
The J2EE™ 1.4 Tutor ial

Eric Armstrong
Jennifer Ball

Stephanie Bodoff
Debbie Carson

Ian Evans
Maydene Fisher

Dale Green
Kim Haase

Eric Jendrock

November 16, 2003

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A.
All rights reserved.U.S. Government Rights - Commercial software. Government users are subject to the
Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supple-
ments.

This distribution may include materials developed by third parties.
Sun, Sun Microsystems, the Sun logo, Java, J2EE, JavaServer Pages, Enterprise JavaBeans, Java
Naming and Directory Interface, EJB, JSP, J2EE, J2SE and the Java Coffee Cup logo are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
Unless otherwise licensed, software code in all technical materials herein (including articles, FAQs, sam-
ples) is provided under this License.
Products covered by and information contained in this service manual are controlled by U.S. Export Con-
trol laws and may be subject to the export or import laws in other countries. Nuclear, missile, chemical
biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly pro-
hibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export
exclusion lists, including, but not limited to, the denied persons and specially designated nationals lists is
strictly prohibited.
DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, États-
Unis. Tous droits réservés.
Droits du gouvernement américain, utlisateurs gouvernmentaux - logiciel commercial. Les utilisateurs
gouvernmentaux sont soumis au contrat de licence standard de Sun Microsystems, Inc., ainsi qu aux dis-
positions en vigueur de la FAR [(Federal Acquisition Regulations) et des suppléments à celles-ci.
Cette distribution peut comprendre des composants développés pardes tierces parties.
Sun, Sun Microsystems, le logo Sun, Java, JavaServer Pages, Enterprise JavaBeans, Java Naming and
Directory Interface, EJB, JSP, J2EE, J2SE et le logo Java Coffee Cup sont des marques de fabrique ou des
marques déposées de Sun Microsystems, Inc. aux États-Unis et dans d’autres pays.
A moins qu’autrement autorisé, le code de logiciel en tous les matériaux techniques dans le présent (arti-
cles y compris, FAQs, échantillons) est fourni sous ce permis.
Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont régis par la
législation américaine en matière de contrôle des exportations et peuvent être soumis au droit d’autres
pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour
des armes nucléaires, des missiles, des armes biologiques et chimiques ou du nucléaire maritime, directe-
ment ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous
embargo des États-Unis, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines,
y compris, mais de manière non exclusive, la liste de personnes qui font objet d’un ordre de ne pas partic-
iper, d’une façon directe ou indirecte, aux exportations des produits ou des services qui sont régi par la
législation américaine en matière de contrôle des exportations ("U .S. Commerce Department’s Table of
Denial Orders "et la liste de ressortissants spécifiquement désignés ("U.S. Treasury Department of Spe-
cially Designated Nationals and Blocked Persons "),, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DEC-
LARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES,
DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE
UTILISATION PARTICULIERE OU A L’ABSENCE DE CONTREFAÇON.

1

1
Overview

TODAY, more and more developers want to write distributed transactional
applications for the enterprise and leverage the speed, security, and reliability of
server-side technology. If you are already working in this area, you know that in
today’s fast-moving and demanding world of e-commerce and information tech-
nology, enterprise applications have to be designed, built, and produced for less
money, with greater speed, and with fewer resources than ever before.

To reduce costs and fast-track application design and development, Java 2 Plat-
form, Enterprise Edition (J2EE) provides a component-based approach to the
design, development, assembly, and deployment of enterprise applications. The
J2EE platform offers a multitiered distributed application model, reusable com-
ponents, a unified security model, flexible transaction control, and Web services
support through integrated data interchange on Extensible Markup Language
(XML)-based open standards and protocols.

Not only can you deliver innovative business solutions to market faster than ever,
but your platform-independent J2EE component-based solutions are not tied to
the products and application programming interfaces (APIs) of any one vendor.
Vendors and customers enjoy the freedom to choose the products and compo-
nents that best meet their business and technological requirements.

This tutorial takes an examples-based approach to describing the features and
functionalities available in J2EE version 1.4 for developing enterprise applica-
tions. Whether you are a new or an experienced developer, you should find the
examples and accompanying text a valuable and accessible knowledge base for
creating your own solutions.

