1of11

3of11

http://www.theserverside.com/articles/content/BPELJav...

BPEL and Java _

@

C— >

April 2005

Discuss this Article

Introduction

The idea and motivation behind almost each new technology and platform for
enterprise application development is to provide an environment where better
business applications can be developed with less effort —business applications which
should closely align to the business processes, which should not be too complex, and
which can be adapted to the changing nature of business processes without too much
effort.

Java has provided an excellent platform for developing such applications, but business
applications today cannot be isolated. Within companies, business applications have to
interoperate and integrate - so they have between companies. Integrating different
applications has always been a difficult task for various functional and technology
related reasons.

The most recent answer to the integration challenge is the Service Oriented
Architecture (SOA) and the web services technologies. The bottom-up view of the SOA
sees different business applications exposing their functionalities through web services.
Thus we can now access different functionalities of different legacy and new developed
applications in a standard way (through web services). Such access to functionalities is
important because typical companies have a large number of existing applications
which have to be integrated.

Developing the web services and exposing the functionalities is not sufficient. We also
need a way to compose these functionalities in the right order — a way to define
business processes which will make use of the exposed functionalities. We would
obviously prefer a relatively simple and straightforward way to define such processes,
particularly because we know that business processes change often, therefore we
would like to modify them easily.

This is where the BPEL (Business Process Execution Language for Web Services, also
WS-BPEL or BPEL4WS) becomes important. BPEL allows composition of web services
and is thus the top-down approach to SOA - the process oriented approach to SOA.

In this article we will discuss the role of BPEL and its relationship with Java. We will
concentrate particularly on the idea of extending BPEL, to be able to compose
resources other than web services (for example EJBs, JMS, etc.) on one hand, and the
possibility to mix BPEL and Java code on the other hand to open up some interesting
new perspectives.

28/11/05 10:06

http://www.theserverside.com/articles/content/BPELJav...

BPEL can be used within and between companies. Within companies the role of BPEL
is to standardize enterprise application integration and extend the integration to
previously isolated systems. Between enterprises, BPEL will enable easier and more
effective integration with business partners. Definitions of business processes
described in BPEL do not impact existing systems thus stimulating upgrades. BPEL is
the key technology in environments where functionalities already are or will be exposed
via web services. With increases in the use of web service technology the importance of
BPEL will rise further.

BPEL Language

Let us now have a look at the BPEL language. BPEL has been designed specifically as a
language for definition of business processes. BPEL supports two different types of
business processes:

« Executable processesallow us to specify the exact details of business processes.
They can be executed by an orchestration engine. In most cases BPEL is used for
executable processes.

* Abstract business protocols allow us to specify the public message exchange
between parties only. They do not include the internal details of process flows
and are not executable.

BPEL builds on top of XML and web services. It is an XML-based language which
supports the web services technology stack, including SOAP, WSDL, UDDI, WS-Reliable
Messaging, WS-Addressing, WS-Coordination and WS-Transaction. BPEL represents a
convergence of two early workflow languages, WSFL (Web Services Flow Language) and
XLANG. WSFL was designed by IBM and is based on the concept of directed graphs.
XLANG was designed by Microsoft and is a block-structured language. BPEL combines
both approaches and provides a rich vocabulary for description of business processes.

A BPEL process specifies the exact order in which participating web services should be
invoked. This can be done sequentially or in parallel. With BPEL, we can express
conditional behavior, for example, a web service invocation can depend on the value of
a previous invocation. We can also construct loops, declare variables, copy and assign
values, define fault handlers, and so on. By combining all these constructs, we can
define complex business processes in an algorithmic manner.

BPEL is thus comparable to general purpose programming language such as Java, but it
is not as powerful as Java. On the other hand it is simpler and better suited for business
process definition. Therefore BPEL is not a replacement but rather a supplement to
modern languages such as Java.

Let us have a closer look at a typical BPEL process. First, the BPEL business process
receives a request. To fulfill it, the process then invokes the involved web services and
finally responds to the original caller. Because the BPEL process communicates with
other web services, it relies heavily on the WSDL description of the web services
invoked by the composite web service.

