
Enterprise Computing:

Ant: A Java build tool

Stephen Gilmore

The University of Edinburgh

Lecture content copyright c© 2003

Sams Publishing, Inc.,

800 East 96th Street,

Indianapolis, IN 46240, U.S.A.

All rights reserved.

eXtreme programming (XP) with Ant

Ant provides a framework that enables

developers to rapidly configure processes for all

phases of the software life cycle. An Ant build

process is described in an XML file, called a

buildfile.

eXtreme programming (XP) with Ant

Ant provides a framework that enables

developers to rapidly configure processes for all

phases of the software life cycle. An Ant build

process is described in an XML file, called a

buildfile.

The buildfile is used to configure the steps

necessary to complete a build process. Users

also can control the behavior of Ant throughout

the build process by means of various options,

properties, and environment variables.

This includes parameters such as the volume of

information generated during a build, its form,

and its destination.

This includes parameters such as the volume of

information generated during a build, its form,

and its destination.

It’s even possible to cause certain actions to

happen, such as sending an e-mail notification

when a build completes.

This includes parameters such as the volume of

information generated during a build, its form,

and its destination.

It’s even possible to cause certain actions to

happen, such as sending an e-mail notification

when a build completes.

Ant has a gentle learning curve, which makes it

easy to create a useful tool without extensive

knowledge of Ant.

Elements of a buildfile

Ant is directed to perform a series of operations

through a buildfile. A buildfile is analogous to a

makefile for make, and it is written in XML.

Elements of a buildfile

Ant is directed to perform a series of operations

through a buildfile. A buildfile is analogous to a

makefile for make, and it is written in XML.

Buildfiles are composed of projects, targets, and

tasks. These constructs are used to describe the

operations that a buildfile will perform when Ant

is invoked.

Buildfile relationships

Projects, targets, and tasks have a hierarchical

relationship.

Buildfile relationships

Projects, targets, and tasks have a hierarchical

relationship.

• A buildfile describes a single project.

Buildfile relationships

Projects, targets, and tasks have a hierarchical

relationship.

• A buildfile describes a single project.

• Within the single project are one or more

targets.

Buildfile relationships

Projects, targets, and tasks have a hierarchical

relationship.

• A buildfile describes a single project.

• Within the single project are one or more

targets.

• Targets are composed of one or more tasks.

Projects, targets and tasks

Projects, targets and tasks

Projects, targets and tasks

Projects, targets and tasks

Projects, targets and tasks

Projects, targets and tasks

Projects, targets and tasks

Projects, targets and tasks

Projects, targets and tasks

Projects, targets and tasks

Projects, targets and tasks

Projects, targets and tasks

Framework of the buildfile

The first step is to construct the basic

framework of the buildfile, named build.xml.

The buildfile can be called anything you like, but

there’s a reason for using the name build.xml.

By default, Ant searches for a file by this name

if no other buildfile name is passed to it at

invocation.

Framework of the buildfile

The first step is to construct the basic

framework of the buildfile, named build.xml.

The buildfile can be called anything you like, but

there’s a reason for using the name build.xml.

By default, Ant searches for a file by this name

if no other buildfile name is passed to it at

invocation.

If the file is named something else, simply pass

the name on the command line with the

-buildfile option.

A skeletal buildfile (build1.xml)

1 <?xml version=”1.0” encoding=”ISO−8859−1”?>

2 <project name=”myproject” default=”test.ant”

3 basedir=”.”>

4 </project>

A skeletal buildfile (build1.xml)

1 <?xml version=”1.0” encoding=”ISO−8859−1”?>

2 <project name=”myproject” default=”test.ant”

3 basedir=”.”>

4 </project>

[beetgreens]stg: ant -buildfile build1.xml

Buildfile: build1.xml

BUILD FAILED

Target ‘test.ant’ does not exist in this project.

Total time: 2 seconds

Targets

A target is a set of steps to be executed

together as a unit. A target tag has five

attributes: name; depends; if; unless; and

description.

Targets

A target is a set of steps to be executed

together as a unit. A target tag has five

attributes: name; depends; if; unless; and

description.

The name attribute is simply the name assigned

to the target to refer to it, and this attribute is

required.

Targets

A target is a set of steps to be executed

together as a unit. A target tag has five

attributes: name; depends; if; unless; and

description.