2 OVERVIEW

If you are new to J2EE enterprise application development, this chapter is a good
place to start. Here you will learn development basics, be introduced to the J2EE
architecture and APIs, become acquainted with important terms and concepts,
and find out how to approach J2EE application programming, assembly, and
deployment.

Distr ibuted Multitiered Applications
The J2EE platform uses a multitiered distributed application model for enter-
prise applications. Application logic is divided into components according to
function, and the various application components that make up a J2EE applica-
tion are installed on different machines depending on the tier in the multitiered
J2EE environment to which the application component belongs. Figure 1–1
shows two multitiered J2EE applications divided into the tiers described in the
following list. The J2EE application parts shown in Figure 1–1 are presented in
J2EE Components (page 3).

• Client-tier components run on the client machine.
• Web-tier components run on the J2EE server.
• Business-tier components run on the J2EE server.
• Enterprise information system (EIS)-tier software runs on the EIS server.

Although a J2EE application can consist of the three or four tiers shown in
Figure 1–1, J2EE multitiered applications are generally considered to be three-
tiered applications because they are distributed over three different locations: cli-
ent machines, the J2EE server machine, and the database or legacy machines at
the back end. Three-tiered applications that run in this way extend the standard

J2EE COMPONENTS 3

two-tiered client and server model by placing a multithreaded application server
between the client application and back-end storage.

Figure 1–1 Multitiered Applications

J2EE Components
J2EE applications are made up of components. A J2EE component is a self-con-
tained functional software unit that is assembled into a J2EE application with its
related classes and files and that communicates with other components. The
J2EE specification defines the following J2EE components:

• Application clients and applets are components that run on the client.
• Java Servlet and JavaServer Pages™ (JSP™) technology components are

Web components that run on the server.
• Enterprise JavaBeans™ (EJB™) components (enterprise beans) are busi-

ness components that run on the server.

J2EE components are written in the Java programming language and are com-
piled in the same way as any program in the language. The difference between
J2EE components and “standard” Java classes is that J2EE components are
assembled into a J2EE application, verified to be well formed and in compliance
with the J2EE specification, and deployed to production, where they are run and
managed by the J2EE server.

4 OVERVIEW

J2EE Clients
A J2EE client can be a Web client or an application client.

Web Clients
A Web client consists of two parts: dynamic Web pages containing various types
of markup language (HTML, XML, and so on), which are generated by Web
components running in the Web tier, and a Web browser, which renders the
pages received from the server.

A Web client is sometimes called a thin client. Thin clients usually do not do
things like query databases, execute complex business rules, or connect to legacy
applications. When you use a thin client, heavyweight operations like these are
off-loaded to enterprise beans executing on the J2EE server where they can
leverage the security, speed, services, and reliability of J2EE server-side technol-
ogies.

Applets
A Web page received from the Web tier can include an embedded applet. An
applet is a small client application written in the Java programming language
that executes in the Java virtual machine installed in the Web browser. However,
client systems will likely need the Java Plug-in and possibly a security policy file
in order for the applet to successfully execute in the Web browser.

Web components are the preferred API for creating a Web client program
because no plug-ins or security policy files are needed on the client systems.
Also, Web components enable cleaner and more modular application design
because they provide a way to separate applications programming from Web
page design. Personnel involved in Web page design thus do not need to under-
stand Java programming language syntax to do their jobs.

Application Clients
A J2EE application client runs on a client machine and provides a way for users
to handle tasks that require a richer user interface than can be provided by a
markup language. It typically has a graphical user interface (GUI) created from
Swing or Abstract Window Toolkit (AWT) APIs, but a command-line interface
is certainly possible.

J2EE CLIENTS 5

Application clients directly access enterprise beans running in the business tier.
However, if application requirements warrant it, a J2EE application client can
open an HTTP connection to establish communication with a servlet running in
the Web tier.

JavaBeans™ Component Ar chitecture
The server and client tiers might also include components based on the Java-
Beans component architecture (JavaBeans component) to manage the data flow
between an application client or applet and components running on the J2EE
server or between server components and a database. JavaBeans components are
not considered J2EE components by the J2EE specification.

