
Enterprise Computing

Stephen Gilmore

The University of Edinburgh



About this course

• This is a eighteen-lecture course at the

third-year undergraduate level (Level 9).

• There is a written examination in the

April/May diet of examinations.

• There is a single coursework exercise

spanning the course. This coursework is

undertaken as a group exercise.



The coursework project

• The aim of the coursework is to experience

a realistic enterprise computing problem:

making an existing legacy application

accessible over the Web.

• You will work in teams to achieve this, with

direction on requirements for the networked

application and requirements on the

approved technology to be used.

• You will be required to demonstrate your

progress so far on the project at various

stages.



Course bias

• Enterprise Computing is a green course

(suitable for Software Engineering degrees).

• The focus in this course is on practical skills

acquisition rather than abstraction,

formalisation and generalisation.

• The aim is to treat the dominant relevant

technologies in depth rather than to give a

more superficial survey of many rivals.

• This course will use the Extensible Markup

Language (XML) and the Java 2 Enterprise

Edition Software Development Kit.



Course lectures

• The course lectures are Monday and

Thursday (from 9:00 to 9:50) in Room

3218 of the James Clerk Maxwell Building.



Course lectures

• The course lectures are Monday and

Thursday (from 9:00 to 9:50) in Room

3218 of the James Clerk Maxwell Building.

Course materials

• The course materials are compiled from

several sources. Among these are included

SUN Microsystems’ Java 2 Enterprise

Edition tutorial.



The J2EETM 1.4 Tutorial

Eric Armstrong

Jennifer Ball

Stephanie Bodoff

Debbie Carson

Ian Evans

Maydene Fisher

Dale Green

Kim Haase

Eric Jendrock



The J2EE 1.4 Tutorial copyright notice

Copyright c© 2003 Sun Microsystems, Inc., 4150

Network Circle, Santa Clara, California 95054,

U.S.A. All rights reserved.

This distribution may include materials

developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java,

J2EE, JavaServer Pages, Enterprise JavaBeans,

Java Naming and Directory Interface, EJB, JSP,

J2EE, J2SE and the Java Coffee Cup logo are

trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other

countries.



Overview

Today, more and more developers want to write

distributed transactional applications for the

enterprise and leverage the speed, security, and

reliability of server-side technology.



Overview

Today, more and more developers want to write

distributed transactional applications for the

enterprise and leverage the speed, security, and

reliability of server-side technology.

In today’s fast-moving and demanding world of

e-commerce and information technology,

enterprise applications have to be designed,

built, and produced for less money, with greater

speed, and with fewer resources than ever

before.



Java 2 Platform, Enterprise Edition (J2EE)

To reduce costs and fast-track application

design and development, Java 2 Platform,

Enterprise Edition (J2EE) provides a

component-based approach to the design,

development, assembly, and deployment of

enterprise applications.



The J2EE platform offers a multitiered

distributed application model, reusable

components, a unified security model, flexible

transaction control, and Web services support

through integrated data interchange on

Extensible Markup Language (XML)-based open

standards and protocols.



Advantages of J2EE

Not only can you deliver innovative business

solutions to market faster than ever, but your

platform-independent J2EE component-based

solutions are not tied to the products and

application programming interfaces (APIs) of

any one vendor.



Advantages of J2EE

Not only can you deliver innovative business

solutions to market faster than ever, but your

platform-independent J2EE component-based

solutions are not tied to the products and

application programming interfaces (APIs) of

any one vendor.

Vendors and customers enjoy the freedom to

choose the products and components that best

meet their business and technological

requirements.



Distributed multitiered applications

The J2EE platform uses a multitiered distributed

application model for enterprise applications.



Distributed multitiered applications

The J2EE platform uses a multitiered distributed

application model for enterprise applications.

Application logic is divided into components

according to function, and the various

application components that make up a J2EE

application are installed on different machines

depending on the tier in the multitiered J2EE

environment to which the application

component belongs.



Placement of components on machines

Multitiered J2EE applications can be divided

into the tiers described in the following list.

• Client-tier components run on the client

machine.

• Web-tier components run on the J2EE

server.

• Business-tier components run on the J2EE

server.

• Enterprise information system (EIS)-tier

software runs on the EIS server.





Three tiers or four?

Although a J2EE application can consist of the

three or four tiers shown, J2EE multitiered

applications are generally considered to be

three-tiered applications because they are

distributed over three different locations: client

machines, the J2EE server machine, and the

database or legacy machines at the back end.



Three tiers or four?

