
Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

1 of 25 24/11/05 10:18

Web Services Essentials

Distributed Applications with XML-RPC, SOAP, UDDI
& WSDL

By Ethan Cerami
February 2002
0-596-00224-6, Order Number: 2246
304 pages, $29.95 US $44.95 CA

Chapter 6
WSDL Essentials

WSDL is a specification defining how to describe web services in a common XML
grammar. WSDL describes four critical pieces of data:

Interface information describing all publicly available functions

Data type information for all message requests and message responses

Binding information about the transport protocol to be used

Address information for locating the specified service

In a nutshell, WSDL represents a contract between the service requestor and the service
provider, in much the same way that a Java interface represents a contract between
client code and the actual Java object. The crucial difference is that WSDL is platform-
and language-independent and is used primarily (although not exclusively) to describe
SOAP services.

Using WSDL, a client can locate a web service and invoke any of its publicly available
functions. With WSDL-aware tools, you can also automate this process, enabling
applications to easily integrate new services with little or no manual code. WSDL
therefore represents a cornerstone of the web service architecture, because it provides
a common language for describing services and a platform for automatically integrating
those services.

This chapter covers all aspects of WSDL, including the following topics:

An overview of the WSDL specification, complete with detailed explanations of
the major WSDL elements

Two basic WSDL examples to get you started

A brief survey of WSDL invocation tools, including the IBM Web Services
Invocation Framework (WSIF), SOAP::Lite, and The Mind Electric's GLUE
platform

A discussion of how to automatically generate WSDL files from existing SOAP
services

An overview of using XML Schema types within WSDL, including the use of arrays
and complex types

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

2 of 25 24/11/05 10:18

The WSDL Specification

WSDL is an XML grammar for describing web services. The specification itself is
divided into six major elements:

definitions

The definitions element must be the root element of all WSDL documents. It
defines the name of the web service, declares multiple namespaces used
throughout the remainder of the document, and contains all the service elements
described here.

types

The types element describes all the data types used between the client and server.
WSDL is not tied exclusively to a specific typing system, but it uses the W3C XML
Schema specification as its default choice. If the service uses only XML Schema
built-in simple types, such as strings and integers, the types element is not
required. A full discussion of the types element and XML Schema is deferred to the
end of the chapter.

message

The message element describes a one-way message, whether it is a single message
request or a single message response. It defines the name of the message and
contains zero or more message part elements, which can refer to message
parameters or message return values.

portType

The portType element combines multiple message elements to form a complete
one-way or round-trip operation. For example, a portType can combine one
request and one response message into a single request/response operation, most
commonly used in SOAP services. Note that a portType can (and frequently does)
define multiple operations.

binding

The binding element describes the concrete specifics of how the service will be
implemented on the wire. WSDL includes built-in extensions for defining SOAP
services, and SOAP-specific information therefore goes here.

service

The service element defines the address for invoking the specified service. Most
commonly, this includes a URL for invoking the SOAP service.

To help you keep the meaning of each element clear, Figure 6-1 offers a concise
representation of the WSDL specification. As you continue reading the remainder of the
chapter, you may wish to refer back to this diagram.

Figure 6-1.The WSDL specification in
a nutshell

In addition to the six major elements, the WSDL specification also defines the following

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

3 of 25 24/11/05 10:18

utility elements:

documentation

The documentation element is used to provide human-readable documentation and
can be included inside any other WSDL element.

import

The import element is used to import other WSDL documents or XML Schemas.
This enables more modular WSDL documents. For example, two WSDL
documents can import the same basic elements and yet include their own service

elements to make the same service available at two physical addresses. Note,
however, that not all WSDL tools support the import functionality as of yet.

TIP: WSDL is not an official recommendation of the W3C and, as such, has
no official status within the W3C. WSDL Version 1.1 was submitted to the
W3C in March 2001. Original submitters included IBM, Microsoft, Ariba, and
a half dozen other companies. Most probably, WSDL will be placed under
the consideration of the new W3C Web Services Activity's Web Services
Description Working Group, which will decide if the specification advances
to an official recommendation status. The WSDL Version 1.1 specification is
available online at http://www.w3.org/TR/wsdl.

Basic WSDL Example: HelloService.wsdl

To make the previously described WSDL concepts as concrete as possible, let's examine
our first sample WSDL file.

Example 6-1 provides a sample HelloService.wsdl document. The document describes
the HelloService from Chapter 4.

As you may recall, the service provides a single publicly available function, called
sayHello. The function expects a single string parameter, and returns a single string
greeting. For example, if you pass the parameter world , the service returns the greeting,
"Hello, world!"

Example 6-1: HelloService.wsdl

<?xml version="1.0" encoding="UTF−8"?>
<definitions name="HelloService"
 targetNamespace="http://www.ecerami.com/wsdl/HelloService.wsdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.ecerami.com/wsdl/HelloService.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <message name="SayHelloRequest">
 <part name="firstName" type="xsd:string"/>
 </message>
 <message name="SayHelloResponse">
 <part name="greeting" type="xsd:string"/>
 </message>

 <portType name="Hello_PortType">
 <operation name="sayHello">
 <input message="tns:SayHelloRequest"/>
 <output message="tns:SayHelloResponse"/>
 </operation>
 </portType>

 <binding name="Hello_Binding" type="tns:Hello_PortType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHello">
 <soap:operation soapAction="sayHello"/>
 <input>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:examples:helloservice"
 use="encoded"/>
 </input>
 <output>

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

4 of 25 24/11/05 10:18

 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:examples:helloservice"
 use="encoded"/>
 </output>
 </operation>
 </binding>

 <service name="Hello_Service">
 <documentation>WSDL File for HelloService</documentation>
 <port binding="tns:Hello_Binding" name="Hello_Port">
 <soap:address
 location="http://localhost:8080/soap/servlet/rpcrouter"/>
 </port>
 </service>
</definitions>

The WSDL elements are discussed in the next section of this chapter. As you examine
each element in detail, you may want to refer to Figure 6-2, which summarizes the most
important aspects of Example 6-1.

Figure 6-2.A bird's-eye view of
HelloService.wsdl

definitions

The definitions element specifies that this document is the HelloService. It also specifies
numerous namespaces that will be used throughout the remainder of the document:

<definitions name="HelloService"
 targetNamespace="http://www.ecerami.com/wsdl/HelloService.wsdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.ecerami.com/wsdl/HelloService.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

The use of namespaces is important for differentiating elements, and it enables the
document to reference multiple external specifications, including the WSDL
specification, the SOAP specification, and the XML Schema specification.