A BPEL process consists of steps. Each step is called an activity. BPEL supports
primitive and structure activities. Primitive activities represent basic constructs and are
used for common tasks, such as those listed below:

« Invoking other web services, using <invoke>

28/11/0510:06

20f11

4of11

http://www.theserverside.com/articles/content/BPELJav...

Role of BPEL

The process-oriented approach to SOA requires a language for relatively simple
description of how web services should be composed into business processes. Of
course it would be great if such descriptions could also be executed, which would allow
us not only to define abstract process definitions, but to write exact executable
specifications of processes. BPEL is such a language. Actually it is the first language
which:

1. Allows us to define abstract and executable processes

2. Is supported by the majority of companies

3. Software exists (from several vendors) on which such processes can be executed
(BPEL servers) and developed (BPEL designers).

Before we have a more in-depth look at BPEL, let us discuss how web services can be
composed. There are two ways: orchestration and choreography. In orchestration, a
central process takes control over the involved web services and coordinates the
execution of different operations on the web services involved in the operation. This is
done as per the requirements of the orchestration. The involved web services do not
know (and do not need to know) that they are involved into a composition and that
they are a part of a higher business process. Only the central coordinator of the
orchestration knows this, so the orchestration is centralized with explicit definitions of
operations and the order of invocation of web services.

Choreography on the other hand does not rely on a central coordinator. Rather, each
web service involved in the choreography knows exactly when to execute its operations
and whom to interact with. Choreography is a collaborative effort focused on exchange
of messages. All participants of the choreography need to be aware of the business
process, operations to execute, messages to exchange, and the timing of message
exchanges.

From the perspective of composing web services to execute business processes,
orchestration is the more flexible approach compared to choreography:

* We know exactly who is responsible for the execution of the whole business
process.

» We can incorporate web services, even those that are not aware that they are a
part of a business process.

* We can also provide alternative scenarios when faults occur.

BPEL follows the orchestration paradigm. Choreography is covered by other standards,
such as WSCI (Web Services choreography Interface) and WS-CDL (Web Services
Choreography Description Language). Choreography has not gained support from the
industry which would be comparable to BPEL.

The first version of BPEL has been developed in August 2002 by BEA, IBM, and
Microsoft. Since then the majority of vendors have joined which has resulted in several
modifications and improvements and adoption of version 1.1 in March 2003. In April
2003, BPEL was submitted to OASIS (Organization for the Advancement of Structured
Information Standards) for standardization purposes where the WSBPEL TC (Web
Services Business Process Execution Language Technical Committee) has been formed
(http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel) since. This
has led to even broader acceptance in industry.

28/11/0510:06

http://www.theserverside.com/articles/content/BPELJav...

» Waiting for the client to invoke the business process through sending a message,
using <receive> (receiving a request)

» Generating a response for synchronous operations, using <reply>

« Manipulating data variables, using <assign>

o Indicating faults and exceptions, using <throw>

» Waiting for some time, using <wait>

¢ Terminating the entire process, using <terminate>, etc.

We can then combine these and other primitive activities and define complex
algorithms, which exactly specify the steps of business processes. To combine primitive
activities BPEL supports several structured activities. The most important are:

» Sequence (<sequence>), which allows us to define a set of activities that will be
invoked in an ordered sequence

» Flow (<flow>) for defining a set of activities that will be invoked in parallel

» Case-switch construct (<switch>) for implementing branches

* While (<while>) for defining loops

» The ability to select one of a number of alternative paths, using <pick>

Each BPEL process will also declare variables, using <variable> , and define partner
links, using <partnerLink> . We will say more on partner links later in this article.

A BPEL process can be synchronous or asynchronous. A synchronous BPEL process
blocks the client (the one which is using the process) until the process finishes and
returns a result to the client. An asynchronous process does not block the client. Rather
it uses a callback to return the result (if any). Usually we use asynchronous processes
for longer-lasting processes and synchronous for processes that return a result in a
relatively short time. If a BPEL process uses asynchronous web services, the process
itself is usually also asynchronous (although this is not necessary).

