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Abstract

In the 1980s process algebras became widely accepted
formalisms for describing and analysing concurrency. Ex-
tensions of the formalisms, incorporating some aspects of
systems which had previously been abstracted, were devel-
oped for a number of different purposes. In the area of
performance analysis models must quantify both timing and
probability. Addressing this domain led to the formulation
of stochastic process algebras. In this paper we give a brief
overview of stochastic process algebras and the problems
which motivated them, before focussing on their relation-
ship with the underlying mathematical stochastic process.
This is presented in the context of the PEPA formalism.

1 Introduction

The development of stochastic process algebras (SPAs)
was motivated by problems encountered when carrying out
performance analysis of large computer and communication
systems, based on numerical analysis of Markov processes.
Performance analysis seeks to predict the behaviour of a
system with respect to dynamic properties such as the num-
ber of requests that can be satisfied per unit time (through-
put) and response time.

There are a variety of approaches available for the per-
formance evaluation of systems. If the system exists it may
be possible to monitor the system directly. However, in
general, such an approach is time-consuming, difficult and
lacks generality. Therefore it is often preferable to model
the system rather than use such direct experimentation. In-
deed, when the system is yet to be constructed, modelling
is the only option.

Performance models may be analysed by simulation, nu-
merical solution or analytical solution. Simulation models
have the advantage of being insensitive to state space size.
Unfortunately such models are time-consuming to analyse
and bring the intellectual burden of evaluating the trustwor-
thiness of results by the calculation of confidence intervals.

In contrast analytic solution — in which an expression
for the performance measure of interest is derived in terms
of the input parameters of the model — can be extremely ef-
ficient to use. However, constructing such solutions is very
much the domain of the expert and typically each system
requires a bespoke solution.

Numerical solution of a Markov chain offers a com-
promise between these two extremes. Some assumptions
about the system are needed, particularly with respect to
the timing of events. But the resulting models are relatively
straightforward to solve, relying only on simple linear alge-
bra techniques. For moderately sized models the generator
matrix of the Markov chain can be stored as a dense ma-
trix, admitting direct solution methods with good numeri-
cal accuracy. For larger models sparse matrices are needed,
necessitating the use of iterative solution techniques with
some loss of numerical precision. The largest models re-
quire yet more ingenuity in the representation of the matrix
using Kronecker or BDD-based storage.

Markov processes (sometimes termed Continuous Time
Markov Chains (CTMCs)) whilst offering general applica-
bility, are difficult to construct for large systems so an in-
termediate system description language is often used. In
the early nineties the most common of these were queueing
networks [41] and Stochastic Petri Nets (SPN) [46]. Queue-
ing networks, whilst very powerful when applicable, have
limited expressiveness and lack formal interpretation. SPN
models have formal interpretation but do not have the ex-
plicit structure found in queueing networks, which greatly
eases model construction.

Researchers in performance analysis were attracted to
process algebras for a number of reasons.

Compositionality: The ability to construct models in a
compositional manner is a significant benefit when
large complex systems are under consideration. Fur-
thermore, it was already established that for qualitative
properties analysis could also be compositional.

Qualitative analysis: For many systems it is important to
verify both correct functionality and timeliness of re-

Proceedings of the 20th Annual Symposium on Logic in Computer Science (LICS’05) 
0-7695-2266-1/05 $ 20.00 IEEE 



sponse. However, there was an issue of consistency
when different formalisms and different techniques
were being used for modelling for these two objec-
tives. Using an elaborated version of a functional mod-
elling technique meant that the same system descrip-
tion could be used to project models for both purposes.

Wide acceptance: Process algebras were perceived to
have gained some acceptance outside academia in the
form of languages like LOTOS [37]. There was, and
still is, a problem that performance analysis is often ne-
glected until late in the development cycle when prob-
lems become apparent. The impact can be that com-
promises are needed on original performance require-
ments or that substantial and expensive re-designs are
needed.

In this paper we discuss the extent to which these initial
expectations have been met, focusing particularly on com-
positionality. The rest of the paper has the following struc-
ture. In Section 2 we present the principles of stochastic
process algebra and the PEPA language in particular. Issues
of compositionality are discussed in Section 3, focusing on
the interplay between the process algebra and the underly-
ing mathematical model. Integrated analysis and accessibil-
ity are reviewed in Sections 4 and 5 respectively. Finally, in
Section 6 we draw some conclusions.

2 Stochastic Process Algebra

In order to carry out performance analysis of a system,
it is essential to record information about the timing char-
acteristics of the system and the relative probabilities of al-
ternative behaviours. Without this quantified information it
is not possible to derive quantitative measures such as ex-
pected response time or throughput. Hardware details are
generally abstracted and therefore a continuous time rather
than a discrete time model is appropriate for most perfor-
mance studies. Furthermore, the abstraction of data aspects
of the system, and the involvement of human users, make
exact timings unpredictable.