The definitions element also specifies a targetNamespace attribute. The targetNamespace is
a convention of XML Schema that enables the WSDL document to refer to itself. In
Example 6-1, we specified a targetNamespace of
http://www.ecerami.com/wsdl/HelloService.wsdl. Note, however, that the namespace
specification does not require that the document actually exist at this location; the
important point is that you specify a value that is unique, different from all other
namespaces that are defined.

Finally, the definitions element specifies a default namespace:
xmlns=http://schemas.xmlsoap.org/wsdl/. All elements without a namespace prefix,
such as message or portType , are therefore assumed to be part of the default WSDL
namespace.

message

Two message elements are defined. The first represents a request message,
SayHelloRequest, and the second represents a response message, SayHelloResponse:

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

5 of 25 24/11/05 10:18

<message name="SayHelloRequest">
 <part name="firstName" type="xsd:string"/>
</message>
<message name="SayHelloResponse">
 <part name="greeting" type="xsd:string"/>
</message>

Each of these messages contains a single part element. For the request, the part
specifies the function parameters; in this case, we specify a single firstName parameter.
For the response, the part specifies the function return values; in this case, we specify a
single greeting return value.

The part element's type attribute specifies an XML Schema data type. The value of the
type attribute must be specified as an XML Schema QName--this means that the value
of the attribute must be namespace-qualified. For example, the firstName type attribute
is set to xsd:string ; the xsd prefix references the namespace for XML Schema, defined
earlier within the definitions element.

If the function expects multiple arguments or returns multiple values, you can specify
multiple part elements.

portType

The portType element defines a single operation, called sayHello. The operation itself
consists of a single input message (SayHelloRequest) and a single output message
(SayHelloResponse):

<portType name="Hello_PortType">
 <operation name="sayHello">
 <input message="tns:SayHelloRequest"/>
 <output message="tns:SayHelloResponse"/>
 </operation>
</portType>

Much like the type attribute defined earlier, the message attribute must be specified as an
XML Schema QName. This means that the value of the attribute must be
namespace-qualified. For example, the input element specifies a message attribute of
tns:SayHelloRequest ; the tns prefix references the targetNamespace defined earlier within
the definitions element.

WSDL supports four basic patterns of operation:

One-way
The service receives a message. The operation therefore has a single input

element.

Request-response
The service receives a message and sends a response. The operation therefore has
one input element, followed by one output element (illustrated previously in
Example 6-1). To encapsulate errors, an optional fault element can also be
specified.

Solicit-response
The service sends a message and receives a response. The operation therefore has
one output element, followed by one input element. To encapsulate errors, an
optional fault element can also be specified.

Notification
The service sends a message. The operation therefore has a single output element.

These patterns of operation are also shown in Figure 6-3. The request-response pattern
is most commonly used in SOAP services.

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

6 of 25 24/11/05 10:18

Figure 6-3.Operation patterns supported by
WSDL 1.1

binding

The binding element provides specific details on how a portType operation will actually
be transmitted over the wire. Bindings can be made available via multiple transports,
including HTTP GET, HTTP POST, or SOAP. In fact, you can specify multiple bindings
for a single portType .

The binding element itself specifies name and type attributes:

<binding name="Hello_Binding" type="tns:Hello_PortType">

The type attribute references the portType defined earlier in the document. In our case,
the binding element therefore references tns:Hello_PortType , defined earlier in the
document. The binding element is therefore saying, "I will provide specific details on
how the sayHello operation will be transported over the Internet."

SOAP binding

WSDL 1.1 includes built-in extensions for SOAP 1.1. This enables you to specify
SOAP-specific details, including SOAP headers, SOAP encoding styles, and the
SOAPAction HTTP header. The SOAP extension elements include:

soap:binding

This element indicates that the binding will be made available via SOAP. The style

attribute indicates the overall style of the SOAP message format. A style value of
rpc specifies an RPC format. This means that the body of the SOAP request will
include a wrapper XML element indicating the function name. Function
parameters are then embedded inside the wrapper element. Likewise, the body of
the SOAP response will include a wrapper XML element that mirrors the function
request. Return values are then embedded inside the response wrapper element.

A style value of document specifies an XML document call format. This means that
the request and response messages will consist simply of XML documents. The
document style is flatter than the rpc style and does not require the use of wrapper
elements. (See the upcoming note for additional details.)

The transport attribute indicates the transport of the SOAP messages. The value

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

7 of 25 24/11/05 10:18

http://schemas.xmlsoap.org/soap/http indicates the SOAP HTTP transport, whereas
http://schemas.xmlsoap.org/soap/smtp indicates the SOAP SMTP transport.

soap:operation

This element indicates the binding of a specific operation to a specific SOAP
implementation. The soapAction attribute specifies that the SOAPAction HTTP
header be used for identifying the service. (See Chapter 3 for details on the
SOAPAction header.)

soap:body

This element enables you to specify the details of the input and output messages.
In the case of HelloWorld, the body element specifies the SOAP encoding style and
the namespace URN associated with the specified service.

TIP: The choice between the rpc style and the document style is controversial.
The topic has been hotly debated on the WSDL newsgroup
(http://groups.yahoo.com/group/wsdl). The debate is further complicated
because not all WSDL-aware tools even differentiate between the two styles.
Because the rpc style is more in line with the SOAP examples from previous
chapters, I have chosen to stick with the rpc style for all the examples within
this chapter. Note, however, that most Microsoft .NET WSDL files use the
document style.

service

The service element specifies the location of the service. Because this is a SOAP service,
we use the soap:address element, and specify the local host address for the Apache SOAP
rpcrouter servlet: http://localhost:8080/soap/servlet/rpcrouter .

Note that the service element includes a documentation element to provide
human-readable documentation.

WSDL Invocation Tools, Part I

Given the WSDL file in Example 6-1, you could manually create a SOAP client to invoke
the service. A better alternative is to automatically invoke the service via a WSDL
invocation tool. (See Figure 6-4.)

Figure 6-4.WSDL invocation tools

Many WSDL invocation tools already exist. This section provides a brief overview of
three invocation tools.