For its clients a BPEL process looks like any other web service. When we define a BPEL
process, we actually define a new web service that is a composition of existing services.
The interface of the new BPEL composite web service uses a set of port types, through
which it provides operations like any other web service. To invoke a business process
described in BPEL, we have to invoke the resulting composite web service. The figure
below shows a schematic view of a BPEL process:

‘Wob
Clioat | partrer Ik Partnar Ik | sarvica 1
G Web
Panner lnk
e servica 2
Camoras J+—1 Portlvpe

BPEL process as Web Services

Figure: Example BPEL process

28/11/05 10:06

50f11

7of11

http://www.theserverside.com/articles/content/BPELJav...

Partner Links

Earlier we have mentioned that BPEL processes also declare partner links. Let us now
explain what partner links are. We have already said that BPEL processes interact with
external web services in two ways:

« The BPEL process invokes operations on other web services.

« The BPEL process receives invocations from clients. One of the clients is the user
of the BPEL process, which makes the initial invocation. Other clients are web
services, for example, those that have been invoked by the BPEL process, but
make callbacks to return replies.

BPEL calls the links to all parties it interacts with partner links. Partner links can be
links to web services that are invoked by the BPEL process. Partner links can also be
links to clients which invoke the BPEL process. Each BPEL process has at least one
client partner link, because there has to be a client that invokes the BPEL process.

Usually a BPEL process will also have at least one invoked partner link, because it will
most likely invoke at least one web service (usually more than one). Invoked partner
links may, however, become client partner links—this is usually the case with
asynchronous services, where the process invokes an operation. Later the service
(partner) invokes the call-back operation on the process to return the requested data.

BPEL treats clients as partner links for two reasons. The most obvious reason is support
for asynchronous interactions. The second reason is based on the fact that the BPEL
process can offer services. These services, offered through port types, can be used by
more than one client. The process may wish to distinguish between different clients
and offer them only the functionality they are authorized to use. For example, an
insurance process might offer a different set of operations to car-insurance clients than
to real-estate insurance clients.

To sum up, we can see that the partner links describe links to partners, where partners
might be:

 Services invoked by the process

 Services that invoke the process

 Services that have both roles—they are invoked by the process and they invoke the
process

BPEL Example

To get an idea how a BPEL process looks we show below a very simple BPEL process,
which selects the best insurance offer. We first declare the partner links to the BPEL
process client (called client) and two insurance web services (called insuranceA and
insuranceB):

<?xml version="1.0" encoding="utf-8"?>

<process name="insuranceSelectionProcess"

"http://pacl com/bpel
http://schemas.xmlsoap.org/ws/2003/03/business-process/"
"http://packtpub.com/bpel/insurance/"
:com="http://packtpub.com/bpel/company/" >

<partnerLinks>

28/11/05 10:06 60f11

http://www.theserverside.com/articles/content/BPELJav...

operation="ComputelnsurancePremium"
inputVariable="InsuranceRequest"
outputVariable="InsuranceBResposne" />

</flow>

<!-- Select the best offer and construct the response -->
<switch>

<case condition="bpws:getVariableData('InsuranceAResposne’,
'confirmationData','/confirmationData/Amount')
<= bpws:getVariableData('InsuranceBResposne',
‘confirmationData’,'/confirmationData/Amount') ">

<!-- Select Insurance A -->
<assign>
<copy>
<from variable="InsuranceAResposne" />
<to variable="InsuranceSelectionResponse" />
</copy>
</assign>
</case>

<otherwise>
<!-- Select Insurance B -->
<assign>
<copy>
<from variable="InsuranceBResposne" />
<to variable="InsuranceSelectionResponse" />
</copy>
</assign>
</otherwise>
</switch>

<I-- Send a response to the client -->
<reply partnerLink="client"
om:InsuranceSelectionPT"
"SelectInsurance"
variable="InsuranceSelectionResponse"/>

</sequences

</process>

Because each BPEL process is a web service each BPEL process needs a WSDL
document too. We will not go into further details of developing BPEL processes. More
information can be found in the book Business Process Execution Language for Web
Services published by Packt Publishing in October 2004.