Although a J2EE application can consist of the

three or four tiers shown, J2EE multitiered

applications are generally considered to be

three-tiered applications because they are

distributed over three different locations: client

machines, the J2EE server machine, and the

database or legacy machines at the back end.

Three-tiered applications that run in this way

extend the standard two-tiered client and server

model by placing a multithreaded application

server between the client application and

back-end storage.



J2EE Components

J2EE applications are made up of components.



J2EE Components

J2EE applications are made up of components.

A J2EE component is a self-contained functional

software unit that is assembled into a J2EE

application with its related classes and files and

that communicates with other components.



J2EE Components in the J2EE

Specification

The J2EE specification defines the following

J2EE components:

• Application clients and applets are

components that run on the client.

• Java Servlet and JavaServer PagesTM

(JSPTM) technology components are Web

components that run on the server.

• Enterprise JavaBeansTM (EJBTM)

components (enterprise beans) are business

components that run on the server.



Java programming and J2EE

J2EE components are written in the Java

programming language and are compiled in the

same way as any program in the language.



Java programming and J2EE

J2EE components are written in the Java

programming language and are compiled in the

same way as any program in the language.

The difference between J2EE components and

“standard” Java classes is that J2EE

components are assembled into a J2EE

application, verified to be well formed and in

compliance with the J2EE specification, and

deployed to production, where they are run and

managed by the J2EE server.



J2EE Clients

A J2EE client can be a Web client or an

application client.



J2EE Clients

A J2EE client can be a Web client or an

application client.

Web clients

A Web client consists of two parts: dynamic

Web pages containing various types of markup

language (HTML, XML, and so on), which are

generated by Web components running in the

Web tier, and a Web browser, which renders the

pages received from the server.



Web clients are thin clients

A Web client is sometimes called a thin client.



Web clients are thin clients

A Web client is sometimes called a thin client.

Thin clients usually do not do things like query

databases, execute complex business rules, or

connect to legacy applications.



Web clients are thin clients

A Web client is sometimes called a thin client.

Thin clients usually do not do things like query

databases, execute complex business rules, or

connect to legacy applications.

When you use a thin client, heavyweight

operations like these are off-loaded to enterprise

beans executing on the J2EE server where they

can leverage the security, speed, services, and

reliability of J2EE server-side technologies.



Applets

A Web page received from the Web tier can

include an embedded applet.



Applets

A Web page received from the Web tier can

include an embedded applet.

An applet is a small client application written in

the Java programming language that executes in

the Java virtual machine installed in the Web

browser.



Applets

A Web page received from the Web tier can

include an embedded applet.

An applet is a small client application written in

the Java programming language that executes in

the Java virtual machine installed in the Web

browser.

However, client systems will likely need the Java

Plug-in and possibly a security policy file in

order for the applet to successfully execute in

the Web browser.



Web components

Web components are the preferred API for

creating a Web client program because no

plug-ins or security policy files are needed on the

client systems.



Web components

Web components are the preferred API for

creating a Web client program because no

plug-ins or security policy files are needed on the

client systems.

Also, Web components enable cleaner and more

modular application design because they provide

a way to separate applications programming

from Web page design.



Web components

Web components are the preferred API for

creating a Web client program because no

plug-ins or security policy files are needed on the

client systems.

Also, Web components enable cleaner and more

modular application design because they provide

a way to separate applications programming

from Web page design.

Personnel involved in Web page design thus do

not need to understand Java programming

language syntax to do their jobs.



Application clients

A J2EE application client runs on a client

machine and provides a way for users to handle

tasks that require a richer user interface than

can be provided by a markup language.



Application clients

A J2EE application client runs on a client

machine and provides a way for users to handle

tasks that require a richer user interface than

can be provided by a markup language.

It typically has a graphical user interface (GUI)

created using the Swing API.



Application clients

A J2EE application client runs on a client

machine and provides a way for users to handle

tasks that require a richer user interface than

can be provided by a markup language.

It typically has a graphical user interface (GUI)

created using the Swing API.

Application clients directly access enterprise

beans running in the business tier. However, a

J2EE application client can open an HTTP

connection to establish communication with a

servlet running in the Web tier.



JavaBeansTM Component Architecture

The server and client tiers might also include

components based on the JavaBeans component

architecture (JavaBeans component) to manage

the data flow between an application client or

applet and components running on the J2EE

server or between server components and a

database.



JavaBeansTM Component Architecture

The server and client tiers might also include

components based on the JavaBeans component

architecture (JavaBeans component) to manage

the data flow between an application client or

applet and components running on the J2EE

server or between server components and a

database.

JavaBeans components are not considered J2EE

components by the J2EE specification.



