
Advances in Programming Languages:

Memory management

Stephen Gilmore
The University of Edinburgh

January 15, 2007

Memory management

Computer programs need to allocate memory to store data values and data structures. Memory
is also used to store the program itself and the run-time system needed to support it.

If a program allocates memory and never frees it, and that program runs for a sufficiently
long time, eventually it will run out of memory.

Even in the presence of virtual memory, memory consumption is still a major issue because
it is considerably less efficient to access virtual memory than to access physical memory.

Manual and automatic memory management

Programming languages can be categorised as those which provide automatic memory manage-
ment and those which ask the programmer to allocate and free memory manually.

Requiring the programmer to do the work manually leads to a simpler compiler and run-
time. The C language requires the programmer to implement memory management each time,
for each application program. Modern programming languages such as Java, C#, Caml, Cyclone
and Ruby provide automatic memory management with garbage collection.

Manual memory management

In C, where there is no garbage collector, the programmer must allocate and free memory
explicity. The key functions are malloc and free. The malloc function takes as a parameter
the size in bytes of the memory area to be allocated. The size of a type can be obtained using
sizeof.

The resulting area of memory does not represent a value of the correct type so it then needs
to be cast to the correct type.

p = (Type_t*) malloc(sizeof(Type_t));

A significant problem with manual memory management is that it is possible to attempt to
use a pointer after it has been freed. This is known as the dangling pointer problem. Dangling
pointer errors can arise whenever there is an error in the control flow logic of a program. This
can lead to allocation, use and deallocation happening in the wrong order in some circumstances.

Use before allocation may be a fatal run-time error. Use after deallocation is not always
fatal. Neither of these is a good thing.

/* File: programs/c/DanglingPointers.c */

#include <stdio.h>
#include <stdlib.h>

1

UG4 Advances in Programming Languages — 2005/2006 2

typedef struct { /* define a structure */

int x; /* ... with an x field */

int y; /* ... and a y field */

} Coordinate_t; /* ... called Coordinate_t */

int main() {
/* Allocate a pointer to a coordinate */

Coordinate_t *p;
p = (Coordinate_t*)malloc(sizeof(Coordinate_t));

/* Use p */

p->x = 256; /* Or: (*p).x = 256; */

p->y = 512; /* Or: (*p).y = 512; */

printf("p->x is %d\n", p->x); /* "p->x is 256" */

printf("p->y is %d\n", p->y); /* "p->y is 512" */

/* Deallocate p */

free(p);
/* Erroneous attempt to use p after deallocation */

printf("p->x is %d\n", p->x); /* "p->x is 0" */

printf("p->y is %d\n", p->y); /* "p->y is 512" */

/* Allocate another pointer to a coordinate */

Coordinate_t *p2;
p2 = (Coordinate_t*)malloc(sizeof(Coordinate_t));

/* Erroneous attempt to use p2 before initialisation */

printf("p2->x is %d\n", p2->x); /* "p2->x is 0" */

printf("p2->y is %d\n", p2->y); /* "p2->y is 512" */

/* Update p2 */

p2->x = 1024;

/* Erroneous attempt to use p after deallocation */

printf("p->x is %d\n", p->x); /* "p->x is 1024" */

printf("p->y is %d\n", p->y); /* "p->y is 512" */

exit(0);
}

The result of this program is compiler-dependent. Some C compilers will print different results
for the values pointed to after free is called.

Another potential problem of manual memory management is not remembering to free
allocated memory when it should be freed. The reference to an allocated area of memory can
be lost when a variable in a block-structured language goes out of scope. This problem is
perhaps more subtle than the dangling pointer problem because it may only become manifest
for long-running applications. When memory is lost and cannot be reclaimed we term this a
space leak. Space cannot be lost forever without reaching the limit on the available memory. A
long-running program with a space leak will eventually crash.

UG4 Advances in Programming Languages — 2005/2006 3

/* File: programs/c/Memory.c */

#include <stdio.h>
#include <stdlib.h>

typedef struct { /* define a structure */

float values[1000]; /* ... of 1000 floats */

} Vector_t; /* ... called Vector_t */

int main() {
Vector_t *v;
/* allocate memory unceasingly */

for (;;) v = (Vector_t*)malloc(sizeof(Vector_t));
exit(0);

}

Never run this program. On a typical Linux platform, this program will allocate memory very
rapidly, filling up the available real memory. Then the Kernel Swap Daemon (kswapd) will be
invoked to swap pages of memory out to the swap file. Fairly soon, the swap file fills up and the
program may be killed by the operating system (thereby freeing up all of the memory which it
claimed).