Therefore in order to create a process algebra suitable
for performance modelling the quantification of the model
is achieved using random variables. In the initial calculi a
random variable was associated with each of the actions of
the model, specifying the delay incurred when the action
is performed [27]. Different languages had different target
analysis techniques and consequently chose to specify this
delay differently. For example, early versions of TIPP [21]
used execution traces and allowed general distributions, as
did SPADES [49] which was intended for discrete-event
simulation. PEPA, which was intended as a high-level de-
scription language for Markov processes, was the first SPA

to restrict the duration of activities to be governed by nega-
tive exponential distributions [31].

It is known that the only distribution for state sojourn
times which gives rise to the Markov property is the neg-
ative exponential distribution (which has distribution F =
1− e−λt, meaning that the probability to leave the state be-
fore time t is 1 − e−λt).

Definition 2.1 (Markov process) A stochastic process
X(t), t ∈ [0,∞) with discrete state space S is a Markov
process if and only if, for t0 < t1 < . . . < tn < tn+1, the
joint distribution of (X(t0),X(t1), . . . , X(tn),X(tn+1))
is such that

Pr(X(tn+1) = sin+1 | X(t0) = si0 , . . . X(tn) = sin
)

Pr(X(tn+1) = sin+1 | X(tn) = sin
)

Subsequent versions of TIPP also adopted exponential
delays associated with actions [28], and the language EMPA
generalised this to allow the possibility of instantaneous ac-
tions, whilst still giving rise to a Markov process [6]. Quan-
tification is added to the stochastic π-calculus in the same
manner as PEPA [48].

Later languages separated time and action introduc-
ing distinct forms of prefix to capture the two forms of
evolution. This was done in the Markovian setting in
IMC [25] and in more general stochastic setting in ♠ [16],
IGSMP [11] and Modest [17] where time evolution may be
specified with general distributions. This work was comple-
mented by algebras which sought to investigate the cases in
which general distributions could be incorporated into lan-
guages which maintained the integrated view of delay and
activity such as GSMPA [10] and Clark’s work on a gener-
ally distributed extension of PEPA [13]. In most cases such
languages must rely on simulation for evaluation purposes.

2.1 PEPA

As explained above, PEPA was developed as a high-level
description language for Markov processes. Thus it ex-
tends classical process algebra by associating a negative ex-
ponentially distributed random variable, representing dura-
tion, with every action. There is no explicit probabilistic
choice operator, but an implicit choice is associated with
each choice by the assumption of the race condition. This
leads to a clear relationship between the process algebra
model and a Markov process. Via this underlying stochas-
tic process performance measures can be extracted from the
model.

PEPA models are described as interactions of compo-
nents. Each component can perform a set of actions: an
action a ∈ Act is described by a pair (α, r), where α ∈ A
is the type of the action and r ∈ R

+ is the parameter of
a negative exponential distribution governing its duration.

2
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Whenever a process P can perform an action, an instance of
the probability distribution is sampled: the resulting num-
ber specifies how long it will take to complete the action in
this instance.

A small but powerful set of combinators is used to build
up complex behaviour from simpler behaviour. The combi-
nators are familiar from classical process algebra: prefix(.),
choice(+), parallel composition (cooperation)( ��

L
) and ab-

straction (hiding)(/). Cooperation is in fact a family of com-
binators since its meaning varies according to the contents
of the cooperation set L. We use ‖ to denote the special
case when L = ∅ and processes are concurrent without any
synchronisation.

The syntax may be formally introduced by means of the
following grammar:

S ::= (α, r).S | S + S | CS

P ::= P ��
L

P | P/L | C

where S denotes a sequential component and P denotes a
model component which executes in parallel. C stands for a
constant which denotes either a sequential component or a
model component as introduced by a definition. CS stands
for constants which denote sequential components. The ef-
fect of this syntactic separation between these types of con-
stants is to constrain legal PEPA components to be coopera-
tions of sequential processes. This is a necessary condition
for the associated Markov process to be ergodic (amenable
to steady state analysis). The formal operational semantics
are shown in Figure 1.

3 Compositionality: Interaction and Inde-
pendence

In this section we discuss issues of compositionality
within stochastic process algebras in general, and PEPA in
particular. Firstly, we consider the design choices when de-
signing a process algebra with a stochastic interpretation.
Secondly, we consider the extent to which the composition-
ality inherent in the model description can be exploited in
the analysis of the underlying stochastic model.

3.1 Designing the language

The selection of a negative exponential distribution as the
governing distribution for the action durations in PEPA and
other SPA has profound consequences. In terms of the un-
derlying stochastic process, it is the only choice which gives
rise to a Markov process. In terms of the process algebra it
is the only choice which preserves the well-known expan-
sion law which underlies the interleaving semantics. In both
cases this is due to the memoryless property of the exponen-
tial distribution: the time until the next event is independent

of the time since the last event—the exponential distribu-
tion “forgets” how long it has already waited. Thus if we
consider a process (α, r).Stop ‖ (β, s).Stop, from the se-
mantics we derive:

�

�

�

�

Stop ‖ (β, s).Stop (α, r).Stop ‖ Stop

Stop ‖ Stop

(α, r).Stop ‖ (β, s).Stop

(β, s)

(α, r) (β, s)

(α, r)