JavaBeans components

JavaBeans components have instance variables

and get and set methods for accessing the data

in the instance variables.



JavaBeans components

JavaBeans components have instance variables

and get and set methods for accessing the data

in the instance variables.

JavaBeans components used in this way are

typically simple in design and implementation,

but should conform to the naming and design

conventions outlined in the JavaBeans

component architecture.



J2EE Server Communications

Next, let’s consider the various elements that

can make up the client tier.



J2EE Server Communications

Next, let’s consider the various elements that

can make up the client tier.

The client communicates with the business tier

running on the J2EE server either directly or, as

in the case of a client running in a browser, by

going through JSP pages or servlets running in

the Web tier.



Thin clients versus thick clients

Your J2EE application uses a thin browser-based

client or thick application client. To decide

which, you should be aware of the trade-offs

between keeping functionality on the client and

close to the user (thick client) and off-loading as

much functionality as possible to the server

(thin client).



Thin clients versus thick clients

Your J2EE application uses a thin browser-based

client or thick application client. To decide

which, you should be aware of the trade-offs

between keeping functionality on the client and

close to the user (thick client) and off-loading as

much functionality as possible to the server

(thin client).

The more functionality you off-load to the

server, the easier it is to distribute, deploy, and

manage the application; however, keeping more

functionality on the client can make for a better

perceived user experience.









Web Components

J2EE Web components can be either servlets or

JSP pages.



Web Components

J2EE Web components can be either servlets or

JSP pages.

Servlets are Java programming language classes

that dynamically process requests and construct

responses.



Web Components

J2EE Web components can be either servlets or

JSP pages.

Servlets are Java programming language classes

that dynamically process requests and construct

responses.

JSP pages are text-based documents that

execute as servlets but allow a more natural

approach to creating static content.



What is not a web component?

Static HTML pages and applets are bundled

with Web components during application

assembly, but are not considered Web

components by the J2EE specification.



What is not a web component?

Static HTML pages and applets are bundled

with Web components during application

assembly, but are not considered Web

components by the J2EE specification.

Server-side utility classes can also be bundled

with Web components and, like HTML pages,

are not considered Web components.



Client tier — Web tier — Business tier

Like the client tier, the Web tier might include a

JavaBeans component to manage the user input

and send that input to enterprise beans running

in the business tier for processing.



Client tier — Web tier — Business tier



Client tier — Web tier — Business tier



Client tier — Web tier — Business tier



Client tier — Web tier — Business tier



Client tier — Web tier — Business tier



Business Components

Business code, which is logic that solves or

meets the needs of a particular business domain

such as banking, retail, or finance, is handled by

enterprise beans running in the business tier.



Business Components

Business code, which is logic that solves or

meets the needs of a particular business domain

such as banking, retail, or finance, is handled by

enterprise beans running in the business tier.

An enterprise bean receives data from client

programs, processes it (if necessary), and sends

it to the enterprise information system tier for

storage.



Business Components

Business code, which is logic that solves or

meets the needs of a particular business domain

such as banking, retail, or finance, is handled by

enterprise beans running in the business tier.

An enterprise bean receives data from client

programs, processes it (if necessary), and sends

it to the enterprise information system tier for

storage.

An enterprise bean also retrieves data from

storage, processes it (if necessary), and sends it

back to the client program.



Business and EIS tiers



Enterprise Java beans

There are three kinds of enterprise beans:

session beans, entity beans, and message-driven

beans.



Enterprise Java beans

There are three kinds of enterprise beans:

session beans, entity beans, and message-driven

beans.

A session bean represents a transient

conversation with a client. When the client

finishes, the session bean and its data are gone.



Enterprise Java beans

There are three kinds of enterprise beans:

session beans, entity beans, and message-driven

beans.

A session bean represents a transient

conversation with a client. When the client

finishes, the session bean and its data are gone.

In contrast, an entity bean represents persistent

data stored in one row of a database table. If

the client terminates or if the server shuts down,

the underlying services ensure that the entity

bean data is saved.



A message-driven bean combines features of a

session bean and a Java Message Service (JMS)

message listener, allowing a business component

to receive JMS messages asynchronously.



Enterprise Information System Tier

The enterprise information system tier handles

enterprise information system software and

includes enterprise infrastructure systems such

as enterprise resource planning (ERP),

mainframe transaction processing, database

systems, and other legacy information systems.



Enterprise Information System Tier

The enterprise information system tier handles

enterprise information system software and

includes enterprise infrastructure systems such

as enterprise resource planning (ERP),

mainframe transaction processing, database

systems, and other legacy information systems.

J2EE application components might need access

to enterprise information systems for database

connectivity, for example.