The effect of attempting to allocate memory when there is no more left to be allocated
depends ultimately on the definition of the malloc function. The malloc function is defined
to return a null pointer when it cannot allocate the required memory. Potentially any call to
malloc in a C program must be prepared to deal with a null pointer being returned as a result.

Memory problems and solutions

The C technology chose to keep the language compiler and run-time as lean as possible, designing
for much less powerful computing technology than we typically have at our disposal today. One
example of this was that static analysis and program inspection routines were moved out of the
compilers into separate tools such as lint. This analysis was so useful that it is now typically
re-integrated into C compilers (gcc -Wall performs lint-like static analysis of C programs).
Separate tools such as Purify are used to detect memory-related problems in a lint-like fashion.

Perhaps a good way to think about C is that it is a programming language which treats the
developer as a grown-up. It is not very well-suited as a programming language for beginners
to use. It does not warn about a lot of potential problems at compile time. Then at run-time
when problems occur they might either be silently ignored or terminate the application. So
programming in C is a bit like breaking the law: you might not get caught. (But if you do it’s
the death penalty.)

Array out-of-bounds violations in C

The C programming language is not supported by a well-managed run-time such as the virtual
machines which Java, O’Caml and Ruby have, or the common language run-time of .NET used
by C#. No run-time type-checking is taking place as a C program executes. There is no
Security Manager. No-one is tracking array bounds violations. The consequence of this is that
C programs may contain hidden errors which generate no compile-time warnings and which do
not show up in testing. The bad consequences of this are well-known; code with undiscovered
bugs is signed off by the developer and shipped to the customer, only to go wrong later when
it is used.

UG4 Advances in Programming Languages — 2005/2006 4

/* File: programs/c/ArrayViolation.c */

#include <stdio.h>
#include <malloc.h>

int main() {
/* An array of four integers */

int* squares = (int*) malloc (4 * sizeof(int));
int i;
for (i = 1 ; i <= 4; i++) /* initialise the array */

squares[i] = i * i;
for (i = 1 ; i <= 4; i++) /* print the contents */

printf("%d\n", squares[i]);
return(0);

}

The error in this program is that arrays in C are indexed from zero, and so the access to a[4]
is out of bounds (an off-by-one error). C does not warn us about this at compile time (most
other languages would not either). The compile command gcc -Wall -o arrayviolation
ArrayViolation.c produces no warnings. However, neither does it fail at run-time.

[scap]stg: ./arrayviolation
1
4
9
16
[scap]stg:

In contrast, the corresponding Java program

/* File: programs/java/ArrayViolation.java */

public class ArrayViolation {
public static void main(String[] args) {
/* An array of four integers */

int[] squares = new int[4];
int i;
for (i = 1 ; i <= 4; i++) /* initialise the array */

squares[i] = i * i;
for (i = 1 ; i <= 4; i++) /* print the contents */

System.out.printf("%d\n", squares[i]);
}

}

fails at run-time when trying to initialise the array.

[scap]stg: java ArrayViolation
Exception in thread "main"

java.lang.ArrayIndexOutOfBoundsException: 4
at ArrayViolation.main(ArrayViolation.java:8)

In general, applications which do a significant amount of array processing may be slower in
high-level languages such as Java, C# and O’Caml, because of bounds checking, but it is easier
for developers to find bugs in these programs during testing, which may lead to code of higher
quality being shipped to the customer.

UG4 Advances in Programming Languages — 2005/2006 5

Modern implementations of malloc on the Linux platform allow the user to influence the
behaviour of malloc by setting the MALLOC_CHECK_ environment variable to indicate how strictly
errors such as the off-by-one error in the program above should be penalised.

Languages built on libraries

Because C is a flexible language, built on the concept of libraries of externally accessible func-
tions, one can experiment with alternative memory management routines without needing to
modify the compiler.