JavaBeans components have instance variables and get and set methods for
accessing the data in the instance variables. JavaBeans components used in this
way are typically simple in design and implementation, but should conform to
the naming and design conventions outlined in the JavaBeans component archi-
tecture.

J2EE Server Comm unications
Figure 1–2 shows the various elements that can make up the client tier. The cli-
ent communicates with the business tier running on the J2EE server either
directly or, as in the case of a client running in a browser, by going through JSP
pages or servlets running in the Web tier.

Your J2EE application uses a thin browser-based client or thick application cli-
ent. In deciding which one to use, you should be aware of the trade-offs between
keeping functionality on the client and close to the user (thick client) and off-
loading as much functionality as possible to the server (thin client). The more
functionality you off-load to the server, the easier it is to distribute, deploy, and

6 OVERVIEW

manage the application; however, keeping more functionality on the client can
make for a better perceived user experience.

Figure 1–2 Server Communications

Web Components
J2EE Web components can be either servlets or JSP pages. Servlets are Java pro-
gramming language classes that dynamically process requests and construct
responses. JSP pages are text-based documents that execute as servlets but allow
a more natural approach to creating static content.

Static HTML pages and applets are bundled with Web components during appli-
cation assembly, but are not considered Web components by the J2EE specifica-
tion. Server-side utility classes can also be bundled with Web components and,
like HTML pages, are not considered Web components.

Like the client tier and as shown in Figure 1–3, the Web tier might include a
JavaBeans component to manage the user input and send that input to enterprise
beans running in the business tier for processing.

Business Components
Business code, which is logic that solves or meets the needs of a particular busi-
ness domain such as banking, retail, or finance, is handled by enterprise beans
running in the business tier. Figure 1–4 shows how an enterprise bean receives

BUSINESS COMPONENTS 7

data from client programs, processes it (if necessary), and sends it to the enter-
prise information system tier for storage. An enterprise bean also retrieves data
from storage, processes it (if necessary), and sends it back to the client program.

Figure 1–3 Web Tier and J2EE Applications

Figure 1–4 Business and EIS Tiers

There are three kinds of enterprise beans: session beans, entity beans, and mes-
sage-driven beans. A session bean represents a transient conversation with a cli-
ent. When the client finishes executing, the session bean and its data are gone. In
contrast, an entity bean represents persistent data stored in one row of a database

8 OVERVIEW

table. If the client terminates or if the server shuts down, the underlying services
ensure that the entity bean data is saved.

A message-driven bean combines features of a session bean and a Java Message
Service (JMS) message listener, allowing a business component to receive JMS
messages asynchronously.

Enterprise Inf ormation System Tier
The enterprise information system tier handles enterprise information system
software and includes enterprise infrastructure systems such as enterprise
resource planning (ERP), mainframe transaction processing, database systems,
and other legacy information systems. J2EE application components might need
access to enterprise information systems for database connectivity, for example.

J2EE Container s
Normally, thin-client multitiered applications are hard to write because they
involve many lines of intricate code to handle transaction and state management,
multithreading, resource pooling, and other complex low-level details. The com-
ponent-based and platform-independent J2EE architecture makes J2EE applica-
tions easy to write because business logic is organized into reusable components.
In addition, the J2EE server provides underlying services in the form of a con-
tainer for every component type. Because you do not have to develop these ser-
vices yourself, you are free to concentrate on solving the business problem at
hand.

Container Ser vices
Containers are the interface between a component and the low-level platform-
specific functionality that supports the component. Before a Web, enterprise
bean, or application client component can be executed, it must be assembled into
a J2EE application and deployed into its container.

The assembly process involves specifying container settings for each component
in the J2EE application and for the J2EE application itself. Container settings
customize the underlying support provided by the J2EE server, which includes
services such as security, transaction management, Java Naming and Directory

CONTAINER SERVICES 9

Interface™ (JNDI) lookups, and remote connectivity. Here are some of the high-
lights:

• The J2EE security model lets you configure a Web component or enter-
prise bean so that system resources are accessed only by authorized users.

• The J2EE transaction model lets you specify relationships among methods
that make up a single transaction so that all methods in one transaction are
treated as a single unit.