The name attribute is simply the name assigned

to the target to refer to it, and this attribute is

required.

The depends attribute is used to define a

dependency by one target on one or more other

targets.

The description attribute enables you to create

a descriptive comment.

The description attribute enables you to create

a descriptive comment.

The attributes if and unless are used to define

conditional execution on a target.

Effect of target failures

If execution of a target fails, the buildfile can be

configured to either continue execution of the

remaining targets or to stop the build process.

Effect of target failures

If execution of a target fails, the buildfile can be

configured to either continue execution of the

remaining targets or to stop the build process.

With a target, however, if any step fails, the rest

of the target is abandoned.

Effect of target failures

If execution of a target fails, the buildfile can be

configured to either continue execution of the

remaining targets or to stop the build process.

With a target, however, if any step fails, the rest

of the target is abandoned.

So, the execution of a target is not an atomic

operation.

A skeletal buildfile (build2.xml)

1 <?xml version=”1.0” encoding=”ISO−8859−1”?>

2 <project name=”myproject” default=”test.ant”

3 basedir=”.”>

4 <target name=”test.ant”

5 description=”A simple build file to test ant.”>

6 </target>

7 </project>

[beetgreens]stg: ant -buildfile build2.xml

Buildfile: build2.xml

test.ant:

BUILD SUCCESSFUL

Total time: 1 second

[beetgreens]stg: ant -projecthelp -buildfile build2.xml

Buildfile: build2.xml

Main targets:

test.ant A simple build file to test ant.

Default target: test.ant

Tasks

The constructs that make up an Ant target are

called tasks. Tasks are predefined operations

that Ant can perform. The actual task

implementation is a Java class.

Tasks

The constructs that make up an Ant target are

called tasks. Tasks are predefined operations

that Ant can perform. The actual task

implementation is a Java class.

The behaviour of any given task is configured

within the buildfile through attributes of the

task.

Tasks

The constructs that make up an Ant target are

called tasks. Tasks are predefined operations

that Ant can perform. The actual task

implementation is a Java class.

The behaviour of any given task is configured

within the buildfile through attributes of the

task.

Ant has two categories of tasks:

• core tasks; and

• optional tasks.

Core tasks

Core tasks cover fundamental operations that

are common to most build and deployment

processes. This includes tasks such as <delete>,

<copy>, <move>, and <tar>.

Core tasks

Core tasks cover fundamental operations that

are common to most build and deployment

processes. This includes tasks such as <delete>,

<copy>, <move>, and <tar>.

In general, optional tasks tend to be more

specialized or specific to a software product,

although this is not entirely the case.

Optional tasks

The optional tasks include items such as <ftp>

and <telnet>. However, most optional tasks

have to do with a specific software product,

such as <junit>, or a procedure, such as EJB

deployment.

Optional tasks

The optional tasks include items such as <ftp>

and <telnet>. However, most optional tasks

have to do with a specific software product,

such as <junit>, or a procedure, such as EJB

deployment.

Another note about optional tasks is that they

are included in a separate .jar file

(optional.jar) from the core tasks (ant.jar).

A skeletal buildfile (build3.xml)

1 <?xml version=”1.0” encoding=”ISO−8859−1”?>

2 <project name=”myproject” default=”test.ant”

3 basedir=”.”>

4 <target name=”test.ant”

5 description=”A simple build file to test ant.”>

6 <echo>Ant is working properly</echo>

7 </target>

8 </project>

[beetgreens]stg: ant -buildfile build3.xml

Buildfile: build3.xml

test.ant:

[echo] Ant is working properly

BUILD SUCCESSFUL

Total time: 1 second

Running ant -help (extract)

ant [options] [target [target2 [target3] ...]]

Options:

-help print this message

-projecthelp print project help information

-version print the version information

and exit

-diagnostics print information that might be

helpful to diagnose or report

problems.

-quiet, -q be extra quiet

-verbose, -v be extra verbose

-debug print debugging information

..

Using an Ant Initialization File

Invoking Ant runs a wrapper script for a specific

operating system, which starts a Java Virtual

Machine (JVM) that runs the Ant Java code.

Using an Ant Initialization File

Invoking Ant runs a wrapper script for a specific

operating system, which starts a Java Virtual

Machine (JVM) that runs the Ant Java code.

Ant’s behavior can be altered by setting

environment variables that are passed from the

wrapper script to the JVM. Environment

variables can also be set in platform-dependent

files, which are called by the Ant wrapper scripts.

