Advances in Programming Languages:
Garbage collection and stack allocation

Stephen Gilmore
The University of Edinburgh

January 24, 2007

Garbage collectors and programming languages

Certain programming languages, such as C, do not provide a garbage collector. We must do all
of the disposal of moribund addresses ourselves. Other programming languages, such as Java,
provide a garbage collector. We cannot dispose of memory: the run-time is in charge. What of
mixed economy languages such as C# which allow us to mix managed and unmanaged data?

C# asks us to separate methods into safe and unsafe categories. It might seem a bit odd
to explicitly include unsafe features in a programming language (usually they make their way
in by accident).

The reasoning for this with regard to the C# language is firstly that it will sometimes be
necessary to call unsafe code, so this has to be achievable somehow. Secondly, it should be more
efficient to call unsafe C# code than to call out to (unsafe) C code. Java native interface calls
are known to have a high run-time performance overhead.

Unsafe methods

Methods in C# must be marked as unsafe if they need to perform C-style pointer operations.
Statement blocks and even single statements can be marked as unsafe.

Inside an unsafe block we may take the address of a variable (using &), dereference pointers
and perform pointer arithmetic. We can implement directly C-style idioms such as simulat-
ing call-by-reference by passing a C-style (thin) *-pointer to a function, sharing that variable
between the caller and the callee.

During garbage collection, the language run-time will move objects around in memory to
reduce the amount of wasted space between allocated objects (this is called compaction). If
we hold the address of a managed object in a pointer the garbage collector could invalidate
this address simply by moving the object which our pointer refers to. For this reason, pointers
are used in fized statements in C#. A fixed statement pins an object in memory so that the
collector cannot move it around.

// File: programs/cs/Fixed.cs
// compile with: mcs --unsafe Fixed.cs
using System;

class IntegerRef {
public int x;

}

class FixedTest {

UG4 Advances in Programming Languages — 2005/2006 2

// unsafe method: takes pointer to int

unsafe static void SquarePtrParam (int* p) {
*p *= *p;

}

unsafe public static void Main() {
IntegerRef i = new IntegerRef();
i.x = 5;
// pin object in place: take address
fixed (int* p = &i.x) {

SquarePtrParam (p);

}
// object is now unpinned
Console.WriteLine ("¢.z 4s {0}", i.x);

}

To maintain run-time performance objects should be pinned only briefly.

Stack allocation

An alternative to pinning objects is to allocate them on the stack instead of in the heap. The
run-time stack contains storage areas in each stack frame. The stack is not garbage-collected;
all of the data in the run-time stack is assumed to be live. Stack allocated objects are freed
when their owning method exits.

C# allows us to allocate objects on the stack in unsafe code, and to manipulate their
addresses. Since these objects will not be moved by the garbage collector they do not need to
be pinned.

// File: programs/cs/StackAlloc.cs
// compile with the ‘‘unsafe’’ flag
using System;
class StackAlloc {
public static unsafe void Main() {
int* fib = stackalloc int[100];
int* p = fib;
*p++ = ¥xp++ = 1;
for (int i=2; i<100; ++i, ++p)
*p = p[-1] + p[-2];
for (int i=0; i<10; i++)
Console.WriteLine (fib[i]);

}
The line
*p++ = *p++ = 1;

)

used in the previous program seems rather obscure. It is a common C programming idiom,
but what is it doing? Firstly, it is a compound assignment, so it has the same meaning as the
following.

*p++ = (xp++ = 1);

UG4 Advances in Programming Languages — 2005/2006 3

So, two variables are being assigned the value 1, but which variables?

Firstly, *p++ means “increment p”, not “increment what p points to”. Secondly, the variable
which is assigned to is the one which p points to before it is updated, not after. Thus the above
line of code could have been written as follows.

*p = 1;
p++;
*p = 13
p++;

There are constraints on the use of stack allocation. A stack allocation may only be used as
the initialiser of a local variable of a method.

The previous program demonstrates the simplest case of stack allocation; the size of the
array to be allocated is determined by a compile-time constant. The case when the size of the
array to be allocated depends on a run-time value is more complex.

We now factor out the Fibonacci function into a separate method.

// File: programs/cs/DynamicStackAlloc.cs
class DynamicStackAlloc {
unsafe static int Fib (int n) {
int* fib = stackalloc int[n+2];
int* p = fib;
*p++ = xp++ = 1;
for (int i=2; i<=n; ++i, ++p)
*p = p[-1] + p[-2];
return fib[n];
}
public static unsafe void Main() {
for (int i=0; i<10; i++)
System.Console.WriteLine (Fib(i));
1}

I compiled this program with the Ximian Mono C# compiler, version 1.1.13.7 (using mcs
-warn:4 -unsafe) and, under Windows, with VisualStudio 2005. Both execute successfully,
producing the Fibonacci numbers.