• JNDI lookup services provide a unified interface to multiple naming and
directory services in the enterprise so that application components can
access naming and directory services.

• The J2EE remote connectivity model manages low-level communications
between clients and enterprise beans. After an enterprise bean is created, a
client invokes methods on it as if it were in the same virtual machine.

The fact that the J2EE architecture provides configurable services means that
application components within the same J2EE application can behave differently
based on where they are deployed. For example, an enterprise bean can have
security settings that allow it a certain level of access to database data in one pro-
duction environment and another level of database access in another production
environment.

The container also manages non-configurable services such as enterprise bean
and servlet life cycles, database connection resource pooling, data persistence,
and access to the J2EE platform APIs described in the section J2EE
APIs (page 17). Although data persistence is a non-configurable service, the
J2EE architecture lets you override container-managed persistence by including
the appropriate code in your enterprise bean implementation when you want
more control than the default container-managed persistence provides. For
example, you might use bean-managed persistence to implement your own
finder (search) methods or to create a customized database cache.

10 OVERVIEW

Container T ypes
The deployment process installs J2EE application components in the J2EE con-
tainers illustrated in Figure 1–5.

Figure 1–5 J2EE Server and Containers

J2EE server
The runtime portion of a J2EE product. A J2EE server provides EJB and
Web containers.

Enterprise JavaBeans (EJB) container
Manages the execution of enterprise beans for J2EE applications. Enterprise
beans and their container run on the J2EE server.

Web container
Manages the execution of JSP page and servlet components for J2EE appli-
cations. Web components and their container run on the J2EE server.

Application client container
Manages the execution of application client components. Application clients
and their container run on the client.

Applet container
Manages the execution of applets. Consists of a Web browser and Java Plug-
in running on the client together.

PACKAGING 11

Packag ing
A J2EE application is delivered in an Enterprise Archive (EAR) file. An EAR
file is a standard Java Archive (JAR) file with an .ear extension. The EAR file
contains J2EE modules. Using EAR files and modules makes it possible to
assemble a number of different J2EE applications using some of the same com-
ponents. No extra coding is needed; it is just a matter of assembling various
J2EE modules into J2EE EAR files.

A J2EE module consists of one or more J2EE components for the same container
type and one component deployment descriptor of that type. A deployment
descriptor is an XML document with an .xml extension that describes a compo-
nent’s deployment settings. An enterprise bean module deployment descriptor,
for example, declares transaction attributes and security authorizations for an
enterprise bean. Because deployment descriptor information is declarative, it can
be changed without modifying the bean source code. At run time, the J2EE
server reads the deployment descriptor and acts upon the component accord-
ingly. A J2EE module without an application deployment descriptor can be
deployed as a stand-alone module. The four types of J2EE modules are:

• Enterprise JavaBeans modules contain class files for enterprise beans and
an EJB deployment descriptor. EJB modules are packaged as JAR files
with a .jar extension.

• Web modules contain JSP files, class files for servlets, GIF and HTML
files, and a Web deployment descriptor. Web modules are packaged as JAR
files with a .war (Web ARchive) extension.

• Resource adapter modules contain all Java interfaces, classes, native
libraries, and other documentation, along with the resource adapter
deployment descriptor. Together, these implement the Connector architec-
ture (see J2EE Connector Architecture, page 21) for a particular EIS.
Resource adapter modules are packages as JAR files with a .rar

(Resource adapter ARchive) extension.
• Application client modules contain class files and an application client

deployment descriptor. Application client modules are packaged as JAR
files with a .jar extension.

12 OVERVIEW

Web Services Suppor t
Web services are Web-based enterprise applications that use open, Extensible
Markup Language (XML)-based standards and transport protocols to exchange
data with calling clients. The J2EE platform provides the XML APIs and tools
you need to quickly design, develop, test, and deploy Web services and clients
that fully interoperate with other Web services and clients running on Java-based
or non-Java-based platforms.

It is easy to write Web services and clients with the J2EE XML APIs. All you do
is pass parameter data to the method calls and process the data returned, or for
document-oriented web services, send documents containing the service data
back and forth. No low-level programming is needed because the XML API
implementations do the work of translating the application data to and from an
XML-based data stream that is sent over the standardized XML-based transport
protocols. These XML-based standards and protocols are introduced in the next
sections.

