (α, r).P︸ ︷︷ ︸
prefix

| P + P︸ ︷︷ ︸
choice

PEPA nets

The PEPA nets language is a high-level modelling

formalism for performance analysis of mobile object

systems.

A PEPA net is a stochastic Petri net with coloured

tokens. The tokens represent mobile objects with

state and behaviour.

The tokens are described using a stochastic process

algebra, Jane Hillston’s Performance Evaluation

Process Algebra (PEPA).

P ::= (α, r).P︸ ︷︷ ︸
prefix

| P + P︸ ︷︷ ︸
choice

| P BC
L
P︸ ︷︷ ︸

cooperation

PEPA nets

The PEPA nets language is a high-level modelling

formalism for performance analysis of mobile object

systems.

A PEPA net is a stochastic Petri net with coloured

tokens. The tokens represent mobile objects with

state and behaviour.

The tokens are described using a stochastic process

algebra, Jane Hillston’s Performance Evaluation

Process Algebra (PEPA).

P ::= (α, r).P︸ ︷︷ ︸
prefix

| P + P︸ ︷︷ ︸
choice

| P BC
L
P︸ ︷︷ ︸

cooperation

| P/L︸ ︷︷ ︸
hiding

PEPA nets

The PEPA nets language is a high-level modelling

formalism for performance analysis of mobile object

systems.

A PEPA net is a stochastic Petri net with coloured

tokens. The tokens represent mobile objects with

state and behaviour.

The tokens are described using a stochastic process

algebra, Jane Hillston’s Performance Evaluation

Process Algebra (PEPA).

P ::= (α, r).P︸ ︷︷ ︸
prefix

| P + P︸ ︷︷ ︸
choice

| P BC
L
P︸ ︷︷ ︸

cooperation

| P/L︸ ︷︷ ︸
hiding

| X︸ ︷︷ ︸
variable

Objects as tokens

Consider a File class with methods openRead(),

openWrite(), read(), write() and close().

Objects as tokens

Consider a File class with methods openRead(),

openWrite(), read(), write() and close().

The order in which the methods can be applied

defines a protocol for a File object.

Objects as tokens

Consider a File class with methods openRead(),

openWrite(), read(), write() and close().

The order in which the methods can be applied

defines a protocol for a File object.

|

Objects as tokens

Consider a File class with methods openRead(),

openWrite(), read(), write() and close().

The order in which the methods can be applied

defines a protocol for a File object.

| openRead- |

Objects as tokens

Consider a File class with methods openRead(),

openWrite(), read(), write() and close().

The order in which the methods can be applied

defines a protocol for a File object.

| openRead- | read�

Objects as tokens

Consider a File class with methods openRead(),

openWrite(), read(), write() and close().

The order in which the methods can be applied

defines a protocol for a File object.

| openRead- | read�
close

�

Objects as tokens

Consider a File class with methods openRead(),

openWrite(), read(), write() and close().

The order in which the methods can be applied

defines a protocol for a File object.

| openRead- | read�
close

�

openWrite�|

Objects as tokens

Consider a File class with methods openRead(),

openWrite(), read(), write() and close().

The order in which the methods can be applied

defines a protocol for a File object.

| openRead- | read�
close

�

openWrite�|write -

Objects as tokens

Consider a File class with methods openRead(),

openWrite(), read(), write() and close().

The order in which the methods can be applied

defines a protocol for a File object.

| openRead- | read�
close

�

openWrite�|write -
close

-

Objects as tokens

Consider a File class with methods openRead(),

openWrite(), read(), write() and close().

The order in which the methods can be applied

defines a protocol for a File object.

| openRead- | read�
close

�

openWrite�|write -
close

-

We can express this as a PEPA component.

File def
= (openRead , ro).InStream
+ (openWrite, ro).OutStream

InStream def
= (read , rr).InStream + (close, rc).File

OutStream def
= (write, rw).OutStream + (close, rc).File

Contexts and cells

A PEPA net is made up of PEPA contexts, one at

each place in the net.

Contexts and cells

A PEPA net is made up of PEPA contexts, one at

each place in the net.

Contexts contain static components and cells,

which store tokens.

