
115

4
Java API for XML

Processing

THE Java API for XML Processing (JAXP) is for processing XML data using
applications written in the Java programming language. JAXP leverages the
parser standards SAX (Simple API for XML Parsing) and DOM (Document
Object Model) so that you can choose to parse your data as a stream of events or
to build an object representation of it. JAXP also supports the XSLT (XML
Stylesheet Language Transformations) standard, giving you control over the pre-
sentation of the data and enabling you to convert the data to other XML docu-
ments or to other formats, such as HTML. JAXP also provides namespace
support, allowing you to work with DTDs that might otherwise have naming
conflicts.

Designed to be flexible, JAXP allows you to use any XML-compliant parser
from within your application. It does this with what is called a “pluggability
layer”, which allows you to plug in an implementation of the SAX or DOM
APIs. The pluggability layer also allows you to plug in an XSL processor, letting
you control how your XML data is displayed.

The JAXP APIs
The main JAXP APIs are defined in the javax.xml.parsers package. That
package contains two vendor-neutral factory classes: SAXParserFactory and



116 JAVA API FOR XML PROCESSING

DocumentBuilderFactory that give you a SAXParser and a DocumentBuilder,
respectively. The DocumentBuilder, in turn, creates DOM-compliant Document
object.

The factory APIs give you the ability to plug in an XML implementation offered
by another vendor without changing your source code. The implementation you
get depends on the setting of the javax.xml.parsers.SAXParserFactory and
javax.xml.parsers.DocumentBuilderFactory system properties. The default
values (unless overridden at runtime) point to Sun’s implementation.

The remainder of this section shows how the different JAXP APIs work when
you write an application.

An Overview of the Packages
The SAX and DOM APIs are defined by XML-DEV group and by the W3C,
respectively. The libraries that define those APIs are:

javax.xml.parsers

The JAXP APIs, which provide a common interface for different vendors’
SAX and DOM parsers.

org.w3c.dom

Defines the Document class (a DOM), as well as classes for all of the compo-
nents of a DOM.

org.xml.sax

Defines the basic SAX APIs.
javax.xml.transform

Defines the XSLT APIs that let you transform XML into other forms.

The “Simple API” for XML (SAX) is the event-driven, serial-access mechanism
that does element-by-element processing. The API for this level reads and writes
XML to a data repository or the Web. For server-side and high-performance
apps, you will want to fully understand this level. But for many applications, a
minimal understanding will suffice.

The DOM API is generally an easier API to use. It provides a relatively familiar
tree structure of objects. You can use the DOM API to manipulate the hierarchy
of application objects it encapsulates. The DOM API is ideal for interactive
applications because the entire object model is present in memory, where it can
be accessed and manipulated by the user.

On the other hand, constructing the DOM requires reading the entire XML struc-
ture and holding the object tree in memory, so it is much more CPU and memory



THE SIMPLE API FOR XML (SAX) APIS 117

intensive. For that reason, the SAX API will tend to be preferred for server-side
applications and data filters that do not require an in-memory representation of
the data.

Finally, the XSLT APIs defined in javax.xml.transform let you write XML
data to a file or convert it into other forms. And, as you’ll see in the XSLT sec-
tion, of this tutorial, you can even use it in conjunction with the SAX APIs to
convert legacy data to XML.

The Simple API for XML (SAX) APIs
The basic outline of the SAX parsing APIs are shown at right. To start the pro-
cess, an instance of the SAXParserFactory class is used to generate an instance
of the parser.

Figure 4–1 SAX APIs

The parser wraps a SAXReader object. When the parser’s parse() method is
invoked, the reader invokes one of several callback methods implemented in the
application. Those methods are defined by the interfaces ContentHandler,
ErrorHandler, DTDHandler, and EntityResolver.

Here is a summary of the key SAX APIs:



118 JAVA API FOR XML PROCESSING

SAXParserFactory

A SAXParserFactory object creates an instance of the parser determined by
the system property, javax.xml.parsers.SAXParserFactory.

SAXParser

The SAXParser interface defines several kinds of parse() methods. In gen-
eral, you pass an XML data source and a DefaultHandler object to the
parser, which processes the XML and invokes the appropriate methods in the
handler object.

SAXReader

The SAXParser wraps a SAXReader. Typically, you don’t care about that, but
every once in a while you need to get hold of it using SAXParser’s getXML-
Reader(), so you can configure it. It is the SAXReader which carries on the
conversation with the SAX event handlers you define.

DefaultHandler

Not shown in the diagram, a DefaultHandler implements the Con-

tentHandler, ErrorHandler, DTDHandler, and EntityResolver interfaces
(with null methods), so you can override only the ones you’re interested in.

ContentHandler

Methods like startDocument, endDocument, startElement, and endEle-

ment are invoked when an XML tag is recognized. This interface also
defines methods characters and processingInstruction, which are
invoked when the parser encounters the text in an XML element or an inline
processing instruction, respectively.

ErrorHandler

Methods error, fatalError, and warning are invoked in response to vari-
ous parsing errors. The default error handler throws an exception for fatal
errors and ignores other errors (including validation errors). That’s one rea-
son you need to know something about the SAX parser, even if you are using
the DOM. Sometimes, the application may be able to recover from a valida-
tion error. Other times, it may need to generate an exception. To ensure the
correct handling, you’ll need to supply your own error handler to the parser.

DTDHandler

Defines methods you will generally never be called upon to use. Used when
processing a DTD to recognize and act on declarations for an unparsed
entity.

EntityResolver

The resolveEntity method is invoked when the parser must identify data
identified by a URI. In most cases, a URI is simply a URL, which specifies
the location of a document, but in some cases the document may be identi-
fied by a URN—a public identifier, or name, that is unique in the Web space.