The translation of data to a standardized XML-based data stream is what makes
Web services and clients written with the J2EE XML APIs fully interoperable.
This does not necessarily mean the data being transported includes XML tags
because the transported data can itself be plain text, XML data, or any kind of
binary data such as audio, video, maps, program files, CAD documents or the
like. The next section, introduces XML and explains how parties doing business
can use XML tags and schemas to exchange data in a meaningful way.

Extensible Mar kup Language
Extensible Markup Language is a cross-platform, extensible, and text-based
standard for representing data. When XML data is exchanged between parties,
the parties are free to create their own tags to describe the data, set up schemas to
specify which tags can be used in a particular kind of XML document, and use
XML style sheets to manage the display and handling of the data.

HTTP-SOAP TRANSPORT PROTOCOL 13

For example, a Web service can use XML and a schema to produce price lists,
and companies that receive the price lists and schema can have their own style
sheets to handle the data in a way that best suits their needs.

• One company might put the XML pricing information through a program
to translate the XML to HTML so it can post the price lists to its Intranet.

• A partner company might put the XML pricing information through a tool
to create a marketing presentation.

• Another company might read the XML pricing information into an appli-
cation for processing.

HTTP-SOAP Transpor t Protocol
Client requests and Web service responses are transmitted as Simple Object
Access Protocol (SOAP) messages over HTTP to enable a completely interoper-
able exchange between clients and Web services all running on different plat-
forms and at various locations on the Internet. HTTP is a familiar request and
response standard for sending messages over the Internet, and SOAP is an XML-
based protocol that follows the HTTP request and response model.

The SOAP portion of a transported message handles the following:

• Defines an XML-based envelope to describe what is in the message and
how to process the message.

• Includes XML-based encoding rules to express instances of application-
defined data types within the message.

• Defines an XML-based convention for representing the request to the
remote service and the resulting response.

WSDL Standar d Format
The Web Services Description Language (WSDL) is a standardized XML format
for describing network services. The description includes the name of the ser-
vice, the location of the service, and how to communicate with the service.
WSDLs can be stored in UDDI registries and/or published on the Web. The J2EE
platform provides a tool for generating the WSDL for a Web service that uses
remote procedure calls to communicate with clients.

14 OVERVIEW

UDDI and ebXML Standar d Formats
Other XML-based standards such as Universal Description, Discovery, and Inte-
gration (UDDI) and ebXML make it possible for businesses to publish informa-
tion on the Internet about their products and Web services where the information
can be readily and globally accessed by clients who want to do business.

Development Roles
Reusable modules make it possible to divide the application development and
deployment process into distinct roles so that different people or companies can
perform different parts of the process.

The first two roles involve purchasing and installing the J2EE product and tools.
Once software is purchased and installed, J2EE components can be developed by
application component providers, assembled by application assemblers, and
deployed by application deployers. In a large organization, each of these roles
might be executed by different individuals or teams. This division of labor works
because each of the earlier roles outputs a portable file that is the input for a sub-
sequent role. For example, in the application component development phase, an
enterprise bean software developer delivers EJB JAR files. In the application
assembly role, another developer combines these EJB JAR files into a J2EE
application and saves it in an EAR file. In the application deployment role, a sys-
tem administrator at the customer site uses the EAR file to install the J2EE appli-
cation into a J2EE server.

The different roles are not always executed by different people. If you work for a
small company, for example, or if you are prototyping a sample application, you
might perform the tasks in every phase.

J2EE Product Pr ovider
The J2EE product provider is the company that designs and makes available for
purchase the J2EE platform, APIs, and other features defined in the J2EE speci-
fication. Product providers are typically operating system, database system,
application server, or Web server vendors who implement the J2EE platform
according to the Java 2 Platform, Enterprise Edition Specification.

TOOL PROVIDER 15

Tool Pr ovider
The tool provider is the company or person who creates development, assembly,
and packaging tools used by component providers, assemblers, and deployers.