When running Ant on a Unix-based platform,

such as Linux, Solaris, Mac OS X, and Cygwin,

the Unix wrapper script for Ant will look for the

file ~/.antrc before invoking Ant in the JVM.

When running Ant on a Unix-based platform,

such as Linux, Solaris, Mac OS X, and Cygwin,

the Unix wrapper script for Ant will look for the

file ~/.antrc before invoking Ant in the JVM.

The purpose of the environment variable

ANT_OPTS is really to contain options to pass to

the JVM.

[beetgreens]stg: export ANT_OPTS="-showversion"

[beetgreens]stg: ant -buildfile build3.xml

java version "1.4.2_02"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2_02-b03)

Java HotSpot(TM) Client VM (build 1.4.2_02-b03, mixed mode)

Buildfile: build3.xml

test.ant:

[echo] Ant is working properly

BUILD SUCCESSFUL

Total time: 1 second

Basic project management buildfile

1 <?xml version=”1.0” ?>

2 <project name=”AntTest” default=”compile”

3 basedir=”.”>

4

5 <!−− compile target −−>

6 <target name=”compile”

7 description=”Compile all of the source code.”>

8 <javac srcdir=”/home/stg/ant/tst” />

9 </target>

10

11 </project>

Running ant

[beetgreens]stg: ant

Buildfile: build.xml

compile:

[javac] Compiling 7 source files

BUILD SUCCESSFUL

Total time: 20 seconds

Re-running ant

[beetgreens]stg: ant

Buildfile: build.xml

compile:

BUILD SUCCESSFUL

Total time: 2 seconds

Using properties in ant

1 <?xml version=”1.0” ?>

2 <project name=”AntTest” default=”compile”

3 basedir=”.”>

4

5 <property name=”dirs.source”

6 value=”/home/stg/ant/tst”>

7

8 <target name=”compile”

9 description=”Compile all of the source code.”>

10 <javac srcdir=”${dirs.source}” />

11 </target>

12

13 </project>

Example targets: making a TAR archive

1 <!−− backupTar target −−>

2 <target name=”backupTar”

3 description=”Backs up all source into a tar file.”>

4 <mkdir dir=”${dirs.backup}” />

5

6 <tar tarfile =”${dirs.backup}/${backupFile}”
7 basedir=”${dirs.source}”
8 compression=”gzip” />

9 </target>

Files can be timestamped using <tstamp />.

Target dependencies

Currently, each target in the buildfile is

standalone in that it doesn’t require another

target to execute first. As other targets are

added, the order in which targets are executed

may become an issue.

Target dependencies

Currently, each target in the buildfile is

standalone in that it doesn’t require another

target to execute first. As other targets are

added, the order in which targets are executed

may become an issue.

In our buildfile, a target will be added that will

FTP the gzipped tarball to another server that

gets backed up. We could create a target that

replicates the backupTar target, and then does

the FTP.

But this unnecessarily increases the size of the

buildfile, and more importantly, it creates

maintenance problems. If for some reason we

wanted to create zip files instead of gzipped

tarballs, we would have to change this in more

than one place.

But this unnecessarily increases the size of the

buildfile, and more importantly, it creates

maintenance problems. If for some reason we

wanted to create zip files instead of gzipped

tarballs, we would have to change this in more

than one place.

A better solution is to create a new target that

does only the FTP step, and make it dependent

on the backupTar target.

But this unnecessarily increases the size of the

buildfile, and more importantly, it creates

maintenance problems. If for some reason we

wanted to create zip files instead of gzipped

tarballs, we would have to change this in more

than one place.

A better solution is to create a new target that

does only the FTP step, and make it dependent

on the backupTar target.

This way, if the ftp target is executed, it will

first execute the backupTar target, and create the

backup archive.

Any target can be defined as having a

dependency on one or more other targets. By

defining dependencies on targets, it’s possible to

ensure that all the targets in a project get

executed in an acceptable order.