Contexts and cells

A PEPA net is made up of PEPA contexts, one at

each place in the net.

Contexts contain static components and cells,

which store tokens.

A typical context might be the following:

File[] BC
L

FileReader

where the synchronisation set L in this case is
~A(File), the complete action type set of the

component, (openRead, read, close, . . .).

Token movement

Tokens move by participating in firings of the net.

Token movement

Tokens move by participating in firings of the net.

Continuing our example, we introduce an instant

message as a type of transmissible file.

InstantMessage def
= (transmit, rt).File

Token movement

Tokens move by participating in firings of the net.

Continuing our example, we introduce an instant

message as a type of transmissible file.

InstantMessage def
= (transmit, rt).File

Part of a PEPA net which models the passage of

instant messages is shown below.

InstantMessage[IM]
(transmit,rt)

−−−→[]−−−→ File[]BC
L

FileReader

Token movement

Tokens move by participating in firings of the net.

Continuing our example, we introduce an instant

message as a type of transmissible file.

InstantMessage def
= (transmit, rt).File

Part of a PEPA net which models the passage of

instant messages is shown below.

InstantMessage[]
(transmit,rt)

−−−→[]−−−→ File[File]BC
L

FileReader

Token movement

Tokens move by participating in firings of the net.

Continuing our example, we introduce an instant

message as a type of transmissible file.

InstantMessage def
= (transmit, rt).File

Part of a PEPA net which models the passage of

instant messages is shown below.

InstantMessage[]
(transmit,rt)

−−−→[]−−−→ File[File]BC
L

FileReader

An instant message IM can be moved by the

transmit firing. In moving it changes state to a File
derivative, which can be read by the FileReader .

Semantics: Enabling Set

An enabling set is a set of (token, place) pairs.

A transition t has an enabling set of firing type α,

ES(t , α), if for each input place Pi of t there is an

element (T ,Pi) in ES(t , α) such that T is a token in

the current marking of Pi , which has a one-step

α-derivative, T ′.

Semantics: Enabling Set

An enabling set is a set of (token, place) pairs.

A transition t has an enabling set of firing type α,

ES(t , α), if for each input place Pi of t there is an

element (T ,Pi) in ES(t , α) such that T is a token in

the current marking of Pi , which has a one-step

α-derivative, T ′.

Example:

P1 T [T1]

P2 T [T2]

T [] BC
∅
T [] P3

t

(α, r)
-

-
-

Semantics: Enabling Set

An enabling set is a set of (token, place) pairs.

A transition t has an enabling set of firing type α,

ES(t , α), if for each input place Pi of t there is an

element (T ,Pi) in ES(t , α) such that T is a token in

the current marking of Pi , which has a one-step

α-derivative, T ′.

Example:

P1 T [T1]

P2 T [T2]

T [] BC
∅
T [] P3

t

(α, r)
-

-
-

T1
(α,r)−→ T3,

Semantics: Enabling Set

An enabling set is a set of (token, place) pairs.

A transition t has an enabling set of firing type α,

ES(t , α), if for each input place Pi of t there is an

element (T ,Pi) in ES(t , α) such that T is a token in

the current marking of Pi , which has a one-step

α-derivative, T ′.

Example:

P1 T [T1]

P2 T [T2]

T [] BC
∅
T [] P3

t

(α, r)
-

-
-

T1
(α,r)−→ T3, T2

(α,r)−→ T4,

Semantics: Enabling Set

An enabling set is a set of (token, place) pairs.

A transition t has an enabling set of firing type α,

ES(t , α), if for each input place Pi of t there is an

element (T ,Pi) in ES(t , α) such that T is a token in

the current marking of Pi , which has a one-step

α-derivative, T ′.

Example:

P1 T [T1]

P2 T [T2]

T [] BC
∅
T [] P3

t

(α, r)
-

-
-

T1
(α,r)−→ T3, T2

(α,r)−→ T4, ES(t, α) = { (T1,P1), (T2,P2) }

Semantics: Enabling Rule

A transition t enables a firing of type α if there is

an enabling set ES(t , α) such that there is a

surjective mapping φ from ES(t , α) to vacant cells in

the current markings of output places of t.