Applica tion Component Pr ovider
The application component provider is the company or person who creates Web
components, enterprise beans, applets, or application clients for use in J2EE
applications.

Enterprise Bean De veloper
An enterprise bean developer performs the following tasks to deliver an EJB
JAR file that contains the enterprise bean:

• Writes and compiles the source code
• Specifies the deployment descriptor
• Bundles the .class files and deployment descriptor into an EJB JAR file

Web Component De veloper
A Web component developer performs the following tasks to deliver a WAR file
containing the Web component:

• Writes and compiles servlet source code
• Writes JSP and HTML files
• Specifies the deployment descriptor for the Web component
• Bundles the .class, .jsp, .html, and deployment descriptor files in the

WAR file

J2EE Applica tion Client De veloper
An application client developer performs the following tasks to deliver a JAR file
containing the J2EE application client:

• Writes and compiles the source code
• Specifies the deployment descriptor for the client
• Bundles the .class files and deployment descriptor into the JAR file

16 OVERVIEW

Applica tion Assembler
The application assembler is the company or person who receives application
component JAR files from component providers and assembles them into a J2EE
application EAR file. The assembler or deployer can edit the deployment
descriptor directly or use tools that correctly add XML tags according to
interactive selections. A software developer performs the following tasks to
deliver an EAR file containing the J2EE application:

• Assembles EJB JAR and WAR files created in the previous phases into a
J2EE application (EAR) file

• Specifies the deployment descriptor for the J2EE application

• Verifies that the contents of the EAR file are well formed and comply with
the J2EE specification

Applica tion Deplo yer and Administra tor
The application deployer and administrator is the company or person who con-
figures and deploys the J2EE application, administers the computing and net-
working infrastructure where J2EE applications run, and oversees the runtime
environment. Duties include such things as setting transaction controls and secu-
rity attributes and specifying connections to databases.

During configuration, the deployer follows instructions supplied by the applica-
tion component provider to resolve external dependencies, specify security set-
tings, and assign transaction attributes. During installation, the deployer moves
the application components to the server and generates the container-specific
classes and interfaces.

A deployer/system administrator performs the following tasks to install and con-
figure a J2EE application:

• Adds the J2EE application (EAR) file created in the preceding phase to the
J2EE server

• Configures the J2EE application for the operational environment by mod-
ifying the deployment descriptor of the J2EE application

• Verifies that the contents of the EAR file are well formed and comply with
the J2EE specification

• Deploys (installs) the J2EE application EAR file into the J2EE server

J2EE APIS 17

J2EE APIs

Enterprise JavaBeans Technology
An Enterprise JavaBeans™ (EJB™) component or enterprise bean is a body of
code with fields and methods to implement modules of business logic. You can
think of an enterprise bean as a building block that can be used alone or with
other enterprise beans to execute business logic on the J2EE server.

There are three kinds of enterprise beans: session beans, entity beans, and mes-
sage-driven beans. Enterprise beans often interact with databases. One of the
benefits of entity beans is that you do not have to write any SQL code or use the
JDBC™ API directly to perform database access operations; the EJB container
handles this for you. However, if you override the default container-managed
persistence for any reason, you will need to use the JDBC API. Also, if you
choose to have a session bean access the database, you have to use the
JDBC API.

JDBC API
The JDBC™ API lets you invoke SQL commands from Java programing lan-
guage methods. You use the JDBC API in an enterprise bean when you override
the default container-managed persistence or have a session bean access the
database. With container-managed persistence, database access operations are
handled by the container, and your enterprise bean implementation contains no
JDBC code or SQL commands. You can also use the JDBC API from a servlet or
JSP page to access the database directly without going through an enterprise
bean.

The JDBC API has two parts: an application-level interface used by the applica-
tion components to access a database, and a service provider interface to attach a
JDBC driver to the J2EE platform.

Java Servlet Technology
Java Servlet technology lets you define HTTP-specific servlet classes. A servlet
class extends the capabilities of servers that host applications accessed by way of
a request-response programming model. Although servlets can respond to any
type of request, they are commonly used to extend the applications hosted by
Web servers.