Dependencies in a buildfile

1 <?xml version=”1.0” encoding=”ISO−8859−1”?>

2

3 <project name=”targetDependencies”

4 default=”tgt 1” basedir=”.”>

5

6 <target name=”tgt 1” description=”target 1”>

7 <!−− tasks here −−>

8 </target>

9

10 <target name=”tgt 2”

11 depends=”tgt 1” description=”target 2”>

12 <!−− tasks here −−>

13 </target>

14

15 <target name=”tgt 3”

16 description=”target 3”>

17 <!−− tasks here −−>

18 </target>

19

20 <target name=”tgt 4”

21 depends=”tgt 3, tgt 2, tgt 1”>

22 <!−− tasks here −−>

23 </target>

24 </project>

Ant’s behaviour

In this example, the final target is tgt 4. By

default, Ant attempts to execute the target

dependencies in the order listed in the target.

Ant’s behaviour

In this example, the final target is tgt 4. By

default, Ant attempts to execute the target

dependencies in the order listed in the target.

If we were to execute a target with no

dependencies, such as tgt 1, it simply executes.

Ant’s behaviour

In this example, the final target is tgt 4. By

default, Ant attempts to execute the target

dependencies in the order listed in the target.

If we were to execute a target with no

dependencies, such as tgt 1, it simply executes.

If we execute a target with a single dependency,

tgt 2, Ant will determine that tgt 1 needs to

execute first. So tgt 1 will execute followed by

tgt 2.

In the case where there are multiple

dependencies, as in tgt 4, Ant attempts to

execute the targets from left to right in the

dependency list.

In the case where there are multiple

dependencies, as in tgt 4, Ant attempts to

execute the targets from left to right in the

dependency list.

Ant starts with tgt 3. Because tgt 3 has no

other dependencies, it executes. Then Ant

moves to tgt 2, but it has a dependency on

tgt 1. So Ant will execute tgt 1, followed by

tgt 2. Then Ant moves to the last target in the

list, tgt 1. However, tgt 1 already executed, so

Ant won’t run it again.

[beetgreens]stg: ant -buildfile deps.xml tgt_4

Buildfile: deps.xml

tgt_3:

tgt_1:

tgt_2:

tgt_4:

BUILD SUCCESSFUL

Total time: 1 second

Optimising Ant build scripts

Sometimes it’s tempting to daisy-chain a series

of targets like compile, unittest, and javadoc,

where unittest depends on compile, and javadoc

depends on unittest.

Optimising Ant build scripts

Sometimes it’s tempting to daisy-chain a series

of targets like compile, unittest, and javadoc,

where unittest depends on compile, and javadoc

depends on unittest.

In fact, maybe javadoc only needs to depend on

compile. Introducing unneeded dependencies

only complicates matters unnecessarily. If a user

wants to run javadoc, they shouldn’t be forced

to run unit tests unnecessarily. So use the

minimum number of dependencies possible, and

let Ant sort it out.

Entering a User ID/Password at Runtime

Ant provides the <input> task, which provides a

means for prompting the user for additional

information at runtime.

Entering a User ID/Password at Runtime

Ant provides the <input> task, which provides a

means for prompting the user for additional

information at runtime.

Here is an example of the use of the input task

to prompt the user to enter their user id, and

store their response in the property ftpUserID:

<input message=”Please enter ftp user id:”

addproperty=”ftpUserID” />

By adding input tasks to the target, the user

can be prompted to enter their user ID and

password. Those entered values can then be

stored in properties, and used in other tasks

later in the buildfile.

By adding input tasks to the target, the user

can be prompted to enter their user ID and

password. Those entered values can then be

stored in properties, and used in other tasks

later in the buildfile.

What should Ant do if the user doesn’t supply

these values? In order to make the buildfile exit

gracefully, the <condition> element can be used

to check for the presence of an attribute.

Here’s an example of the use of this element:

<condition property=”noFTPUserID”>

<equals arg1=”” arg2=”${ftpUserID}” />

</condition>

What this does is check if the property

${ftpUserID} (arg2) is empty (arg1).

Here’s an example of the use of this element:

<condition property=”noFTPUserID”>

<equals arg1=”” arg2=”${ftpUserID}” />

</condition>

What this does is check if the property

${ftpUserID} (arg2) is empty (arg1).

If the <equals> condition is true, <condition>

sets the property noFTPUserID.

Properties are immutable, and can only be set

once. After this check is completed, a <fail>

construct is encountered that looks like this:

<fail if=”noFTPUserID”>

You did not enter your ftp user id.

</fail>

If the property noFTPUserID was set by the

<condition> check, the build will print the

message You did not enter your ftp user id.,

and then exit gracefully.