Semantics: Enabling Rule

A transition t enables a firing of type α if there is

an enabling set ES(t , α) such that there is a

surjective mapping φ from ES(t , α) to vacant cells in

the current markings of output places of t.

I.e. for each (T ,Pi) in ES(t , α) there is a distinct

empty T -type cell in the current marking of one of

the output places of t.

Semantics: Enabling Rule

A transition t enables a firing of type α if there is

an enabling set ES(t , α) such that there is a

surjective mapping φ from ES(t , α) to vacant cells in

the current markings of output places of t.

I.e. for each (T ,Pi) in ES(t , α) there is a distinct

empty T -type cell in the current marking of one of

the output places of t.

P1 T [T1]

P2 T [T2]

T [] BC
∅
T [] P3

t

(α, r)
-

-
-

Semantics: Firing Rule

When a transition t fires with type α on the basis

of the enabling set ES(t , α), then for each (T ,Pi) in

ES(t , α), T [T] is replaced by T [] in the marking of

Pi , and the current marking of each output place is

updated according to φ.

Semantics: Firing Rule

When a transition t fires with type α on the basis

of the enabling set ES(t , α), then for each (T ,Pi) in

ES(t , α), T [T] is replaced by T [] in the marking of

Pi , and the current marking of each output place is

updated according to φ.

P1 T [T1]

P2 T [T2]

T [] BC
∅
T [] P3

t

(α, r)
-

-
-

Semantics: Firing Rule

When a transition t fires with type α on the basis

of the enabling set ES(t , α), then for each (T ,Pi) in

ES(t , α), T [T] is replaced by T [] in the marking of

Pi , and the current marking of each output place is

updated according to φ.

P1 T [T1]

P2 T [T2]

T [] BC
∅
T [] P3

t

(α, r)
-

-
-

T1
(α,r)−→ T3,

Semantics: Firing Rule

When a transition t fires with type α on the basis

of the enabling set ES(t , α), then for each (T ,Pi) in

ES(t , α), T [T] is replaced by T [] in the marking of

Pi , and the current marking of each output place is

updated according to φ.

P1 T [T1]

P2 T [T2]

T [] BC
∅
T [] P3

t

(α, r)
-

-
-

T1
(α,r)−→ T3, T2

(α,r)−→ T4,

Semantics: Firing Rule

When a transition t fires with type α on the basis

of the enabling set ES(t , α), then for each (T ,Pi) in

ES(t , α), T [T] is replaced by T [] in the marking of

Pi , and the current marking of each output place is

updated according to φ.

P1 T [T1]

P2 T [T2]

T [] BC
∅
T [] P3

t

(α, r)
-

-
-

T1
(α,r)−→ T3, T2

(α,r)−→ T4, ES(t, α) = { (T1,P1), (T2,P2) }

Semantics: Firing Rule

When a transition t fires with type α on the basis

of the enabling set ES(t , α), then for each (T ,Pi) in

ES(t , α), T [T] is replaced by T [] in the marking of

Pi , and the current marking of each output place is

updated according to φ.

P1 T []

P2 T []

T [T3] BC
∅
T [T4] P3

t

(α, r)
-

-
-

T1
(α,r)−→ T3, T2

(α,r)−→ T4, ES(t, α) = { (T1,P1), (T2,P2) }

Analysing PEPA nets

In the PEPA nets notation we have a modelling

language which allows us to express performance

models of mobile object systems.

The benefit of making such a model comes from

the fact that we can gain insights into the system

under study through the analysis of the model.

The state space of the model is typically too large

to allow us to consider every state individually.

Many types of analysis (steady-state, transient,

passage time) begin by identifying distinguished

subsets of the state space.

Analysing PEPA nets

In the PEPA nets notation we have a modelling

language which allows us to express performance

models of mobile object systems.

The benefit of making such a model comes from

the fact that we can gain insights into the system

under study through the analysis of the model.

The state space of the model is typically too large

to allow us to consider every state individually.

Many types of analysis (steady-state, transient,

passage time) begin by identifying distinguished

subsets of the state space.

Analysing PEPA nets

In the PEPA nets notation we have a modelling

language which allows us to express performance

models of mobile object systems.