18 OVERVIEW

JavaServer Pages Technology
JavaServer Pages™ (JSP™) technology lets you put snippets of servlet code
directly into a text-based document. A JSP page is a text-based document that
contains two types of text: static template data, which can be expressed in any
text-based format such as HTML, WML, and XML, and JSP elements, which
determine how the page constructs dynamic content.

Java Message Ser vice
The Java Message Service (JMS) is a messaging standard that allows J2EE
application components to create, send, receive, and read messages. It enables
distributed communication that is loosely coupled, reliable, and asynchronous.

Java Naming and Director y Interf ace
The Java Naming and Directory Interface™ (JNDI) provides naming and direc-
tory functionality. It provides applications with methods for performing standard
directory operations, such as associating attributes with objects and searching for
objects using their attributes. Using JNDI, a J2EE application can store and
retrieve any type of named Java object.

J2EE naming services provide application clients, enterprise beans, and Web
components with access to a JNDI naming environment. A naming environment
allows a component to be customized without the need to access or change the
component's source code. A container implements the component’s environment
and provides it to the component as a JNDI naming context.

A J2EE component locates its environment naming context using JNDI inter-
faces. A component creates a javax.naming.InitialContext object and looks
up the environment naming context in InitialContext under the name
java:comp/env. A component’s naming environment is stored directly in the
environment naming context or in any of its direct or indirect subcontexts.

A J2EE component can access named system-provided and user-defined objects.
The names of system-provided objects, such as JTA UserTransaction objects,
are stored in the environment naming context, java:comp/env. The J2EE plat-
form allows a component to name user-defined objects, such as enterprise beans,
environment entries, JDBC DataSource objects, and message connections. An
object should be named within a subcontext of the naming environment accord-

JAVA TRANSACTION API 19

ing to the type of the object. For example, enterprise beans are named within the
subcontext java:comp/env/ejb and JDBC DataSource references in the sub-
context java:comp/env/jdbc.

Because JNDI is independent of any specific implementations, applications can
use JNDI to access multiple naming and directory services, including existing
naming and directory services such as LDAP, NDS, DNS, and NIS. This allows
J2EE applications to coexist with legacy applications and systems. For more
information on JNDI, see the online JNDI Tutorial:

http://java.sun.com/products/jndi/tutorial/index.html

Java Transaction API
The Java Transaction API (JTA) provides a standard interface for demarcating
transactions. The J2EE architecture provides a default auto commit to handle
transaction commits and rollbacks. An auto commit means that any other appli-
cations viewing data will see the updated data after each database read or write
operation. However, if your application performs two separate database access
operations that depend on each other, you will want to use the JTA API to
demarcate where the entire transaction, including both operations, begins, rolls
back, and commits.

JavaMail API
J2EE applications can use the JavaMail™ API to send e-mail notifications. The
JavaMail API has two parts: an application-level interface used by the applica-
tion components to send mail, and a service provider interface. The J2EE plat-
form includes JavaMail with a service provider that allows application
components to send Internet mail.

JavaBeans Activ ation Frame work
The JavaBeans Activation Framework (JAF) is included because JavaMail uses
it. It provides standard services to determine the type of an arbitrary piece of
data, encapsulate access to it, discover the operations available on it, and create
the appropriate JavaBeans component to perform those operations.

20 OVERVIEW

Java API for XML Pr ocessing
The Java API for XML Processing (JAXP) supports the processing of XML doc-
uments using Document Object Model (DOM), Simple API for XML Parsing
(SAX), and XML Stylesheet Language Transformation (XSLT). JAXP enables
applications to parse and transform XML documents independent of a particular
XML processing implementation.

JAXP also provides namespace support, which lets you work with schemas that
might otherwise have naming conflicts. Designed to be flexible, JAXP lets you
use any XML-compliant parser of XSL processor from within your application
and supports the W3C schema. You can find information on the W3C schema at
this URL: http://www.w3.org/XML/Schema.

Java API for XML Reg istr ies
The Java API for XML Registries (JAXR) lets you access business and general-
purpose registries over the Web. JAXR supports the ebXML Registry/Repository
standards and the emerging UDDI specifications. By using JAXR, developers
can learn a single API and get access to both of these important registry technol-
ogies.