GLUE

The Mind Electric provides a complete web service platform called GLUE (available at
http://www.themindelectric.com). The platform itself provides extensive support for
SOAP, WSDL, and UDDI. Some of its advanced functionality, including support for
complex data types, will be explored later in this chapter.

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

8 of 25 24/11/05 10:18

For now, you can try out the GLUE invoke command-line tool. Here is the
command-line usage:

usage: invoke URL method arg1 arg2 arg3...

For example, to invoke the HelloService, make sure that your Apache Tomcat server is
running, and place the HelloService.wsdl file within a publicly available directory. Then,
issue the following command:

invoke http://localhost:8080/wsdl/HelloService.wsdl sayHello World

Once invoked, GLUE will immediately download the specified WSDL file, invoke the
sayHello method, and pass World as a parameter. GLUE will then automatically display
the server response:

Output: result = Hello, World!

That's all there is to it!

GLUE also supports an excellent logging facility that enables you to easily view all SOAP
messages. To activate the logging facility, set the electric.logging system property. The
easiest option is to modify the invoke.bat file. The original file looks like this:

call java electric.glue.tools.Invoke %1 %2 %3 %4 %5 %6 %7 %8 %9

Modify the file to include the logging property via the −D option to the Java interpreter:

call java −Delectric.logging="SOAP" electric.glue.tools.Invoke %1 %2 %3 %4
 %5 %6 %7 %8 %9

When you invoke the HelloService, GLUE now generates the following output:

LOG.SOAP: request to http://207.237.201.187:8080/soap/servlet/rpcrouter
<?xml version=’1.0’ encoding=’UTF−8’?>
<soap:Envelope
 xmlns:xsi=’http://www.w3.org/2001/XMLSchema−instance’
 xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
 xmlns:soap=’http://schemas.xmlsoap.org/soap/
 envelope/’ xmlns:soapenc=’http://schemas.xmlsoap.org/soap/encoding/’
 soap:encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’>
 <soap:Body>
 <n:sayHello xmlns:n=’urn:examples:helloservice’>
 <firstName xsi:type=’xsd:string’>World</firstName>
 </n:sayHello>
 </soap:Body>
</soap:Envelope>

LOG.SOAP: response from http://207.237.201.187:8080/soap/servlet/rpcrouter
<?xml version=’1.0’ encoding=’UTF−8’?>
<SOAP−ENV:Envelope
 xmlns:SOAP−ENV=’http://schemas.xmlsoap.org/soap/envelope/’
 xmlns:xsi=’http://www.w3.org/1999/XMLSchema−instance’
 xmlns:xsd=’http://www.w3.org/1999/XMLSchema’>
 <SOAP−ENV:Body>
 <ns1:sayHelloResponse
 xmlns:ns1=’urn:examples:helloservice’
 SOAP−ENV:encodingStyle=
 ’http://schemas.xmlsoap.org/soap/encoding/’>
 <return xsi:type=’xsd:string’>Hello, World!</return>
 </ns1:sayHelloResponse>
 </SOAP−ENV:Body>
</SOAP−ENV:Envelope>

result = Hello, World!

To view additional HTTP information, just set electric.logging to SOAP,HTTP.

SOAP::Lite for Perl

SOAP::Lite for Perl, written by Paul Kulchenko, also provides limited support for WSDL.
The package is available at http://www.soaplite.com.

Example 6-2 provides a complete Perl program for invoking the HelloService.

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

9 of 25 24/11/05 10:18

Example 6-2: Hello_Service.pl

use SOAP::Lite;

print "Connecting to Hello Service...\n";
print SOAP::Lite
 −> service(’http://localhost:8080/wsdl/HelloService.wsdl’)
 −> sayHello (’World’);

The program generates the following output:

Connecting to Hello Service...
Hello, World!

IBM Web Services Invocation Framework (WSIF)

Finally, IBM has recently released WSIF. The package is available at
http://www.alphaworks.ibm.com/tech/wsif.

Much like GLUE, WSIF provides a simple command-line option for automatically
invoking WSDL services. For example, the following command:

java clients.DynamicInvoker http://localhost:8080/wsdl/HelloService.wsdl
 sayHello World

generates the following output:

Reading WSDL document from ’http://localhost:8080/wsdl/HelloService.wsdl’
Preparing WSIF dynamic invocation
Executing operation sayHello
Result:
greeting=Hello, World!

Done!

Basic WSDL Example: XMethods eBay Price Watcher
Service

Before moving on to more complicated WSDL examples, let's examine another
relatively simple one. Example 6-3 provides a WSDL file for the XMethods eBay Price
Watcher Service. The service takes an existing eBay auction ID, and returns the value of
the current bid.

Example 6-3: eBayWatcherService.wsdl (reprinted with permission of XMethods,
Inc.)

<?xml version="1.0"?>
<definitions name="eBayWatcherService"
 targetNamespace=
 "http://www.xmethods.net/sd/eBayWatcherService.wsdl"
 xmlns:tns="http://www.xmethods.net/sd/eBayWatcherService.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <message name="getCurrentPriceRequest">
 <part name="auction_id" type = "xsd:string"/>
 </message>
 <message name="getCurrentPriceResponse">
 <part name="return" type = "xsd:float"/>
 </message>

 <portType name="eBayWatcherPortType">
 <operation name="getCurrentPrice">
 <input
 message="tns:getCurrentPriceRequest"
 name="getCurrentPrice"/>
 <output
 message="tns:getCurrentPriceResponse"
 name="getCurrentPriceResponse"/>
 </operation>
 </portType>

 <binding name="eBayWatcherBinding" type="tns:eBayWatcherPortType">

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

10 of 25 24/11/05 10:18

 <soap:binding
 style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getCurrentPrice">
 <soap:operation soapAction=""/>
 <input name="getCurrentPrice">
 <soap:body
 use="encoded"
 namespace="urn:xmethods−EbayWatcher"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output name="getCurrentPriceResponse">
 <soap:body
 use="encoded"
 namespace="urn:xmethods−EbayWatcher"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 </binding>

 <service name="eBayWatcherService">
 <documentation>
 Checks current high bid for an eBay auction
 </documentation>
 <port name="eBayWatcherPort" binding="tns:eBayWatcherBinding">
 <soap:address
 location="http://services.xmethods.net:80/soap/servlet/rpcrouter"/>
 </port>
 </service>
</definitions>

Here is an overview of the main WSDL elements:

messages

Two messages are defined: getCurrentPriceRequest and getCurrentPriceResponse . The
request message contains a single string parameter; the response message
contains a single float parameter.

portType

A single operation, getCurrentPrice , is defined. Again, we see the request/response
operation pattern.

binding

The binding element specifies HTTP SOAP as the transport. The soapAction

attribute is left as an empty string ("").

service

This element specifies that the service is available at
http://services.xmethods.net:80/soap/servlet/rpcrouter.

