
Enterprise Computing:

Java API for XML Processing (JAXP)

Stephen Gilmore

The University of Edinburgh

Lecture content copyright c© 2003

Sun Microsystems, Inc.,

4150 Network Circle, Santa Clara,

California 95054, U.S.A.

All rights reserved.



Introduction

The Java API for XML Processing (JAXP) is for

processing XML data using applications written

in the Java programming language.



Introduction

The Java API for XML Processing (JAXP) is for

processing XML data using applications written

in the Java programming language.

JAXP leverages the parser standards SAX

(Simple API for XML Parsing) and DOM

(Document Object Model) so that you can

choose to parse your data as a stream of events

or to build an object representation of it.



JAXP also supports the XSLT (XML Stylesheet

Language Transformations) standard, giving you

control over the presentation of the data and

enabling you to convert the data to other XML

documents or to other formats, such as HTML.



JAXP also supports the XSLT (XML Stylesheet

Language Transformations) standard, giving you

control over the presentation of the data and

enabling you to convert the data to other XML

documents or to other formats, such as HTML.

JAXP also provides namespace support, allowing

you to work with DTDs that might otherwise

have naming conflicts.



Pluggability in JAXP

Designed to be flexible, JAXP allows you to use

any XML-compliant parser from within your

application.



Pluggability in JAXP

Designed to be flexible, JAXP allows you to use

any XML-compliant parser from within your

application.

It does this with what is called a pluggability

layer, which allows you to plug in an

implementation of the SAX or DOM APIs.



Pluggability in JAXP

Designed to be flexible, JAXP allows you to use

any XML-compliant parser from within your

application.

It does this with what is called a pluggability

layer, which allows you to plug in an

implementation of the SAX or DOM APIs.

The pluggability layer also allows you to plug in

an XSL processor, letting you control how your

XML data is displayed.



The JAXP APIs

The main JAXP APIs are defined in the

javax.xml.parsers package.



The JAXP APIs

The main JAXP APIs are defined in the

javax.xml.parsers package.

That package contains two vendor-neutral

factory classes: SAXParserFactory and

DocumentBuilderFactory that give you a SAXParser

and a DocumentBuilder, respectively. The

DocumentBuilder, in turn, creates a

DOM-compliant Document object.



Plugging in XML implementations

The factory APIs give you the ability to plug in

an XML implementation offered by another

vendor without changing your source code.



Plugging in XML implementations

The factory APIs give you the ability to plug in

an XML implementation offered by another

vendor without changing your source code.

The implementation you get depends on the

setting of the system properties named

javax.xml.parsers.SAXParserFactory and

javax.xml.parsers.DocumentBuilderFactory. The

default values (unless overridden at runtime)

point to Sun’s implementation.



An overview of the JAXP API Packages

javax.xml.parsers: The JAXP APIs, which

provide a common interface for different

vendors’ SAX and DOM parsers.



An overview of the JAXP API Packages

javax.xml.parsers: The JAXP APIs, which

provide a common interface for different

vendors’ SAX and DOM parsers.

org.w3c.dom: Defines the Document class (a

DOM), as well as classes for all of the

components of a DOM.



An overview of the JAXP API Packages

javax.xml.parsers: The JAXP APIs, which

provide a common interface for different

vendors’ SAX and DOM parsers.

org.w3c.dom: Defines the Document class (a

DOM), as well as classes for all of the

components of a DOM.

org.xml.sax: Defines the basic SAX APIs.



An overview of the JAXP API Packages

javax.xml.parsers: The JAXP APIs, which

provide a common interface for different

vendors’ SAX and DOM parsers.

org.w3c.dom: Defines the Document class (a

DOM), as well as classes for all of the

components of a DOM.

org.xml.sax: Defines the basic SAX APIs.

javax.xml.transform: Defines the XSLT APIs

that let you transform XML into other

forms.



An overview of the Simple API for XML

The ”Simple API” for XML (SAX) is the

event-driven, serial-access mechanism that does

element-by-element processing.



An overview of the Simple API for XML

The ”Simple API” for XML (SAX) is the

event-driven, serial-access mechanism that does

element-by-element processing.

The API for this level reads and writes XML to

a data repository or the Web.



An overview of the Simple API for XML

The ”Simple API” for XML (SAX) is the

event-driven, serial-access mechanism that does

element-by-element processing.