In Java, where the memory-management routines are baked-in, application developers do
not have this flexibility. For example, it is not possible for Java application programmers to
re-define the meaning of the “new” operation.

Detecting bounds violations

A way to make good use of this flexibility in C is to replace malloc with a more strict imple-
mentation. One such is Electric Fence which stops the program immediately once the allocated
area is overrun. It is not necessary to re-compile an application to use the library, simply add
it to the load path.

[scap]stg: export LD_PRELOAD=libefence.so.0
[scap]stg: ./arrayviolation

Electric Fence 2.2.0 Copyright (C) 1987-1999
Bruce Perens <bruce@perens.com>

Segmentation fault

The Electric Fence library traps errors such as the dangling pointer error which we saw previ-
ously. Using a pointer after it has been freed is now an immediate segmentation fault.

[scap]stg: ./danglingpointers

Electric Fence 2.2.0 Copyright (C) 1987-1999
Bruce Perens <bruce@perens.com>

p->x is 256
p->y is 512
Segmentation fault
[scap]stg:

Electric Fence uses virtual memory hardware to place an inaccessible memory page after
(and optionally before) any memory allocation. Any attempt to even read from these locations
generates a segmentation fault.

Similarly memory released by free() is made inaccessible (and will not be reallocated) so
that any attempt to access memory via a freed pointer is illegal. The pointer is not updated.

Electric Fence makes very wasteful use of memory and is suitable only for debugging, not
for production code.

UG4 Advances in Programming Languages — 2005/2006 6

Detecting space leaks

Electric Fence detects errors in the “dangling pointer” class, but not space leaks. As a more
typical example of a space leak than the one which we saw previously, the following program
leaks a vector of 1000 floating point numbers. This occurs because it fails to free the allocated
memory before the relevant function exits and the local variable holding the pointer to the
allocated memory is destroyed.

/* File: programs/c/SpaceLeak.c */

#include <stdio.h>
#include <stdlib.h>

typedef struct { /* define a structure */

float values[1000]; /* ... of 1000 floats */

} Vector_t; /* ... called Vector_t */

float min(Vector_t v) {
float x = v.values[0];
int i;
for (i = 1 ; i < 1000 ; i++)
if (v.values[i] < x)
x = v.values[i];

return x;
}

/* This function has a (rather artificial) space leak

which occurs only because we allocate the local

vector v dynamically using a call to malloc */

float biasedRnd() {
Vector_t *v = (Vector_t*)malloc(sizeof(Vector_t));
int i;
for (i = 0 ; i < 1000 ; i++)
v->values[i] = (float)rand();

return min(*v);
/* Space leak: We forgot to free v! */

}

int main() {
printf("Biased random number (least of 1000): %d\n",

(int)biasedRnd());
exit(0);

}

The valgrind debugger allows us to find memory leaks using the memcheck memory checker.
We compile the program as usual with gcc -Wall -o spaceleak SpaceLeak.c. We run

the program using valgrind spaceleak.
When our program finishes we receive a summary of the space leaked.

== LEAK SUMMARY:
== definitely lost: 4000 bytes in 1 blocks.

This program can be easily repaired by replacing the unnecessary call to malloc.

UG4 Advances in Programming Languages — 2005/2006 7

/* File: programs/c/SpaceLeak2.c */

#include <stdio.h>
#include <stdlib.h>

typedef struct { /* define a structure */

float values[1000]; /* ... of 1000 floats */

} Vector_t; /* ... called Vector_t */

float min(Vector_t v) {
float x = v.values[0];
int i;
for (i = 1 ; i < 1000 ; i++)
if (v.values[i] < x)
x = v.values[i];

return x;
}

/* This function does not have a space leak because

we allocate the vector on the stack rather than on

the heap, so we do not call malloc at all */

float biasedRnd() {
Vector_t v;
int i;
for (i = 0 ; i < 1000 ; i++)
v.values[i] = (float)rand();

return min(v);
}

int main() {
printf("Biased random number (least of 1000): %d\n",

(int)biasedRnd());
exit(0);

}

For this program valgrind reports

No malloc’d blocks -- no leaks are possible.