To access the eBay watcher service, you can use any of the WSDL invocation tools
defined earlier. For example, the following call to GLUE:

invoke http://www.xmethods.net/sd/2001/EBayWatcherService.wsdl
 getCurrentPrice 1271062297

retrieves the current bid price for a Handspring Visor Deluxe:

result = 103.5

TIP: The XMethods web site (http://www.xmethods.net) provides dozens of
sample SOAP and .NET services. Nearly all of these services include WSDL
files and therefore provide an excellent opportunity for learning WSDL in
detail. As you browse the XMethods directory, try interfacing with the
specified services via any of the WSDL invocation tools described here.
Quite likely, you will be amazed at how easy it is to integrate and invoke new
services.

WSDL Invocation Tools, Part II

Our initial discussion of WSDL invocation tools focused on programming and

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

11 of 25 24/11/05 10:18

command-line invocation tools. We now move on to even simpler tools that are
entirely driven by a web-based interface.

The GLUE Console

In addition to supporting a number of command-line tools, the GLUE platform also
supports a very intuitive web interface for deploying new services and connecting to
existing services.

To start the GLUE console, just type:

console

This will automatically start the GLUE console on the default port 8100. Open a web
browser and you will see the GLUE console home page. (See Figure 6-5.)

Figure 6-5.The GLUE console: index page

In the text box entitled WSDL, you can enter the URL for any WSDL file. For example,
try entering the URL for the eBay Price Watcher Service,
http://www.xmethods.net/sd/2001/EBayWatcherService.wsdl.

Click the WSDL button, and you will see the Web Service overview page. (See Figure
6-6.) This page includes a description of the specified service (extracted from the WSDL
document element) and a list of public operations. In the case of the eBay service, you
should see a single getCurrentPrice method.

Figure 6-6.The GLUE console: Web Service overview page for
the eBay Price Watcher Service

Click the getCurrentPrice method, and you will see the Web Method overview page. (See
Figure 6-7.) This page includes a text box where you can specify the input auction ID.

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

12 of 25 24/11/05 10:18

Figure 6-7.The GLUE console: Web Method overview page
for the getCurrentPrice method

Enter an auction ID, click the Send button, and GLUE will automatically invoke the
remote method and display the results at the bottom of the page. For example, Figure
6-8 shows the current bid price for the Handspring Visor Deluxe. Note that the price has
already gone up $10 since invoking the service via the GLUE command-line tool!

Figure 6-8.The GLUE console: invoking the getCurrentPrice
method (results of the invocation are displayed at the

bottom of the screen)

SOAPClient.com

If you would like to try out a web-based interface similar to GLUE, but don't want to
bother downloading the GLUE package, consider the Generic SOAP Client available at
SOAPClient.com.

Figure 6-9 shows the opening screen to the Generic SOAP Client. Much like the GLUE
console, you can specify the address for a WSDL file in this screen.

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

13 of 25 24/11/05 10:18

Figure 6-9.The Generic SOAP Client, available from
SOAPClient.com

Specify the same eBay Price Watcher Service WSDL file, and the SOAP Client will
display a text box for entering the auction ID. (See Figure 6-10.)

Figure 6-10.The Generic SOAP Client: Displaying
information on the XMethods eBay Price Watcher Service

Figure 6-11 displays the result of the eBay service invocation. The Handspring Visor is
up another $4!

Figure 6-11.The Generic SOAP Client: Response from the
XMethods eBay Price Watcher Service

Automatically Generating WSDL Files

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

14 of 25 24/11/05 10:18

One of the best aspects of WSDL is that you rarely have to create WSDL files from
scratch. A whole host of tools currently exists for transforming existing services into
WSDL descriptions. You can then choose to use these WSDL files as is or manually
tweak them with your favorite text editor. In the discussion that follows, we explore the
WSDL generation tool provided by GLUE.

TIP: If you create WSDL files from scratch or tweak WSDL files generated by
a tool, it is a good idea to validate your final WSDL documents. You can
download a WSDL validator from http://pocketsoap.com/wsdl/. This
package requires that you have an XSLT engine and the zvonSchematron
(http://www.zvon.org), but installation only takes a few minutes. Once
installed, the validator is well worth the effort and creates nicely formatted
HTML reports indicating WSDL errors and warnings.

GLUE java2wsdl Tool

The GLUE platform includes a java2wsdl command-line tool for transforming Java
services into WSDL descriptions. The command-line usage is as follows:

usage: java2wsdl <arguments>

where valid arguments are:
 classname name of java class
 −d directory output directory
 −e url endpoint of service
 −g include GET/POST binding
 −m map−file read mapping instructions
 −n namespace namespace for service
 −r description description of service
 −s include SOAP binding
 −x command−file command file to execute

Complete information on each argument is available online within the GLUE User
Guide at
http://www.themindelectric.com/products/glue/releases/GLUE-1.1/docs/guide/index.html.
For now, we will focus on the most basic arguments.

For example, consider the PriceService class in Example 6-4. The service provides a
single getPrice() method.

Example 6-4: PriceService.java

package com.ecerami.soap.examples;

import java.util.Hashtable;
/**
 * A Sample SOAP Service
 * Provides Current Price for requested Stockkeeping Unit (SKU)
 */
public class PriceService {
 protected Hashtable products;

 /**
 * Zero Argument Constructor
 * Load product database with two sample products
 */
 public PriceService () {
 products = new Hashtable();
 // Red Hat Linux
 products.put("A358185", new Double (54.99));
 // McAfee PGP Personal Privacy
 products.put("A358565", new Double (19.99));
 }

 /**
 * Provides Current Price for requested SKU
 * In a real−setup, this method would connect to
 * a price database. If SKU is not found, method
 * will throw a PriceException.
 */
 public double getPrice (String sku)
 throws ProductNotFoundException {
 Double price = (Double) products.get(sku);
 if (price == null) {
 throw new ProductNotFoundException ("SKU: "+sku+" not found");

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

15 of 25 24/11/05 10:18

 }
 return price.doubleValue();
 }
}

To generate a WSDL file for this class, run the following command:

java2wsdl com.ecerami.soap.examples.PriceService −s −e http://localhost:
 8080/soap/servlet/rpcrouter −n urn:examples:priceservice

The −s option directs GLUE to create a SOAP binding; the −e option specifies the
address of our service; and the −n option specifies the namespace URN for the service.
GLUE will generate a PriceService.wsdl file. (See Example 6-5.)