The API for this level reads and writes XML to

a data repository or the Web.

For server-side and high-performance

applications, you will want to fully understand

this level. But for many applications, a minimal

understanding will suffice.



An overview of the Document Object Model

The DOM API is generally an easier API to use.

It provides a relatively familiar tree structure of

objects.



An overview of the Document Object Model

The DOM API is generally an easier API to use.

It provides a relatively familiar tree structure of

objects.

You can use the DOM API to manipulate the

hierarchy of application objects it encapsulates.



An overview of the Document Object Model

The DOM API is generally an easier API to use.

It provides a relatively familiar tree structure of

objects.

You can use the DOM API to manipulate the

hierarchy of application objects it encapsulates.

The DOM API is ideal for interactive

applications because the entire object model is

present in memory, where it can be accessed and

manipulated by the user.



On the other hand, constructing the DOM

requires reading the entire XML structure and

holding the object tree in memory, so it is much

more CPU and memory intensive.



On the other hand, constructing the DOM

requires reading the entire XML structure and

holding the object tree in memory, so it is much

more CPU and memory intensive.

For that reason, the SAX API will tend to be

preferred for server-side applications and data

filters that do not require an in-memory

representation of the data.



An overview of XML Stylesheet Language

Transformations

The XSLT APIs defined in javax.xml.transform

let you write XML data to a file or convert it

into other forms.



An overview of XML Stylesheet Language

Transformations

The XSLT APIs defined in javax.xml.transform

let you write XML data to a file or convert it

into other forms.

It can be used in conjunction with the SAX APIs

to convert legacy (non-XML) data to XML.



The Simple API for XML (SAX) APIs

To start the process, an instance of the

SAXParserFactory class is used to generate an

instance of the parser.



The Simple API for XML (SAX) APIs

To start the process, an instance of the

SAXParserFactory class is used to generate an

instance of the parser.

The parser wraps a SAXReader object. When the

parser’s parse() method is invoked, the reader

invokes one of several callback methods

implemented in the application.



The Simple API for XML (SAX) APIs

To start the process, an instance of the

SAXParserFactory class is used to generate an

instance of the parser.

The parser wraps a SAXReader object. When the

parser’s parse() method is invoked, the reader

invokes one of several callback methods

implemented in the application.

Those methods are defined by the interfaces

ContentHandler, ErrorHandler, DTDHandler, and

EntityResolver.



The Simple API for XML (SAX) APIs



The Simple API for XML (SAX) APIs



The Simple API for XML (SAX) APIs



The Simple API for XML (SAX) APIs



The Simple API for XML (SAX) APIs



The Simple API for XML (SAX) APIs



The Simple API for XML (SAX) APIs



The Simple API for XML (SAX) APIs



Summary of the key SAX APIs

SAXParserFactory: A SAXParserFactory object

creates an instance of the parser determined

by the system property,

javax.xml.parsers.SAXParserFactory.



Summary of the key SAX APIs

SAXParserFactory: A SAXParserFactory object

creates an instance of the parser determined

by the system property,

javax.xml.parsers.SAXParserFactory.

SAXParser: The SAXParser interface defines

several kinds of parse() methods. In

general, you pass an XML data source and

a DefaultHandler object to the parser, which

processes the XML and invokes the

appropriate methods in the handler object.



SAXReader: The SAXParser wraps a SAXReader.

It is the SAXReader which carries on the

conversation with the SAX event handlers

you define.



SAXReader: The SAXParser wraps a SAXReader.

It is the SAXReader which carries on the

conversation with the SAX event handlers

you define.

DefaultHandler: A DefaultHandler implements

the ContentHandler, ErrorHandler,

DTDHandler, and EntityResolver interfaces

(with null methods), so you can override

only the ones you’re interested in.



ContentHandler: Methods like startDocument,

endDocument, startElement, and endElement

are invoked when an XML tag is recognized.

This interface also defines methods

characters and processingInstruction, which

are invoked when the parser encounters the

text in an XML element or an inline

processing instruction, respectively.



ErrorHandler: Methods error, fatalError, and

warning are invoked in response to various

parsing errors. The default error handler

throws an exception for fatal errors and

ignores other errors (including validation

errors).