The benefit of making such a model comes from

the fact that we can gain insights into the system

under study through the analysis of the model.

The state space of the model is typically too large

to allow us to consider every state individually.

Many types of analysis (steady-state, transient,

passage time) begin by identifying distinguished

subsets of the state space.

Analysing PEPA nets

In the PEPA nets notation we have a modelling

language which allows us to express performance

models of mobile object systems.

The benefit of making such a model comes from

the fact that we can gain insights into the system

under study through the analysis of the model.

The state space of the model is typically too large

to allow us to consider every state individually.

Many types of analysis (steady-state, transient,

passage time) begin by identifying distinguished

subsets of the state space.

Analysing PEPA nets

In the PEPA nets notation we have a modelling

language which allows us to express performance

models of mobile object systems.

The benefit of making such a model comes from

the fact that we can gain insights into the system

under study through the analysis of the model.

The state space of the model is typically too large

to allow us to consider every state individually.

Many types of analysis (steady-state, transient,

passage time) begin by identifying distinguished

subsets of the state space.

Using logic to specify performance measures

The appropriate logic for PEPA nets is one which

can specify performance measures over the places

of the net, and has the capability of expressing

requirements on tokens in addition to requirements

on the transitions and firings of the net.

Using logic to specify performance measures

The appropriate logic for PEPA nets is one which

can specify performance measures over the places

of the net, and has the capability of expressing

requirements on tokens in addition to requirements

on the transitions and firings of the net.

We introduce the PMLν logic by means of a

two-level grammar which separates the specification

of place formulae and token formulae from the

specification of transition and firing activities.

Using logic to specify performance measures

The appropriate logic for PEPA nets is one which

can specify performance measures over the places

of the net, and has the capability of expressing

requirements on tokens in addition to requirements

on the transitions and firings of the net.

We introduce the PMLν logic by means of a

two-level grammar which separates the specification

of place formulae and token formulae from the

specification of transition and firing activities.

Behaviour at the transition and firing level is

captured by formulae of a sub-logic, PMLµ.

PMLµ

Based on probabilistic modal logic [Larsen & Skou].

φ ::= tt | ¬φ | φ1 ∧ φ2 | ∇α | 〈α〉ρφ

PMLµ

Based on probabilistic modal logic [Larsen & Skou].

φ ::= tt | ¬φ | φ1 ∧ φ2 | ∇α | 〈α〉ρφ

P |=µ tt

PMLµ

Based on probabilistic modal logic [Larsen & Skou].

φ ::= tt | ¬φ | φ1 ∧ φ2 | ∇α | 〈α〉ρφ

P |=µ tt

P |=µ ¬φ iff P 6|=µ φ

PMLµ

Based on probabilistic modal logic [Larsen & Skou].

φ ::= tt | ¬φ | φ1 ∧ φ2 | ∇α | 〈α〉ρφ

P |=µ tt

P |=µ ¬φ iff P 6|=µ φ

P |=µ φ1 ∧ φ2 iff P |=µ φ1 ∧ P |=µ φ2

PMLµ

Based on probabilistic modal logic [Larsen & Skou].

φ ::= tt | ¬φ | φ1 ∧ φ2 | ∇α | 〈α〉ρφ

P |=µ tt

P |=µ ¬φ iff P 6|=µ φ

P |=µ φ1 ∧ φ2 iff P |=µ φ1 ∧ P |=µ φ2

P |=µ ∇α iff P
α−→/

PMLµ

Based on probabilistic modal logic [Larsen & Skou].

φ ::= tt | ¬φ | φ1 ∧ φ2 | ∇α | 〈α〉ρφ

P |=µ tt

P |=µ ¬φ iff P 6|=µ φ

P |=µ φ1 ∧ φ2 iff P |=µ φ1 ∧ P |=µ φ2

P |=µ ∇α iff P
α−→/

P |=µ 〈α〉ρφ iff P
(α,λ)
=⇒ S for some λ ≥ ρ,

and for all P ′ ∈ S, P ′ |=µ φ.

PMLν

ψ ::= φ | ¬ψ | ψ1 ∧ ψ2 | Pi[φ] | Pi#Ti ∼ n

where ∼ = {=, 6=, <,≤, >,≥}.