TIP: If your service is defined via a Java interface and you include your
source files within your CLASSPATH, GLUE will extract your Javadoc
comments, and turn these into WSDL documentation elements.

Example 6-5: PriceService.wsdl (automatically generated by GLUE)

<?xml version=’1.0’ encoding=’UTF−8’?>
<!−−generated by GLUE−−>
<definitions name=’com.ecerami.soap.examples.PriceService’
 targetNamespace=’http://www.themindelectric.com/wsdl/com.ecerami.soap.
 examples.PriceService/’

 xmlns:tns=’http://www.themindelectric.com/wsdl/com.ecerami.soap.
 examples.PriceService/’
 xmlns:electric=’http://www.themindelectric.com/’
 xmlns:soap=’http://schemas.xmlsoap.org/wsdl/soap/’
 xmlns:http=’http://schemas.xmlsoap.org/wsdl/http/’
 xmlns:mime=’http://schemas.xmlsoap.org/wsdl/mime/’
 xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
 xmlns:soapenc=’http://schemas.xmlsoap.org/soap/encoding/’
 xmlns:wsdl=’http://schemas.xmlsoap.org/wsdl/’
 xmlns=’http://schemas.xmlsoap.org/wsdl/’>
 <message name=’getPrice0SoapIn’>
 <part name=’sku’ type=’xsd:string’/>
 </message>
 <message name=’getPrice0SoapOut’>
 <part name=’Result’ type=’xsd:double’/>
 </message>
 <portType name=’com.ecerami.soap.examples.PriceServiceSoap’>
 <operation name=’getPrice’ parameterOrder=’sku’>
 <input name=’getPrice0SoapIn’ message=’tns:getPrice0SoapIn’/>
 <output name=’getPrice0SoapOut’ message=’tns:getPrice0SoapOut’/>
 </operation>
 </portType>
 <binding name=’com.ecerami.soap.examples.PriceServiceSoap’
 type=’tns:com.ecerami.soap.examples.PriceServiceSoap’>
 <soap:binding style=’rpc’
 transport=’http://schemas.xmlsoap.org/soap/http’/>
 <operation name=’getPrice’>
 <soap:operation soapAction=’getPrice’ style=’rpc’/>
 <input name=’getPrice0SoapIn’>
 <soap:body use=’encoded’
 namespace=’urn:examples:priceservice’
 encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’/>
 </input>
 <output name=’getPrice0SoapOut’>
 <soap:body use=’encoded’
 namespace=’urn:examples:priceservice’
 encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’/>
 </output>
 </operation>
 </binding>
 <service name=’com.ecerami.soap.examples.PriceService’>
 <port name=’com.ecerami.soap.examples.PriceServiceSoap’
 binding=’tns:com.ecerami.soap.examples.PriceServiceSoap’>
 <soap:address location=’http://207.237.201.187:8080
 /soap/servlet/ rpcrouter’/>
 </port>
 </service>
</definitions>

You can then invoke the service via SOAP::Lite:

use SOAP::Lite;

print "Connecting to Price Service...\n";
print SOAP::Lite
 −> service(’http://localhost:8080/wsdl/PriceService.wsdl’)

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

16 of 25 24/11/05 10:18

 −> getPrice (’A358185’);

Hopefully, this example illustrates the great promise of web service interoperability. We
have a WSDL file generated by GLUE, a server running Java, and a client running Perl,
and they all work seamlessly together.

Connecting to Price Service...
54.99

WARNING: The IBM Web Services Toolkit (available at
http://www.alphaworks.ibm.com/tech/webservicestoolkit) provides a
WSDL generation tool called wsdlgen . This tool can take existing Java classes,
Enterprise JavaBeans, and Microsoft COM objects and automatically
generate corresponding WSDL files. However, as this book goes to press, the
wsdlgen tool creates files based on the 1999 version of the W3C XML Schema.
The WSDL files are therefore incompatible with other WSDL invocation
tools, such as SOAP::Lite and GLUE. If you choose to use the IBM tool, make
sure to manually update your WSDL files to reflect the latest version of XML
Schema (http://www.w3.org/2001/XMLSchema).

XML Schema Data Typing

In order for a SOAP client to communicate effectively with a SOAP server, the client and
server must agree on a data type system. By default, XML 1.0 does not provide a data
type system. In contrast, every programming language provides some basic facility for
declaring data types, such as integers, floats, doubles, and strings. One of the greatest
challenges in building web services is therefore creating a common data type system
that can be used by a diverse set of programming languages running on a diverse set of
operating systems.

WSDL does not aim to create a standard for XML data typing. In fact, WSDL is
specifically designed for maximum flexibility and is therefore not tied exclusively to any
one data type system. Nonetheless, WSDL does default to the W3C XML Schema
specification. The XML Schema specification is also currently the most widely used
specification for data typing.

The more you know about XML Schemas, the better you can understand complex
WSDL files. A full discussion of XML Schemas is beyond the scope of this chapter.
However, two facts are crucially important.

First, the XML Schema specification includes a basic type system for encoding most
data types. This type system includes a long list of built-in simple types, including
strings, floats, doubles, integers, time, and date. This list, shown in Table 6-1, is
excerpted from the XML Schema Part 0: Primer
(http://www.w3org/TR/2000/WD=xmlschema=0=20000407/). If your application sticks
to these simple data types, there is no need to include the WSDL types element, and the
resulting WSDL file is extremely simple. For example, our first two WSDL files use only
strings and floats.