BPEL vs. Java

From the example BPEL process above somebody might think that such a composition
could be easily done from Java too. This is correct for very simple processes. For more
complex processes we can however see that BPEL provides at least two important
advantages over Java.

The first advantage of BPEL over Java is that BPEL processes are portable even outside
the Java platform. BPEL processes can be executed on orchestration servers based on
Java platform or on any other software platform (for example .NET). This is particularly
important in business-to-business interactions where different partners use different
platforms.

The second important advantage of BPEL is its support for specifics of business

28/11/0510:06 8of11

http://www.theserverside.com/articles/content/BPELJav...

<partnerLink name="client"
partnerLinkType="com:selectionLT"
myRole="insuranceSelectionService" />

<partnerLink name="insuranceA"
partnerLinkType="ins:insuranceLT"
myRole="insuranceRequester”
partnerRole="insuranceService"/>

<partnerLink name="insuranceB"
partnerLinkType="ins:insuranceLT"
myRole="insuranceRequester"
partnerRole="insuranceService" />

</partnerLinks>

Next, we declare variables for the insurance request (InsuranceRequest), insurance A
and B responses (InsuranceAResposne, InsuranceBResposne), and for final selection (
InsuranceSelectionResponse):

<variables>
<!-- input for BPEL process -->
nsuranceRequest”
ins:InsuranceRequestMessage" />
surance A -->
<variable name="InsuranceAResposne"
messageType="ins:InsuranceResponseMessage" />
<I-- output from insurance B -->
<variable name="InsuranceBResposne"
="ins:InsuranceResponseMessage" />
<I-- output from BPEL process -->
<variable name="InsuranceSelectionResponse"
messageType="ins:InsuranceResponseMessage" />
</variables>

Finally, we specify the process steps. First we wait for the initial request message from
the client (<receive>). Then we invoke both insurance web services (<invoke>) in
parallel using the <flow> activity. The insurance web services return the insurance
premium. Then we select the lower amount (<switch>/ <case>) and return the result to
the client (the caller of the BPEL process) using <reply> activity:

<sequence>

<I-- Receive the initial request from client -->
<receive partnerLink="client"
om:InsuranceSelectionPT"

createlnstance="yes" />

<!-- Make concurrent invocations to Insurance A and B -->
<flow>

<!-- Invoke Insurance A web service -->

<invoke partnerLink="insuranceA"
portType="ins:ComputelnsurancePremiumpPT"
operation="ComputelnsurancePremium"
inputVariable="InsuranceRequest”
outputVariable="InsuranceAResposne" />

<!-- Invoke Insurance B web service -->
<invoke partnerLink="insuranceB"
portType="ins:ComputelnsurancePremiumPT"

28/11/0510:06

http://www.theserverside.com/articles/content/BPELJav...

processes. Usually business processes are long-running, particularly if they involve
interactions with partners over Internet. It can happen that such processes execute
minutes, hours, even days before they finish. It can happen that they invoke a web
service and need to wait for the callback a relatively long time. If we would use a Java
application instead of a BPEL process we would soon have a lot of work worrying which
processes have finished, which are still running. We would also need to track which
Java applications (processes) we can close and which still have to run in order to
receive callbacks.

BPEL also supports compensation in a relatively easy way. Compensation, or undoing
steps in the business process that have already completed successfully, is one of the
most important concepts in business processes. The goal of compensation is to reverse
the effects of previous activities that have been carried out as part of a business process
that is being abandoned.

Compensation is related to the nature of most business processes, which are long
running and use asynchronous communication with loosely coupled partner web
services. Business processes are often sensitive in terms of successful completion
because the data they manipulate is sensitive. Because they usually span multiple
partners (often multiple enterprises) special care has to be taken that business
processes either fully complete their work or that the partial (not fully completed)
results are undone - compensated. This is similar to ACID transactions used in
enterprise information systems. BPEL supports the concept of compensation with the
ability to define compensation handlers, which are specific to scopes, and calls this
feature Long-Running Transactions (LRT).