PMLν

ψ ::= φ | ¬ψ | ψ1 ∧ ψ2 | Pi[φ] | Pi#Ti ∼ n

where ∼ = {=, 6=, <,≤, >,≥}.

M |=ν φ iff M |=µ φ

PMLν

ψ ::= φ | ¬ψ | ψ1 ∧ ψ2 | Pi[φ] | Pi#Ti ∼ n

where ∼ = {=, 6=, <,≤, >,≥}.

M |=ν φ iff M |=µ φ

M |=ν ¬ψ iff M 6|=ν ψ

PMLν

ψ ::= φ | ¬ψ | ψ1 ∧ ψ2 | Pi[φ] | Pi#Ti ∼ n

where ∼ = {=, 6=, <,≤, >,≥}.

M |=ν φ iff M |=µ φ

M |=ν ¬ψ iff M 6|=ν ψ

M |=ν ψ1 ∧ ψ2 iff M |=ν ψ1 ∧M |=ν ψ2

PMLν

ψ ::= φ | ¬ψ | ψ1 ∧ ψ2 | Pi[φ] | Pi#Ti ∼ n

where ∼ = {=, 6=, <,≤, >,≥}.

M |=ν φ iff M |=µ φ

M |=ν ¬ψ iff M 6|=ν ψ

M |=ν ψ1 ∧ ψ2 iff M |=ν ψ1 ∧M |=ν ψ2

M |=ν Pi[φ] iff Mi |=µ φ

PMLν

ψ ::= φ | ¬ψ | ψ1 ∧ ψ2 | Pi[φ] | Pi#Ti ∼ n

where ∼ = {=, 6=, <,≤, >,≥}.

M |=ν φ iff M |=µ φ

M |=ν ¬ψ iff M 6|=ν ψ

M |=ν ψ1 ∧ ψ2 iff M |=ν ψ1 ∧M |=ν ψ2

M |=ν Pi[φ] iff Mi |=µ φ

M |=ν Pi#Ti ∼ n iff tokens(Mi, Ti) ∼ n.

PMLν

ψ ::= φ | ¬ψ | ψ1 ∧ ψ2 | Pi[φ] | Pi#Ti ∼ n

where ∼ = {=, 6=, <,≤, >,≥}.

M |=ν φ iff M |=µ φ

M |=ν ¬ψ iff M 6|=ν ψ

M |=ν ψ1 ∧ ψ2 iff M |=ν ψ1 ∧M |=ν ψ2

M |=ν Pi[φ] iff Mi |=µ φ

M |=ν Pi#Ti ∼ n iff tokens(Mi, Ti) ∼ n.

tokens(P, Ti) = tokens(T [], Ti) = 0,

tokens(T [Ti], Ti) = 1, tokens(T [Tj], Ti) = 0 if Tj 6= Ti

tokens(P BC
L
Q,Ti) = tokens(P, Ti) + tokens(Q,Ti)

Example: Secure Web service

We provide a model of a secure Web service.

Web service requests are sent in encrypted form

between the client and the service.

A gatekeeper process runs on the machine at the

firewall.

Messages are decrypted and either forwarded on to

the server or bounced back to the client.

Inside the firewall messages are exchanged as

cleartext but outside the firewall communication is

always encrypted.

Example: Secure Web service

We provide a model of a secure Web service.

Web service requests are sent in encrypted form

between the client and the service.

A gatekeeper process runs on the machine at the

firewall.

Messages are decrypted and either forwarded on to

the server or bounced back to the client.

Inside the firewall messages are exchanged as

cleartext but outside the firewall communication is

always encrypted.

Example: Secure Web service

We provide a model of a secure Web service.

Web service requests are sent in encrypted form

between the client and the service.

A gatekeeper process runs on the machine at the

firewall.

Messages are decrypted and either forwarded on to

the server or bounced back to the client.

Inside the firewall messages are exchanged as

cleartext but outside the firewall communication is

always encrypted.

Example: Secure Web service

We provide a model of a secure Web service.

Web service requests are sent in encrypted form

between the client and the service.