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

17 of 25 24/11/05 10:18

Table 6-1:A list of the main XML Schema built-in simple
types

Simple type Example(s)

string Web Services

Boolean true, false, 1, 0

float -INF, -1E4, -0, 0, 12.78E-2, 12, INF, NaN

double -INF, -1E4, -0, 0, 12.78E-2, 12, INF, NaN

decimal -1.23, 0, 123.4, 1000.00

binary 100010

integer -126789, -1, 0, 1, 126789

nonPositiveInteger -126789, -1, 0

negativeInteger -126789, -1

long -1, 12678967543233

int -1, 126789675

short -1, 12678

byte -1, 126

nonNegativeInteger 0, 1, 126789

unsignedLong 0, 12678967543233

unsignedInt 0, 1267896754

unsignedShort 0, 12678

unsignedByte 0, 126

positiveInteger 1, 126789

date 1999-05-31

time 13:20:00.000, 13:20:00.000-05:00

Second, the XML Schema specification provides a facility for creating new data types.
This is important if you want to create data types that go beyond what is already
defined within the Schema. For example, a service might return an array of floats or a
more complex stock quote object containing the high, low, and volume figures for a
specific stock. Whenever your service goes beyond the simple XML Schema data types,
you must declare these new data types within the WSDL types element.

In the next two sections of this chapter, we present two specific examples of using XML
Schemas to create new data types. The first focuses on arrays; the second focuses on a
more complex data type for encapsulating product information.

Arrays

Example 6-6, shown later in this section, is a sample WSDL file that illustrates the use of
arrays. This is the Price List Service we created in Chapter 5. The service has one public
method, called getPriceList , which expects an array of string SKU values and returns an
array of double price values.

The WSDL file now includes a types element. Inside this element, we have defined two
new complex types. Very broadly, the XML Schema defines simple types and complex
types. Simple types cannot have element children or attributes, whereas complex types
can have element children and attributes. We have declared complex types in our
WSDL file, because an array may have multiple elements, one for each value in the
array.

The XML Schema requires that any new type you create be based on some existing data
type. This existing base type is specified via the base attribute. You can then choose to

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

18 of 25 24/11/05 10:18

modify this base type using one of two main methods: extension or restriction .
Extension simply means that your new data type will have all the properties of the base
type plus some extra functionality. Restriction means that your new data type will have
all the properties of the base data type, but may have additional restrictions placed on
the data.

In Example 6-6, we'll create two new complex types via restriction. For example:

<complexType name="ArrayOfString">
 <complexContent>
 <restriction base="soapenc:Array">
 <attribute ref="soapenc:arrayType"
 wsdl:arrayType="string[]"/>
 </restriction>
 </complexContent>
</complexType>

Example 6-6: PriceListService.wsdl

<?xml version="1.0" encoding="UTF−8"?>
<definitions name="PriceListService"
 targetNamespace="http://www.ecerami.com/wsdl/PriceListService.wsdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.ecerami.com/wsdl/PriceListService.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://www.ecerami.com/schema">

 <types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.ecerami.com/schema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">

 <complexType name="ArrayOfString">
 <complexContent>
 <restriction base="soapenc:Array">
 <attribute ref="soapenc:arrayType"
 wsdl:arrayType="string[]"/>
 </restriction>
 </complexContent>
 </complexType>
 <complexType name="ArrayOfDouble">
 <complexContent>
 <restriction base="soapenc:Array">
 <attribute ref="soapenc:arrayType"
 wsdl:arrayType="double[]"/>
 </restriction>
 </complexContent>
 </complexType>
 </schema>
 </types>

 <message name="PriceListRequest">
 <part name="sku_list" type="xsd1:ArrayOfString"/>
 </message>

 <message name="PriceListResponse">
 <part name="price_list" type="xsd1:ArrayOfDouble"/>
 </message>

 <portType name="PriceList_PortType">
 <operation name="getPriceList">
 <input message="tns:PriceListRequest"/>
 <output message="tns:PriceListResponse"/>
 </operation>
 </portType>

 <binding name="PriceList_Binding" type="tns:PriceList_PortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getPriceList">
 <soap:operation soapAction="urn:examples:pricelistservice"/>
 <input>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:examples:pricelistservice"
 use="encoded"/>
 </input>
 <output>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:examples:pricelistservice" use="encoded"/>
 </output>
 </operation>

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

19 of 25 24/11/05 10:18

 </binding>

 <service name="PriceList_Service">
 <port name="PriceList_Port" binding="tns:PriceList_Binding">
 <soap:address location="http://localhost:8080/soap/servlet/rpcrouter"/>
 </port>
 </service>
</definitions>

The WSDL specification requires that arrays be based on the SOAP 1.1 encoding
schema. It also requires that arrays use the name ArrayOfXXX , where XXX is the type of
item in the array. The previous example therefore creates a new type called
ArrayOfString . This new type is based on the SOAP array data type, but it is restricted to
holding only string values. Likewise, the ArrayOfDouble data type creates a new array
type containing only double values.

When using the WSDL types element, you need to be particularly aware of XML
namespace issues. First, note that the root schema element must include a namespace
declaration for the SOAP encoding specification
(http://schemas.xmlsoap.org/soap/encoding/). This is required because our new data
types extend the array definition specified by SOAP.

Second, the root schema element must specify a targetNamespace attribute. Any newly
defined elements, such as our new array data types, will belong to the specified
targetNamespace . To reference these data types later in the document, you must refer
back to the same targetNamespace . Hence, our definitions element includes a new
namespace declaration:

xmlns:xsd1="http://www.ecerami.com/schema">

xsd1 matches the targetNamespace and therefore enables us to reference the new data
types later in the document. For example, the message element references the
xsd1:ArrayOfString data type:

<message name="PriceListRequest">
 <part name="sku_list" type="xsd1:ArrayOfString"/>
</message>

TIP: For an excellent and concise overview of W3C Schema complex types
and their derivation via extension and restriction, see Donald Smith's article
on "Understanding W3C Schema Complex Types." The article is available
online at http://www.xml.com/pub/a/2001/08/22/easyschema.html.

Automatically invoking array services

Once you move beyond basic data types, the simple WSDL invocation methods
described previously in this chapter no longer work quite as easily. For example, you
cannot simply open the GLUE console, pass an array of strings, and hope to receive
back an array of doubles. Additional work is necessary, and some manual code is
required. Nonetheless, the additional work is minimal, and the discussion that follows
focuses on the GLUE platform. We have chosen to focus on the GLUE platform because
it represents the most elegant platform for working with complex data types; other
tools, such as the IBM Web Services Toolkit, do, however, provide similar functionality.