Business processes may also have to react on certain events. Such events can be
message events or alarm events. Message events are triggered by incoming messages
through operation invocation on port types. Alarm events are time related and are
triggered either after a certain duration or at a specific time. BPEL provides good
support for managing events in business processes.

Then there are concurrent activities. In BPEL, concurrent activities are modeled using
the <flow> activity. Gathering nested activities within <flow> is straightforward and
very useful for expressing concurrency scenarios that are not too complicated. To
express more complex concurrency scenarios, <flow> provides the ability to express
synchronization dependencies between activities. In other words, we can specify which
activities can start and when (depending on other activities) and define complex
dependencies. For example, we will often specify that a certain activity or several
activities cannot start before another activity or several activities have finished.

In contrast to web services which are a stateless model business processes require use a
stateful model. When a client starts a business process, a new instance is created. This
instance lives for the duration of the business process. Messages sent to the business
process (using operations on port types and ports) need to be delivered to the correct
instance of the business process. BPEL provides a mechanism to use specific business
data to maintain references to specific business process instances and calls this feature
correlation.

We could continue this discussion but it is obvious that BPEL has been designed to
address the requirements of defining business processes. It is also obvious that BPEL
cannot replace Java neither as a programming language nor as a platform. Actually Java
platform is a platform of choice for running BPEL processes.

28/11/05 10:06

9of11

11of11

http://www.theserverside.com/articles/content/BPELJav...

BPEL Servers and Development Tools

To execute BPEL executable processes we need an orchestration server. Orchestration
servers provide a run-time environment for executing BPEL business processes. BPEL is
strongly related to web services and to the modern software platforms that support web
service development, particularly to Java 2 Enterprise Edition (J2EE) and Microsoft
.NET.

BPEL servers leverage J2EE or .NET application server environments, where they can
make use of the services provided by application servers, such as security, transactions,
scalability, integration with databases, components such as EJBs (Enterprise Java
Beans), messaging systems such as JMS (Java Message Service), etc.

BPEL orchestration servers exist for both J2EE and .NET platforms. For J2EE we can
choose at least between:

o Oracle BPEL Process Manager
(http://www.oracle.com/technology/products/ias/bpel/index.html)

« IBM WebSphere Business Integration Server Foundation
(http://www.ibm.com/software/integration/wbisf)

« IBM alphaWorks BPWS4]J (http://www.alphaworks.ibm.com/tech/bpws4j)

« OpenStorm Service Orchestrator (http://www.openstorm.com)

o Vergil VCAB Server (http://www.vergiltech.com/products_VCAB.php)

« Active Endpoints ActiveWebflow Server
(http://www.active-endpoints.com/products/index.html)

o ActiveBPEL engine (http://www.activebpel.org/)

« Fivesight Process eXecution Engine (http://www.fivesight.com/pxe.shtml)

BPEL orchestration servers based on the .NET platform include:

e Microsoft BizTalk 2004 (http://www.microsoft.com/biztalk/)
« OpenStorm Service Orchestrator (http://www.openstorm.com)

OpenStorm provides solutions for both platforms J2EE and .NET. In addition to BPEL
orchestration servers there are also a few BPEL design tools available. These tools
enable graphical development of BPEL processes and often comprise a part of the
servers:

o Oracle BPEL Designer

« IBM WebSphere Studio Application Developer, Integration Edition
« IBM BPWS4] Editor

« Vergil VCAB Composer

o Active Endpoints ActiveWebflow Designer

The Oracle, IBM, and Active Endpoints solutions are based on the Java Eclipse
framework, while the Vergil VCAB Composer is built on the.NET framework. We can see
that considerably more BPEL servers and designers are available for the Java platform.

BPEL + Java

We have seen that BPEL is an appropriate language for programming in the large - that
is for composing web services (business logic) into business processes. BPEL is not
(and does not try) to be a general purpose language. Therefore BPEL and Java fit

28/11/05 10:06

http://www.theserverside.com/articles/content/BPELJav...
documented position in the Java platform.