[scaplstg: mono DynamicStackAlloc.exe

UG4 Advances in Programming Languages — 2005/2006 4

Heap allocation

In object-oriented languages most dynamic data structures are allocated on the (garbage col-
lected) heap. Such data stuctures have addresses which can be taken in fixed statements in
C#. Thus we can view an int array using an int pointer, simply by taking the address of the
first element in the array. Use of pointers in C# needs to be marked as unsafe, as before.

// File: programs/cs/DynamicHeapAlloc.cs
using System;
class DynamicHeapAlloc {
unsafe static int Fib (int n) {
int[] fib = new int[n+1];
// An array address can be used in the
// initialiser in a C# fixed statement
fixed (intx p = fib) { // or: p = &fib[0]
plo] = (pl[1] = 1); // cannot assign to (fixed) p
for (int i=2; i<=n; i++)
plil = pli-1] + pl[i-2];
+

return fib[n];

// Main method same as before
public static unsafe void Main() {
for (int i=0; i<10; ++i)
Console.WriteLine (Fib(i));

}

This program compiles and runs as expected, producing the first ten Fibonacci numbers. There
is no real reason to use unsafe code in the above example, so we can remove the use of the int
pointer in the above example.

// File: programs/cs/SafeHeapAlloc.cs
class SafeHeapAlloc { // all unsafe code removed
static int Fib (int n) {
int[] fib = new int[n+1];
fib[0] = (fib[1] = 1);
for (int i=2; i<=n; i++)
fib[i] = fib[i-1] + fib[i-2];
return fib[n];
}
public static void Main() {
for (int i=0; i<10; i++)
System.Console.WriteLine (Fib(i));

}
This program fails at run-time. Under Windows XP:

Unhandled Exception: System.IndexOutOfRangeException:
Index was outside the bounds of the array.

UG4 Advances in Programming Languages — 2005/2006 5

at SafeHeapAlloc.Fib(Int32 n) in
C:\SafeHeapAlloc.cs:1line 6

at SafeHeapAlloc.Main() in
C:\SafeHeapAlloc.cs:line 14

Under Linux:

Unhandled Exception: System.IndexOutOfRangeException:
Array index is out of range.

in <0x00030> SafeHeapAlloc:Fib (Int32 n)

in <0x00015> SafeHeapAlloc:Main ()

The reason why this happens is that we have re-introduced array bounds checking and trapped
an error which had gone uncaught in the unsafe version which used an integer pointer in a
fixed block.

On the first call to the Fib method, the parameter has the value zero, so inside the method
we allocate an integer array of size one (n+1, n being zero). When we access the location fib[1]
to assign it the value one, this is an out-of-bounds violation. When we reference this array via
the pointer p we do not invoke bounds checking, so this violation is not detected at run-time.
That is to say, we are really using C-like rules when we write unsafe C# code. We will receive
fewer warnings from the compiler and run-time errors may or may not be trapped.

The version of this program which follows avoids the out-of-bounds violation by checking
that the parameter n is at least two before allocating the array.

// File: programs/cs/SaferHeapAlloc.cs
class SaferHeapAlloc {
// all unsafe code removed
// bug for low values of n fixed
static int Fib (int n) {
if (n < 2) return 1;
int[] fib = new int[n+1];
// the access to fib[1] below is safe: the
// array has at least three elements
£ib[0] = (fib[1] = 1);
for (int i=2; i<=n; i++)
fib[i] = fib[i-1] + fib[i-2];
return fib[n];

public static void Main() {
for (int i=0; i<10; i++)
System.Console.WriteLine (Fib(i));

This program compiles and runs as expected, producing the first ten Fibonacci numbers.

UG4 Advances in Programming Languages — 2005/2006 6

Unsafe code and addresses

Now that we know how to use addresses and pointers in C# we can go back to revisit some C
idioms which we implemented previously and investigate their behaviour in C#.

One concern that we had in C was that taking the address of a local variable could expose
stale addresses which could be overwritten at any later time. When we used the & operator in
C to take the address of a local variable GCC warned us about this.