To get started, you should become familiar with the GLUE wsdl2java command-line
tool. The tool takes in a WSDL file and generates a suite of Java class files to
automatically interface with the specified service. You can then write your own Java
class to invoke the specified service. Best of all, the code you write is minimally simple,
and all SOAP-specific details are completely hidden from your view. (See Figure 6-12.)

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

20 of 25 24/11/05 10:18

Figure 6-12.The GLUE wsdl2java tool and the
GLUE architecture

Here is the wsdl2java command-line usage:

usage: wsdl2java <arguments>

where valid arguments are:
 http://host:port/filename URL of WSDL
 −c checked exceptions
 −d directory output directory for files
 −l user password realm login credentials
 −m map−file read mapping instructions
 −p package set default package
 −v verbose
 −x command−file command file to execute

Complete information on each argument is available online within the GLUE User
Guide at
http://www.themindelectric.com/products/glue/releases/GLUE-1.1/docs/guide/index.html.
For now, we will focus on the most basic arguments. For example, to generate Java class
files for the PriceListService.wsdl file, first make sure that the WSDL file is available
publicly on a web site or locally via a web server such as Tomcat. Then, issue the
following command:

wsdl2java.bat http://localhost:8080/wsdl/PriceListService.wsdl −p com.
 ecerami.wsdl.glue

The first argument specifies the location of the WSDL file; the second argument
specifies that the generated files should be placed in the package com.ecerami.wsdl.glue .

GLUE will automatically download the specified WSDL file and generate two Java class
files:

write file IPriceList_Service.java
write file PriceList_ServiceHelper.java

The first file, IPriceList_Service.java, is shown in Example 6-7. This file represents a Java
interface that mirrors the public methods exposed by the WSDL file. Specifically, the
interface shows a getPriceList() method that receives an array of String values, and
returns an array of double values.

Example 6-7: IPriceList_Service.java

// generated by GLUE

package com.ecerami.wsdl.glue;

public interface IPriceList_Service
 {
 double[] getPriceList(String[] sku_list);
 }

The second file, PriceList_ServiceHelper.java, is shown in Example 6-8. This is known as
a GLUE helper file, and it can dynamically bind to the service specified by the WSDL
file. To access the service, simply call the static bind() method.

Example 6-8: PriceList_ServiceHelper.java

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

21 of 25 24/11/05 10:18

// generated by GLUE

package com.ecerami.wsdl.glue;

import electric.registry.Registry;
import electric.registry.RegistryException;

public class PriceList_ServiceHelper
 {
 public static IPriceList_Service bind() throws RegistryException
 {
 return bind("http://localhost:8080/wsdl/PriceListService.wsdl");
 }

 public static IPriceList_Service bind(String url)
 throws RegistryException
 {
 return (IPriceList_Service)
 Registry.bind(url, IPriceList_Service.class);
 }
 }

Once GLUE has generated the interface and helper files, you just need to write your
own class that actually invokes the service. Example 6-9 shows a sample application
that invokes the Price List Service. The code first calls PriceList_ServiceHelper.bind() ,
which then returns an IPriceList_Service object. All subsequent code behaves as if the
Price List Service is a local object, and all SOAP-specific details are completely hidden
from the developer.

Here is a sample output of the Invoke_PriceList application:

Product Catalog
SKU: A358185 −−> Price: 54.99
SKU: A358565 −−> Price: 19.99

Example 6-9: Invoke_PriceList.java

package com.ecerami.wsdl;

import com.ecerami.wsdl.glue.*;

/**
 * SOAP Invoker. Uses the PriceListServiceHelper to invoke
 * SOAP service. PriceListServiceHelper and IPriceListService
 * are automatically generated by GLUE.
*/
public class Invoke_PriceList {

 /**
 * Get Product List via SOAP
 */
 public double[] getPrices (String skus[]) throws Exception {
 IPriceList_Service priceListService = PriceList_ServiceHelper.bind();
 double[] prices = priceListService.getPriceList(skus);
 return prices;
 }

 /**
 * Main Method
 */
 public static void main (String[] args) throws Exception {
 Invoke_PriceList invoker = new Invoke_PriceList();
 System.out.println ("Product Catalog");
 String skus[] = {"A358185", "A358565" };
 double[] prices = invoker.getPrices (skus);
 for (int i=0; i<prices.length; i++) {
 System.out.print ("SKU: "+skus[i]);
 System.out.println (" −−> Price: "+prices[i]);
 }
 }
}

Complex Types

Our final topic is the use of complex data types. For example, consider a home
monitoring service that provides a concise update on your home. The data returned
could include multiple data elements, such as the current temperature, security status,
and whether the garage door is open or closed. Encoding this data into WSDL requires
additional knowledge of XML Schemas, which reinforces the main precept that the

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

22 of 25 24/11/05 10:18

more you know about XML Schemas, the better you will understand complex WSDL
files.

To explore complex types, consider the WSDL file in Example 6-10. This WSDL file
describes our Product Service from Chapter 5. The complex types are indicated in bold.

Example 6-10: ProductService.wsdl

<?xml version="1.0" encoding="UTF−8"?>
<definitions name="ProductService"
 targetNamespace="http://www.ecerami.com/wsdl/ProductService.wsdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.ecerami.com/wsdl/ProductService.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://www.ecerami.com/schema">

 <types>
 <xsd:schema
 targetNamespace="http://www.ecerami.com/schema"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <xsd:complexType name="product">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="description" type="xsd:string"/>
 <xsd:element name="price" type="xsd:double"/>
 <xsd:element name="SKU" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
 </types>

 <message name="getProductRequest">
 <part name="sku" type="xsd:string"/>
 </message>

 <message name="getProductResponse">
 <part name="product" type="xsd1:product"/>
 </message>

 <portType name="Product_PortType">
 <operation name="getProduct">
 <input message="tns:getProductRequest"/>
 <output message="tns:getProductResponse"/>
 </operation>
 </portType>

 <binding name="Product_Binding" type="tns:Product_PortType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getProduct">
 <soap:operation soapAction="urn:examples:productservice"/>
 <input>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:examples:productservice"
 use="encoded"/>
 </input>
 <output>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:examples:productservice" use="encoded"/>
 </output>
 </operation>
 </binding>

 <service name="Product_Service">
 <port name="Product_Port" binding="tns:Product_Binding">
 <soap:address location="http://localhost:8080/soap/servlet/rpcrouter"/>
 </port>
 </service>
</definitions>

The service in Example 6-10 describes a getProduct operation that returns a complex
product type for encapsulating product information, including product name,
description, price, and SKU number.