A gatekeeper process runs on the machine at the

firewall.

Messages are decrypted and either forwarded on to

the server or bounced back to the client.

Inside the firewall messages are exchanged as

cleartext but outside the firewall communication is

always encrypted.

Example: Secure Web service

We provide a model of a secure Web service.

Web service requests are sent in encrypted form

between the client and the service.

A gatekeeper process runs on the machine at the

firewall.

Messages are decrypted and either forwarded on to

the server or bounced back to the client.

Inside the firewall messages are exchanged as

cleartext but outside the firewall communication is

always encrypted.

Example: Secure Web service

We provide a model of a secure Web service.

Web service requests are sent in encrypted form

between the client and the service.

A gatekeeper process runs on the machine at the

firewall.

Messages are decrypted and either forwarded on to

the server or bounced back to the client.

Inside the firewall messages are exchanged as

cleartext but outside the firewall communication is

always encrypted.

Tokens

SoapMessage def
= (sendclr, rsc).SentClearMessage
+ (encrypt , re).EncryptedMsg
+ (parse, rp).DOMtree

Tokens

SoapMessage def
= (sendclr, rsc).SentClearMessage
+ (encrypt , re).EncryptedMsg
+ (parse, rp).DOMtree

SentClearMessage def
= (copyClear,>).SoapMessage

Tokens

SoapMessage def
= (sendclr, rsc).SentClearMessage
+ (encrypt , re).EncryptedMsg
+ (parse, rp).DOMtree

SentClearMessage def
= (copyClear,>).SoapMessage

EncryptedMsg def
= (decrypt , rd).SoapMessage
+ (sendenc, rse).SentEncMessage

Tokens

SoapMessage def
= (sendclr, rsc).SentClearMessage
+ (encrypt , re).EncryptedMsg
+ (parse, rp).DOMtree

SentClearMessage def
= (copyClear,>).SoapMessage

EncryptedMsg def
= (decrypt , rd).SoapMessage
+ (sendenc, rse).SentEncMessage

SentEncMessage def
= (copyEncrypted,>).EncryptedMsg

Tokens

SoapMessage def
= (sendclr, rsc).SentClearMessage
+ (encrypt , re).EncryptedMsg
+ (parse, rp).DOMtree

SentClearMessage def
= (copyClear,>).SoapMessage

EncryptedMsg def
= (decrypt , rd).SoapMessage
+ (sendenc, rse).SentEncMessage

SentEncMessage def
= (copyEncrypted,>).EncryptedMsg

DOMtree def
= (read , rr).DOMtree
+ (modify, rm).DOMtree
+ (export , rx).SoapMessage

Static components

User def
=

(encrypt ,>).(sendenc,>).User
+ (decrypt ,>).(parse,>).(read ,>).(modify,>).(export ,>).User

Static components

User def
=

(encrypt ,>).(sendenc,>).User
+ (decrypt ,>).(parse,>).(read ,>).(modify,>).(export ,>).User

GateKeeper def
=

(decrypt ,>).(sendclr,>).GateKeeper
+ (decrypt ,>).(encrypt ,>).(sendenc,>).GateKeeper
+ (encrypt ,>).(sendenc,>).GateKeeper

Static components

User def
=

(encrypt ,>).(sendenc,>).User
+ (decrypt ,>).(parse,>).(read ,>).(modify,>).(export ,>).User

GateKeeper def
=

(decrypt ,>).(sendclr,>).GateKeeper
+ (decrypt ,>).(encrypt ,>).(sendenc,>).GateKeeper
+ (encrypt ,>).(sendenc,>).GateKeeper

WebService def
= (parse,>).(read ,>).