One way to find space leaks in C programs would be to use the Debug Malloc library
(dmalloc.com). This also implements bounds-checking by fence-posting data structures by
placing distinguished markers both before and after the allocated area. Overwriting such a
marker is faulted at run-time. Some C compilers provide a limited version of fence-posts (stack
guards) which delimit data areas in stack frames, thereby preventing overwriting the return
address of a function.

Errors such as freeing pointers too soon can be fixed by using the Boehm-Demers-Weiser
garbage collector (www.hpl.hp.com/personal/Hans_Boehm/gc/).

The Boehm collector maintains a record of pointer data structures so that live data can
be recovered (whereas discarded data can be removed in a garbage collection). The effect on
run-time is that calls to malloc become more expensive, whereas free operations are cheaper
(essentially a no-op). It is then no longer an error to call free on a pointer which has already
been freed.

UG4 Advances in Programming Languages — 2005/2006 8

Garbage collection in Cyclone

Cyclone uses the Boehm collector so we can run the previous C program unmodified in Cyclone.

/* File: programs/cyclone/Memory.cyc */

#include <stdio.h>
#include <stdlib.h>

typedef struct { /* define a structure */

float values[1000]; /* ... of 1000 floats */

} Vector_t; /* ... called Vector_t */

int main() {
Vector_t *v;
/* allocate memory unceasingly */

for (;;) v = (Vector_t*)malloc(sizeof(Vector_t));
exit(0);

}

The run-time behaviour of this program is very different in Cyclone. Allocated memory is
reclaimed by periodic garbage collections and the Kernel Swap Daemon is never invoked. In
Cyclone this program does not exhaust physical memory and swap memory and does not need
to be killed by the operating system.

Allocation and collection in Java

The Java runtime has a garbage collector which separates data (by age) into generations. Both
stop-and-copy and mark-and-sweep collectors are implemented in SUN’s JVM. The GNU Java
compiler, gcj, uses the Boehm collector. Helpfully, the SUN Java runtime allows us to inspect
the results (and run-time performance cost) of collections. We run the following with java
-verbose:gc.

/* File: programs/java/Memory.java */

class Memory {
public static void main(String[] args) {

/* Nested class in main method */

class Vector {
float[] values = new float[1000];

}

Vector v;
/* allocate memory unceasingly */

for (;;) v = new Vector();
/* System.exit(0); <- unreachable statement */

}
}

UG4 Advances in Programming Languages — 2005/2006 9

Allocation and collection in C#

The C# language depends on a garbage collector to reclaim unused dynamic data structures in
memory, as Java does.

The following example was compiled and tested with the Ximian Mono compiler for C#,
available for Linux and other Unix platforms (go-mono.com and gotmono.com). The Mono
compiler also depends on the Boehm collector.

/* File: programs/cs/Memory.cs */

using System;
class Memory {
/* No nested classes in C# */

public class Vector {
float[] values = new float[1000];

}
public static void Main(string[] args) {
Vector v;
/* allocate memory unceasingly */

for (;;) v = new Vector();
Environment.ExitCode = 0; // generates a warning

}
}

Allocation and collection in Caml

Objective Caml depends on a garbage collector developed by Damien Doligez and Xavier Leroy.
Our example program is shorter in Caml because the types of variables are inferred by the
compiler.

(* File: programs/caml/Memory.ml *)

let rec main() =
(* allocate memory unceasingly *)

let v = Array.create 1000 0.0
in main();;

main(); exit 0;;

Allocation and collection in Ruby

The Ruby programming language has an integrated mark-and-sweep garbage collector. Like
Caml, Ruby programs are concise.

File: programs/ruby/Memory.rb

allocate memory unceasingly

while true
v = Array.new(1000, 0.0)

end

UG4 Advances in Programming Languages — 2005/2006 10

Summary

• C, like many other languages, asks programmers to manage memory allocation themselves.

• Manual memory management is an error-prone process. We may call free too early (and
be left with a dangling pointer) or too late (and leak space).

• A tool such as valgrind can detect memory-related faults such as space leaks and out-
of-bounds violations. A more specialised tool, Electric Fence concentrates on dangling
pointers and out-of-bounds violations only.

• Some developers replace the standard implementations of malloc and free with other
versions, for correctness or security reasons.

• Java, Caml, C#, Ruby and Cyclone provide garbage collectors.

• The Boehm collector is a popular and reliable garbage collector.