ErrorHandler: Methods error, fatalError, and

warning are invoked in response to various

parsing errors. The default error handler

throws an exception for fatal errors and

ignores other errors (including validation

errors).

EntityResolver: The resolveEntitya method is

invoked when the parser must identify data

identified by a URI. In most cases, a URI is

simply a URL.

aEntities are external unparsed character data, not XML.



Using the SAX APIs

A typical application implements most of the

ContentHandler methods, at a minimum.



Using the SAX APIs

A typical application implements most of the

ContentHandler methods, at a minimum.

Since the default implementations of the

interfaces ignore all inputs except for fatal

errors, a robust implementation may want to

implement the ErrorHandler methods, as well.



The SAX Packages

Package Description

org.xml.sax Defines the SAX

interfaces.

org.xml.sax.ext Defines SAX extensions

used e.g., to process a

DTD.

org.xml.sax.helpers Contains helper classes,

e.g., default handlers

with null methods.

javax.xml.parsers Defines the

SAXParserFactory class.



The Document Object Model (DOM) APIs

The javax.xml.parsers.DocumentBuilderFactory

class is used to get a DocumentBuilder instance

which is used to produce a Document (a DOM)

which conforms to the DOM specification.



The Document Object Model (DOM) APIs

The javax.xml.parsers.DocumentBuilderFactory

class is used to get a DocumentBuilder instance

which is used to produce a Document (a DOM)

which conforms to the DOM specification.

The builder which you get is determined by the

javax.xml.parsers.DocumentBuilderFactory system

property.



The Document Object Model (DOM) APIs

The javax.xml.parsers.DocumentBuilderFactory

class is used to get a DocumentBuilder instance

which is used to produce a Document (a DOM)

which conforms to the DOM specification.

The builder which you get is determined by the

javax.xml.parsers.DocumentBuilderFactory system

property.

This selects the factory implementation that is

used to produce the builder.



You can also use the DocumentBuilder

newDocument() method to create an empty

Document that implements the

org.w3c.dom.Document interface.



You can also use the DocumentBuilder

newDocument() method to create an empty

Document that implements the

org.w3c.dom.Document interface.

Alternatively, you can use one of the builder’s

parse methods to create a Document from existing

XML data. The result is a DOM tree.



The Document Object Model (DOM) APIs



The Document Object Model (DOM) APIs



The Document Object Model (DOM) APIs



The Document Object Model (DOM) APIs



The DOM Packages

Package Description

org.w3c.dom Defines the DOM

programming interfaces

for XML.

javax.xml.parsers Defines the

DocumentBuilderFactory

class and the

DocumentBuilder class,

which returns an object

that implements the W3C

Document interface.



The XML Stylesheet Language for

Transformation (XSLT) APIs

A TransformerFactory object is instantiated, and

used to create a Transformer. The source object

is the input to the transformation process. A

source object can be created from a SAX

reader, from a DOM, or from an input stream.



The XML Stylesheet Language for

Transformation (XSLT) APIs

A TransformerFactory object is instantiated, and

used to create a Transformer. The source object

is the input to the transformation process. A

source object can be created from a SAX

reader, from a DOM, or from an input stream.

Similarly, the result object is the result of the

transformation process. That object can be a

SAX event handler, a DOM, or an output

stream.



When the transformer is created, it may be

created from a set of transformation

instructions, in which case the specified

transformations are carried out.



When the transformer is created, it may be

created from a set of transformation

instructions, in which case the specified

transformations are carried out.

If it is created without any specific instructions,

then the transformer object simply copies the

source to the result.



The XML Stylesheet Language for

Transformation (XSLT) APIs



The XML Stylesheet Language for

Transformation (XSLT) APIs



The XSLT Packages

Package Description

javax.xml.transform Defines the

TransformerFactory and

Transformer classes,

which you use to get a

object capable of doing

transformations and

invoke its transform()

method, providing it

with an input (source)

and output (result).



The XSLT Packages (continued)

Package Description

javax.xml.

transform.dom

Classes to create input

(source) and output (result)

objects from a DOM.

javax.xml.

transform.sax

Classes to create input

(source) from a SAX parser

and output (result) objects

from a SAX event handler.



The XSLT Packages (continued)

Package Description

javax.xml.

transform.

stream

Classes to create input

(source) and output (result)

objects from an I/O stream.