The new product type is defined in much the same manner as the array definition from
the previous example. The main difference is that we are now using the sequence

element. The sequence element specifies a list of subelements and requires that these
elements appear in the order specified. XML Schemas also enable you to specify

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

23 of 25 24/11/05 10:18

cardinality via the minOccurs and maxOccurs attributes. If these attributes are absent (as in
our example), they default to 1, requiring that each subelement must occur exactly one
time.

Each subelement can also have its own data type, and you can see that we have mixed
and matched string data types with double data types in our example.

Automatically invoking complex type services

To automatically invoke the Product Service, we return to the GLUE wsdl2java tool. This
time around, GLUE will generate a Java interface class and a Java helper class, along
with two additional files for handling the new complex type.

For example, the following command:

wsdl2java.bat http://localhost:8080/wsdl/ProductService.wsdl −p com.ecerami.
 wsdl.glue

generates the following output:

write file IProduct_Service.java
write file Product_ServiceHelper.java
write file product.java
write file Product_Service.map

The first two files in the output listing are familiar. The first file is a Java interface
mirroring the service; the second file is a helper class for dynamically binding to the
specified service. (See Example 6-11 and Example 6-12.)

Example 6-11: IProduct_Service.java

// generated by GLUE

package com.ecerami.wsdl.glue;

public interface IProduct_Service
 {
 product getProduct(String sku);
 }

Example 6-12: Product_ServiceHelper.java

// generated by GLUE

package com.ecerami.wsdl.glue;

import electric.registry.Registry;
import electric.registry.RegistryException;

public class Product_ServiceHelper
 {
 public static IProduct_Service bind() throws RegistryException
 {
 return bind("http://localhost:8080/wsdl/ProductService.wsdl");
 }

 public static IProduct_Service bind(String url)
 throws RegistryException
 {
 return (IProduct_Service)
 Registry.bind(url, IProduct_Service.class);
 }
 }

The third file in the output listing, product.java, represents a simple container class for
encapsulating product data. (See Example 6-13.) GLUE essentially takes all the complex
types defined within the WSDL file and creates a container class for each type. Each
subelement is then transformed into a public variable for easy access. For example, the
product class has four public variables, name, description , price , and SKU, corresponding to
our new complex data type. Note also that the public variables match the XML Schema
types specified within the WSDL file; for example, name is declared as a String , whereas
price is declared as a double .

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

24 of 25 24/11/05 10:18

Example 6-13: product.java

// generated by GLUE

package com.ecerami.wsdl.glue;

public class product
 {
 public java.lang.String name;

 public java.lang.String description;

 public double price;

 public java.lang.String SKU;
 }

Finally, GLUE generates a Java-to-XML Schema mapping file. (See Example 6-14.) The
file itself is extremely concise and is responsible for converting Java to XML Schema
types and vice versa. (See Figure 6-13.) The root complexType element indicates that
elements of type product should be transformed into the product class located in
com.ecerami.wsdl.glue . Inside the root complex type, there is a one-to-one mapping
between the XML Schema type and the public Java variable. For example, the element
name is mapped to the product.name variable, and the type is specified as string . Likewise,
the element price is mapped to the product.price variable, and the type is specified as
double .

Figure 6-13.The GLUE Java-to-XML Schema
mapping file

Example 6-14: Product_Service.map

<?xml version=’1.0’ encoding=’UTF−8’?>
<!−−generated by GLUE−−>
<mappings xmlns=’http://www.themindelectric.com/schema/’>
 <schema
 xmlns=’http://www.w3.org/2001/XMLSchema’
 targetNamespace=’http://www.ecerami.com/schema’
 xmlns:electric=’http://www.themindelectric.com/schema/’>
 <complexType name=’product’ electric:class=’com.ecerami.wsdl.glue.product’>
 <sequence>
 <element name=’name’ electric:field=’name’ type=’string’/>
 <element name=’description’
 electric:field=’description’ type=’string’/>
 <element name=’price’ electric:field=’price’ type=’double’/>
 <element name=’SKU’ electric:field=’SKU’ type=’string’/>
 </sequence>
 </complexType>
 </schema>
</mappings>

To invoke the Product Service, you must first explicitly load the mapping file via the
GLUE Mappings class:

Mappings.readMappings("Product_Service.map");

You can then access the service just like in the previous example. See Example 6-15 for
the complete invocation program. Here is some sample output:

Product Service
Name: Red Hat Linux
Description: Red Hat Linux Operating System
Price: 54.99

Example 6-15: Invoke_Product.java

package com.ecerami.wsdl;

import java.io.IOException;
import electric.xml.io.Mappings;
import electric.xml.ParseException;

Web Services Essentials: Chapter 6: WSDL Essentials http://www.oreilly.com/catalog/webservess/chapter/ch0...

25 of 25 24/11/05 10:18

import electric.registry.RegistryException;
import com.ecerami.wsdl.glue.*;

/**
 * SOAP Invoker. Uses the Product_ServiceHelper to invoke the Product
 * SOAP service. All other .java files are automatically generated
 * by GLUE.
*/
public class Invoke_Product {

 /**
 * Get Product via SOAP Service
 */
 public product getProduct (String sku) throws Exception {
 // Load Java <−−> XML Mapping
 Mappings.readMappings("Product_Service.map");
 // Invoke Service
 IProduct_Service service = Product_ServiceHelper.bind();
 product prod = service.getProduct(sku);
 return prod;
 }

 /**
 * Main Method
 */
 public static void main (String[] args) throws Exception {
 Invoke_Product invoker = new Invoke_Product();
 System.out.println ("Product Service");
 product prod = invoker.getProduct("A358185");
 System.out.println ("Name: "+prod.name);
 System.out.println ("Description: "+prod.description);
 System.out.println ("Price: "+prod.price);
 }
}

This is a very small amount of code, but it is capable of doing very real work. Be sure to
check The Mind Electric web site (http://themindelectric.com) for new releases of the
GLUE product.

Back to: Web Services Essentials

oreilly.com Home | O’Reilly Bookstores | How to Order | O’Reilly Contacts
International | About O’Reilly | Affiliated Companies | Privacy Policy

© 2001, O’Reilly & Associates, Inc.
webmaster@oreilly.com