Additionally, businesses submit material to be shared and search for material
that others have submitted. Standards groups have developed schemas for partic-
ular kinds of XML documents, and two businesses might, for example, agree to
use the schema for their industry’s standard purchase order form. Because the
schema is stored in a standard business registry, both parties can use JAXR to
access it.

Java API for XML-Based RPC
The Java API for XML-based RPC (JAX-RPC) uses the SOAP standard and
HTTP so client programs can make XML-based remote procedure calls (RPCs)
over the Internet. JAX-RPC also supports WSDL so you can import and export
WSDL documents. With JAX-RPC and a WSDL, you can easily interoperate
with clients and services running on Java-based or non-Java-based platforms
such as .NET. For example, based on the WSDL document, a Visual Basic .NET
client can be configured to use a Web service implemented in Java technology or
a Web service can be configured to recognize a Visual Basic .NET client.

SOAP WITH ATTACHMENTS API FOR JAVA 21

JAX-RPC relies on the HTTP transport protocol. Taking that a step further, JAX-
RPC lets you create service applications that combine HTTP with a Java tech-
nology version of the Secure Socket Layer (SSL) and Transport Layer Security
(TLS) protocols to establish basic or mutual authentication. SSL and TLS ensure
message integrity by providing data encryption with client and server authentica-
tion capabilities.

Authentication is a measured way to verify whether a party is eligible and able to
access certain information as a way to protect against the fraudulent use of a sys-
tem and/or the fraudulent transmission of information. Information transported
across the Internet is especially vulnerable to being intercepted and misused, so
configuring a JAX-RPC Web service to protect data in transit is very important.

SOAP with Attachments API f or Java
The SOAP with Attachments API for Java (SAAJ) is a low-level API upon
which JAX-RPC depends. It enables the production and consumption of mes-
sages that conform to the SOAP 1.1 specification and SOAP with Attachments
note. Most developers will not use the SAAJ API, but will use the higher-level
JAX-RPC API instead.

J2EE Connector Ar chitecture
The J2EE Connector architecture is used by J2EE tools vendors and system inte-
grators to create resource adapters that support access to enterprise information
systems that can be plugged into any J2EE product. A resource adapter is a soft-
ware component that allows J2EE application components to access and interact
with the underlying resource manager. Because a resource adapter is specific to
its resource manager, there is typically a different resource adapter for each type
of database or enterprise information system.

JAX-RPC and the J2EE Connector Architecture are complementary technolo-
gies for enterprise application integration (EAI) and end-to-end business integra-
tion.

The J2EE Connector Architecture also provides a performance-oriented, secure,
scalable, and message-based transactional integration of J2EE-based Web ser-
vices with existing EISs that can be either synchronous or asynchronous. Exist-
ing applications and EISs integrated through the J2EE Connector Architecture
into the J2EE platform can be exposed as XML-based Web services using JAX-
RPC and J2EE component models.

22 OVERVIEW

Java Authentica tion and A uthor ization
Service
The Java Authentication and Authorization Service (JAAS) provides a way for a
J2EE application to authenticate and authorize a specific user or group of users
to run it.

JAAS is a Java programing language version of the standard Pluggable Authenti-
cation Module (PAM) framework that extends the Java 2 Platform security archi-
tecture to support user-based authorization.

Simplified Systems Integra tion
The J2EE platform is a platform-independent, full systems integration solution
that creates an open marketplace in which every vendor can sell to every cus-
tomer. Such a marketplace encourages vendors to compete, not by trying to lock
customers into their technologies but by trying to outdo each other by providing
products and services that benefit customers, such as better performance, better
tools, or better customer support.

The J2EE APIs enable systems and applications integration through the follow-
ing:

• Unified application model across tiers with enterprise beans
• Simplified response and request mechanism with JSP pages and servlets
• Reliable security model with JAAS
• XML-based data interchange integration with JAXP
• Simplified interoperability with the J2EE Connector Architecture
• Easy database connectivity with the JDBC API
• Enterprise application integration with message-driven beans and JMS,

JTA, and JNDI
You can learn more about using the J2EE platform to build integrated business
systems by reading J2EE Technology in Practice:

http://java.sun.com/j2ee/inpractice/aboutthebook.html