Resources

» Book “Business Process Execution Language for Web Services” by Matjaz B. Juric
with Benny Mathew and Poornachandra Sarang, Packt Publishing, October 2004,
ISBN 1904811183. TheServerSide.com members receive a 20% discount, when
using the code: 04tssbpel20 to get the book www.PacktPub.com

« Specification “Business Process Execution Language for Web Services”, Version
1.1, ftp://wwwé.software.ibm.com/software/developer/library/ws-bpel.pdf

« BPELJ: BPEL for Java, A Joint White Paper by BEA and IBM,

ftp://wwwé.software.ibm.com/software/developer/library/ws-bpelj.pdf
* Web Services Invocation Framework, http://ws.apache.org/wsif/

Author Bio

Matjaz B. Juric holds a Ph.D. in computer and information science. He is the author of
the book Business Process Execution Language for Web Services (Packt Publishing)
http://www.packtpub.com/book/BPEL. Matjaz is also the co-author of Professional
J2EE EAI, Professional EJB, J2EE Design Patterns Applied , and VB.NET Serialization
Handbook, all published by Wrox Press. Matjaz has also contributed to Java
Developer's Journal, Java Report, Java World , and other publications.

PRINTER FRIENDLY VERSION
TheServerSide COM

Your Enterprise Java Cammunity

28/11/0510:06

100f 11

http://www.theserverside.com/articles/content/BPELJav...

together, where Java takes the role of the programming language for web services and
the platform on which web services and BPEL processes are executed.

BPEL, as proposed by the specification, can also be extended. Particularly the idea to
extend the reach of BPEL beyond web services is promising. This means that we could
use BPEL to compose all kinds of resources, not only web services. In J2EE this could be
EJBs, JMS, RMI, JCA, and other resources. Generally there are two solutions to this
question:

» Enable mixing of BPEL and Java code, which is the idea of BPEL]J.
o Describe all resources (Java classes, E]JBs, JMS, etc.) with WSDL, which is the idea
behind the Web Services Invocation Framework.

BPEL]J provides the possibility to include Java code (which is called Java snippets) in
BPEL process definitions. This on one hand enables that we invoke Java resources form
BPEL directly, for which BPEL]J introduces Java partner links. On the other hand it gives
additional power to BPELJ, because with Java snippets we can perform tasks, such as
calculate values, construct XML documents, and execute other code without having to
create web services. We can also use BPEL variables form Java snippet code. BPELJ is
supported by IBM and BEA which have published a white paper on BPELJ.

Integration of Java code into BPEL processes to invoke Java resources is very useful.
However, in some cases such approach may have disadvantages. The invocation of a
Java resource differs from the invocation of a web service. The Web Services Invocation
Framework (WSIF) follows another idea: use the same syntax in BPEL to invoke any
resource (or service) and describe it using WSDL even if it is a Java resource that does
not communicate through SOAP. WSIF also allows us to map such a service to the
actual implementation and protocol.

In other words, we can bind the abstract description of the service (the port types) to a
SOAP-based implementation, to a Java class, to an EJB, or any other supported resource
simply by modifying the WSDL binding. No code changes in the BPEL process are
necessary and no extensions to BPEL are required. The bindings supported are
determined by the providers offered by the WSIF.

WSIF is an Apache technology (http://ws.apache.org/wsif/) that was originally
developed by IBM alphaWorks as a part of WSTK (Web Services Toolkit). Currently
some BPEL servers, for example the Oracle BPEL Process Manager already support
WSIE.

Both approaches, BPEL] and WSIF are suitable for real-world scenarios and make BPEL
very useful for EAI as well as for B2B.

Conclusion

BPEL is an important language for the process-oriented approach to SOA. Because
BPEL has been designed specifically for definition of business processes it provides
good support for various specifics of business processes such as support for long
running transactions, compensation, event management, correlation, etc. BPEL is well
suited for use with the J2EE platform and many BPEL servers build on top of J2EE. With
ideas of combing BPEL and Java (BPELJ), and WSIF, the usability of BPEL is even
increasing. We should also look at the emerging JBI (Java Business Integration)
specification aka JSR 208 which will give business integration and BPEL an even better

28/11/0510:06