(modify,>).(export ,>).(sendclr,>).WebService

PEPA net

Client side

User BC
L

SoapMessage[SoapMessage]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg []

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[]

Server side

PEPA net

Client side

(sendenc,>).User BC
L

SoapMessage[EncryptedMsg]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg []

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[]

Server side

PEPA net

Client side

User BC
L

SoapMessage[SentEncMessage]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg []

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[]

Server side

PEPA net

Client side

User BC
L

SoapMessage[]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg [EncryptedMsg]

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[]

Server side

PEPA net

Client side

User BC
L

SoapMessage[]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

(encrypt ,>).GateKeeper ′ BC
L

EncryptedMsg [SoapMessage]

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[]

Server side

PEPA net

Client side

User BC
L

SoapMessage[]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

(sendenc,>).GateKeeper BC
L

EncryptedMsg [EncryptedMsg]

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[]

Server side

PEPA net

Client side

User BC
L

SoapMessage[]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg [SentEncMessage]

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[]

Server side

PEPA net

Client side

User BC
L

SoapMessage[EncryptedMsg]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg []

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[]

Server side

PEPA net

Client side

(parse,>).User ′ BC
L

SoapMessage[SoapMessage]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg []

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[]

Server side

PEPA net

Client side

(read ,>).User ′′ BC
L

SoapMessage[DOMtree]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg []

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[]

Server side

PEPA net

Client side

(modify,>).User ′′′ BC
L

SoapMessage[DOMtree]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg []

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[]

Server side

PEPA net

Client side

(export ,>).User BC
L

SoapMessage[DOMtree]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg []

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[]

Server side

PEPA net

Client side

User BC
L

SoapMessage[SoapMessage]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg []

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[]

Server side

PEPA net

Client side

(sendenc,>).User BC
L

SoapMessage[EncryptedMsg]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg []

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[]

Server side

PEPA net

Client side

User BC
L

SoapMessage[SentEncMessage]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg []

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[]

Server side

PEPA net

Client side

User BC
L

SoapMessage[]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg [EncryptedMsg]

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[]

Server side

PEPA net

Client side

User BC
L

SoapMessage[]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

(sendclr,>).GateKeeper BC
L

EncryptedMsg [SoapMessage]

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[]

Server side

PEPA net

Client side

User BC
L

SoapMessage[]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg [SentClearMessage]

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[]

Server side

PEPA net

Client side

User BC
L

SoapMessage[]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg []

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[SoapMessage]

Server side

PEPA net

Client side

User BC
L

SoapMessage[]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg []

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

(read ,>).WebService ′ BC
L

SoapMessage[DOMtree]

Server side

PEPA net

Client side

User BC
L

SoapMessage[]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg []

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

(modify,>).WebService ′′ BC
L

SoapMessage[DOMtree]

Server side

PEPA net

Client side

User BC
L

SoapMessage[]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg []

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

(export ,>).WebService ′′′ BC
L

SoapMessage[DOMtree]

Server side

PEPA net

Client side

User BC
L

SoapMessage[]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg []

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

(sendclr,>).WebService BC
L

SoapMessage[SoapMessage]

Server side

PEPA net

Client side

User BC
L

SoapMessage[]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg []

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[SentClearMessage]

Server side

PEPA net

Client side

User BC
L

SoapMessage[]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg [SoapMessage]

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[]

Server side

PEPA net

Client side

User BC
L

SoapMessage[]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

(sendenc,>).GateKeeper BC
L

EncryptedMsg [EncryptedMsg]

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[]

Server side

PEPA net

Client side

User BC
L

SoapMessage[]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg [SentEncMessage]

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[]

Server side

PEPA net

Client side

User BC
L

SoapMessage[EncryptedMsg]

(copyEncrypted,rce)
↓
↓

↑
↑

(copyEncrypted,rce)

GateKeeper BC
L

EncryptedMsg []

(copyClear,rcc)
↓
↓

↑
↑

(copyClear,rcc)

WebService BC
L

SoapMessage[]

Server side

Expressing performance measures using PMLν

Probability that the user has an unread reply:

Client [∆decrypt ∨∆parse]

Expressing performance measures using PMLν

Probability that the user has an unread reply:

Client [∆decrypt ∨∆parse]

Probability that the client has just sent a request:

Client#SentEncMessage = 1

Expressing performance measures using PMLν

Probability that the user has an unread reply:

Client [∆decrypt ∨∆parse]

Probability that the client has just sent a request:

Client#SentEncMessage = 1

Service time distribution at the server side:

Start when Server#SoapMessage = 1

Stop when Firewall#SentEncMessage = 1

Solving PEPA nets

Practical performance analysis methods must

provide automated support for deriving numerical

results from a high-level specification.