THE SIMPLE API FOR XML (SAX) APIS 119

The public identifier may be specified in addition to the URL. The Entity-

Resolver can then use the public identifier instead of the URL to find the
document, for example to access a local copy of the document if one exists.

A typical application implements most of the ContentHandler methods, at a
minimum. Since the default implementations of the interfaces ignore all inputs
except for fatal errors, a robust implementation may want to implement the
ErrorHandler methods, as well.



120 JAVA API FOR XML PROCESSING

The SAX Packages
The SAX parser is defined in the following packages listed in Table 4–1.

The Document Object Model (DOM)
APIs

Figure 4–2 shows the JAXP APIs in action:

Table 4–1 SAX Packages

Package Description

 org.xml.sax

Defines the SAX interfaces. The name org.xml is the pack-
age prefix that was settled on by the group that defined the
SAX API.

 org.xml.sax.ext

Defines SAX extensions that are used when doing more
sophisticated SAX processing, for example, to process a doc-
ument type definitions (DTD) or to see the detailed syntax for
a file.

 org.xml.sax.helpers

 Contains helper classes that make it easier to use SAX—for
example, by defining a default handler that has null-methods
for all of the interfaces, so you only need to override the ones
you actually want to implement.

 javax.xml.parsers

Defines the SAXParserFactory class which returns the
SAXParser. Also defines exception classes for reporting
errors.



THE DOCUMENT OBJECT MODEL (DOM) APIS 121

Figure 4–2 DOM APIs

You use the javax.xml.parsers.DocumentBuilderFactory class to get a Doc-
umentBuilder instance, and use that to produce a Document (a DOM) that con-
forms to the DOM specification. The builder you get, in fact, is determined by
the System property, javax.xml.parsers.DocumentBuilderFactory, which
selects the factory implementation that is used to produce the builder. (The plat-
form’s default value can be overridden from the command line.)

You can also use the DocumentBuilder newDocument() method to create an
empty Document that implements the org.w3c.dom.Document interface. Alter-
natively, you can use one of the builder’s parse methods to create a Document

from existing XML data. The result is a DOM tree like that shown in the dia-
gram.

Note: Although they are called objects, the entries in the DOM tree are actually
fairly low-level data structures. For example, under every element node (which cor-
responds to an XML element) there is a text node which contains the name of the
element tag! This issue will be explored at length in the DOM section of the tutorial,
but users who are expecting objects are usually surprised to find that invoking the
text() method on an element object returns nothing! For a truly object-oriented
tree, see the JDOM API at http://www.jdom.org.



122 JAVA API FOR XML PROCESSING

The DOM Packages
The Document Object Model implementation is defined in the packages listed in
Table 4–2.:

Table 4–2 DOM Packages

Package Description

 org.w3c.dom
Defines the DOM programming interfaces for XML (and, option-
ally, HTML) documents, as specified by the W3C.

 javax.xml.parsers

Defines the DocumentBuilderFactory class and the Docu-
mentBuilder class, which returns an object that implements the
W3C Document interface. The factory that is used to create the
builder is determined by the javax.xml.parsers system prop-
erty, which can be set from the command line or overridden when
invoking the new Instance method. This package also defines
the ParserConfigurationException class for reporting
errors.



THE XML STYLESHEET LANGUAGE FOR TRANSFORMATION (XSLT) APIS 123

The XML Stylesheet Language for
Transformation (XSLT) APIs

Figure 4–3 shows the XSLT APIs in action.

Figure 4–3 XSLT APIs

A TransformerFactory object is instantiated, and used to create a Trans-

former. The source object is the input to the transformation process. A source
object can be created from SAX reader, from a DOM, or from an input stream.

Similarly, the result object is the result of the transformation process. That object
can be a SAX event handler, a DOM, or an output stream.

When the transformer is created, it may be created from a set of transformation
instructions, in which case the specified transformations are carried out. If it is
created without any specific instructions, then the transformer object simply cop-
ies the source to the result.



124 JAVA API FOR XML PROCESSING

The XSLT Packages
The XSLT APIs are defined in the following packages:

Compiling and Running the Programs
In the J2EE 1.4 Application Server, the JAXP libraries are distributed in the
directory <J2EE_HOME>/lib/endorsed. To run the sample programs, you'll need
to used the Java 2 platform’s “endorsed standards” mechanism to access those
libraries. For details, see Compiling and Running the Program (page 139).

Where Do You Go from Here?
At this point, you have enough information to begin picking your own way
through the JAXP libraries. Your next step from here depends on what you want
to accomplish. You might want to go to:

Table 4–3 XSLT Packages

Package Description

javax.xml.transform

Defines the TransformerFactory and
Transformer classes, which you use to get a
object capable of doing transformations. After
creating a transformer object, you invoke its
transform() method, providing it with an
input (source) and output (result).

javax.xml.transform.dom
Classes to create input (source) and output
(result) objects from a DOM.

javax.xml.transform.sax

Classes to create input (source) from a SAX
parser and output (result) objects from a SAX
event handler.

javax.xml.transform.stream
Classes to create input (source) and output
(result) objects from an I/O stream.



WHERE DO YOU GO FROM HERE? 125

Simple API for XML (page 127)
If the data structures have already been determined, and you are writing a
server application or an XML filter that needs to do fast processing.

Document Object Model (page 187)
If you need to build an object tree from XML data so you can manipulate it
in an application, or convert an in-memory tree of objects to XML. This part
of the tutorial ends with a section on namespaces.

XML Stylesheet Language for Transformations (page 261)
If you need to transform XML tags into some other form, if you want to gen-
erate XML output, or (in combination with the SAX API) if you want to
convert legacy data structures to XML.