// File: programs/cs/StaleAddresses.cs
using System;
class StaleAddresses {
public static unsafe int* makeCounter() {
int counter = 0;
return &counter; // return address of local variable
}
public static unsafe void Main() {
int* p;
p = makeCounter();
Console.WriteLine("#p is {0}", *p);
Environment.ExitCode = 0;
}
}

When compiled withmcs -warn:4 -unsafe (or the same settings for VisualStudio 2005) the C#
compiler does not warn us that the address of a local variable is returned from a function. This
is a fault which even the C compiler warns about. Under Linux the results are unpredictable.

[scaplstg: mono StaleAddresses.exe
*p is -1080615424
[scap]stg: mono StaleAddresses.exe
*p is -1081838688
[scap]stg: mono StaleAddresses.exe
*p is -1080574240

Under Windows XP we have a different result.

C:> bin\Debug\StaleAddresses.exe
*p is O

We introduce an intermediate function as before.

// File: programs/cs/StaleAddresses2.cs
using System;
class StaleAddresses2 {

public static unsafe int* makeCounter() {
int counter = 0;
return &counter; // return address of local variable

}

// no use of pointers or addresses in this function
public static void dummy() {
int x = 13; // simple integer variable

UG4 Advances in Programming Languages — 2005/2006 7

}

public static unsafe void Main() {
int* p;
p = makeCounter();
Console.WriteLine("*p 4s {O0}", *p);
dummy O ;
Console.WriteLine("*p 4s {0}", *p);
Environment.ExitCode = 0;

}

}

For this code both the Mono and VisualStudio compiler warn us that variables are assigned but
their values are never used (which is a good warning) but neither compiler warns us that the
address of a local variable is returned from a function.

Again, the Linux and Windows versions differ. On Linux:

[scaplstg: mono StaleAddresses2.exe
*p is -1075549920
*p is -1075549920
[scap]lstg: mono StaleAddresses2.exe
*p is -1079301072
*p is -1079301072
[scap]stg: mono StaleAddresses2.exe
*p is -1077084272
*p is -1077084272

On Windows:

C:> bin\Debug\StaleAddresses2.exe
*p is O

*p is 1242780

C:> bin\Debug\StaleAddresses2.exe
*p is O

*p is 1242780

Unsafe contexts

The unsafe statements which we have seen in C# are part of a larger category in the language
specification known as unsafe contexts.

As an example of an unsafe context which is not a statement, the declaration of a class may
use the unsafe modifier along with other modifiers. In this case the entire textual extent of
the class declaration is considered to be an unsafe context. Thus, for example, a heap-allocated
object of a C# class can have an int * field.

// File: programs/cs/StaleAddresses3.cs
using System;
class StaleAddresses3 {

// An unsafe context
public unsafe class Counter {

UG4 Advances in Programming Languages — 2005/2006

3

As might be expected, the behaviour of this program is unsure

// An integer pointer
public int* p;

public Counter(int* p) {
this.p = p;
}
}

public static unsafe Counter makeCounter() {
int counter = 0;
// return address of local variable packaged
// in an instance of the Counter class
return new Counter(&counter) ;

}

// no use of pointers or addresses in this function

public static void dummy() {
// simple integer variable
int x = 13;

}

public static unsafe void Main() {
Counter c;
int x = 15;
int* p = &x;
¢ = new Counter(p);
Console.WriteLine("*p 4s {O0}", *c.p);
¢ = makeCounter();
Console.WriteLine("*p <s {0}", *c.p);
dummy) ;
Console.WriteLine("*p ¢s {0}", *c.p);
Environment.ExitCode = 0;

}

[scaplstg: mono StaleAddresses3.exe
*p is 15

*p is 5429332

*p is 5429332

[scaplstg: mono StaleAddresses3.exe
*p is 15

*p is 5785684

*p is 5785684

On Windows:

C:> bin\Debug\StaleAddresses3.exe
*p is 15
*p is O

. On Linux:

UG4 Advances in Programming Languages — 2005/2006 9

*p is 2045189024

C:> bin\Debug\StaleAddresses3.exe
*p is 15

*p is O

*p is 2045189024

Summary

e C+#, unlike other languages, asks programmers to classify their methods as safe or unsafe.

e Safe code manipulates managed objects, includes bounds checks and interacts well with
the garbage collector.

e Unsafe code manipulates unmanaged objects, interacts poorly with the garbage collector,
misses problems which the C compiler warns about, re-introduces problems known from
C such as undetected out-of-bounds violations and produces non-portable programs with
unpredictable results.

e Using unsafe code as little as possible seems to be a good approach.