Solving PEPA nets

Practical performance analysis methods must

provide automated support for deriving numerical

results from a high-level specification.

Usually the high-level model is used to derive a

Continuous-Time Markov Chain (CTMC) for

performance analysis.

Solving PEPA nets

Practical performance analysis methods must

provide automated support for deriving numerical

results from a high-level specification.

Usually the high-level model is used to derive a

Continuous-Time Markov Chain (CTMC) for

performance analysis.

We can derive a CTMC directly from a PEPA net

using the PEPA Workbench for PEPA nets.

Solving PEPA nets

Practical performance analysis methods must

provide automated support for deriving numerical

results from a high-level specification.

Usually the high-level model is used to derive a

Continuous-Time Markov Chain (CTMC) for

performance analysis.

We can derive a CTMC directly from a PEPA net

using the PEPA Workbench for PEPA nets.

An alternative is to compile a PEPA net to an

equivalent PEPA model and then use one of the

PEPA tools.

Compiling PEPA nets to PEPA

The PEPA net compiler compiles a PEPA net to a

PEPA model. Activities are renamed to enforce the

PEPA net idiom that components at different

places cannot synchronise on transitions.

The given net and the generated PEPA model

produce isomorphic CTMCs (but via different

labelled transition systems).

The renaming of activities is systematic so that it

is possible to recover the transition system of the

PEPA net from the transition system of the PEPA

model.

Compiling PEPA nets to PEPA

The PEPA net compiler compiles a PEPA net to a

PEPA model. Activities are renamed to enforce the

PEPA net idiom that components at different

places cannot synchronise on transitions.

The given net and the generated PEPA model

produce isomorphic CTMCs (but via different

labelled transition systems).

The renaming of activities is systematic so that it

is possible to recover the transition system of the

PEPA net from the transition system of the PEPA

model.

Compiling PEPA nets to PEPA

The PEPA net compiler compiles a PEPA net to a

PEPA model. Activities are renamed to enforce the

PEPA net idiom that components at different

places cannot synchronise on transitions.

The given net and the generated PEPA model

produce isomorphic CTMCs (but via different

labelled transition systems).

The renaming of activities is systematic so that it

is possible to recover the transition system of the

PEPA net from the transition system of the PEPA

model.

Compiling PEPA nets to PEPA

The PEPA net compiler compiles a PEPA net to a

PEPA model. Activities are renamed to enforce the

PEPA net idiom that components at different

places cannot synchronise on transitions.

The given net and the generated PEPA model

produce isomorphic CTMCs (but via different

labelled transition systems).

The renaming of activities is systematic so that it

is possible to recover the transition system of the

PEPA net from the transition system of the PEPA

model.

Solving larger PEPA nets

The motivation for compiling PEPA nets to PEPA

models is to use the range of tools available for

PEPA.

Solving larger PEPA nets

The motivation for compiling PEPA nets to PEPA

models is to use the range of tools available for

PEPA.

We solved the secure web service model using

• the PEPA net compiler;

• Jeremy Bradley’s Imperial PEPA compiler; and

• Will Knottenbelt’s DNAmaca Petri net

analyser.

Solving larger PEPA nets

The motivation for compiling PEPA nets to PEPA

models is to use the range of tools available for

PEPA.

We solved the secure web service model using

• the PEPA net compiler;

• Jeremy Bradley’s Imperial PEPA compiler; and

• Will Knottenbelt’s DNAmaca Petri net

analyser.

Alternatives: Möbius, PRISM.

Conclusions

PEPA nets are a high-level modelling language

addressing the performance aspects of the design

of modern software systems.

Unlike a Petri net, tokens are programmable

components, allowing direct modelling of stateful

objects.

Evaluation contexts at the places of the net allow

the modeller to represent different areas of

computation.

Tools exist which support the PEPA nets language.

Future work

It is possible that the PEPA nets language could be

extended, necessitating extensions to the existing

tool support.

One possibility would be to add a type system

which ensures a consistent interface for tokens.

It is possible that the PMLν logic should be

extended or revised.

Undertaking real-world examples and case studies is

a good way to drive this process.

end of slide show