In a generally timed (or even deterministically timed)
scenario it would be important to record the elapsed time
in the intermediate states in order to know the residual time
of the remaining activity. For example, the time needed to
complete β in Stop ‖ (β, s).Stop should reflect the time
already taken to complete activity α. However the mem-
oryless property of the exponential distribution tells us that
the distribution of the residual time in β is the same as it was
initially in state (α, r).Stop ‖ (β, s).Stop before any time
had elapsed. Thus we retain the expansion law of classical
process algebra:

(α, r).Stop ‖ (β, s).Stop =
(α, r).(β, s).(Stop ‖ Stop)+(β, s).(α, r).(Stop ‖ Stop)

Later formalisms which incorporated general distri-
butions either avoided the issue of residual durations
by separating actions and delays (e.g. Modest [17] and
IGSMP [11]), or used a finer-grained semantics such as ST-
semantics to distinguish the start and stop of each action
(e.g. GSMPA [10]).

3.1.1 Cooperation

Communication or parallel composition is the essence of
compositionality in process algebras. It gives structure to
models, indicating which actions may be undertaken con-
currently, and which cannot.

The choice was made to adopt the multiway synchro-
nisation using shared names (as in CSP) rather than com-
plementary actions (as in CCS). This means that compo-
nents or agents jointly perform actions of the same type,
when the parallel composition dictates it. The motivation
was to represent something more general than communi-
cation. In performance models interaction often captures
resource usage and the objective of the model is to study
the constraints imposed on components by competition over
resources. In this context the multiway synchronisation

3
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Prefix

(α, r).E
(α,r)
−−−→ E

Choice

E
(α,r)
−−−→ E′

E + F
(α,r)
−−−→ E′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′

Cooperation

E
(α,r)
−−−→ E′

E ��
L

F
(α,r)
−−−→ E′ ��

L
F

(α /∈ L)

F
(α,r)
−−−→ F ′

E ��
L

F
(α,r)
−−−→ E ��

L
F ′

(α /∈ L)

E
(α,r1)−−−→ E′ F

(α,r2)−−−→ F ′

E ��
L

F
(α,R)
−−−→ E′ ��

L
F ′

(α ∈ L)

where R =
r1

rα(E)
r2

rα(F )
min(rα(E), rα(F ))

Hiding

E
(α,r)
−−−→ E′

E/L
(α,r)
−−−→ E′/L

(α /∈ L)

E
(α,r)
−−−→ E′

E/L
(τ,r)
−−−→ E′/L

(α ∈ L)

Constant

E
(α,r)−→ E′

A
(α,r)−→ E′

(A def= E)

Figure 1: PEPA Structured Operational Semantics

offered more generality. However this choice was inde-
pendent of the quantification of action durations, as wit-
nessed by the adoption of CCS-style synchronisation in the
stochastic π-calculus which generates a Markov process in
the same way as PEPA [48].

Nevertheless the quantification of action duration did
pose a challenge for the definition of cooperation. Actions
which are to be performed jointly may each have been as-
signed rates (durations) in their respective components. The
best way to resolve what should be the rate of the shared ac-
tion has been a topic of some debate. The differing solutions
adopted have become the main distinguishing feature of the
various SPA formalisms.

The first observation is that if we view the joint action
as a “synchronisation” as in the sense of barrier synchro-
nisation in parallel programming then the correct duration
would be the maximum of the durations, i.e. the maximum
of the random variables. The unfortunate problem is that the
maximum of two or more exponentially distributed random
variables is not exponentially distributed.

In PEPA it is assumed that each component has bounded
capacity to carry out activities of any particular type, deter-
mined by the apparent rate. For a component P and ac-
tion type α, the apparent rate of α in P , denoted rα(P ), is
the sum of the rates of each α action enabled in P . This
corresponds to the rate at which P appears to an external
observer to carry out an α action, due to the superposition
principle of the negative exponential distribution. The def-
inition of cooperation in PEPA is based on the assumption
that a component cannot be made to exceed its bounded ca-
pacity, meaning that the apparent rate of the shared action
will be the minimum of the apparent rates of the compo-
nents involved.

In TIPP the “rate” is assumed to represent work capacity
in one partner of the synchronisation and work demand in
the other. The rate of the shared action is then taken to
be the product of the two component rates. In contrast, in
EMPA it is assumed that in any synchronisation exactly one
participant has an explicit representation for the rate of the
activity, all other participants being passive with respect to
this activity, prepared to proceed at the rate of the active
participant. The formalisms which separate action and time
evolution avoid this issue by only allowing synchronisation
on untimed actions. The issue of timed synchronisation is
discussed in [29] and in detail in Bradley’s thesis [9].

3.1.2 Semantics and equivalence relations

The semantic rules of PEPA generate a labelled transition
system, just as in the case of classical process algebra. How-
ever there are some significant differences introduced by the
inclusion of quantified information. In particular it is impor-
tant to note that the semantics gives rise to a multi-transition
system i.e. it is not sufficient to record the existence of a
transition or arc between two nodes. The multiplicity of the
transition is important. This is because the apparent rate of
a term which has two copies of the same arc, generated by
two instances of the same action, will differ from that of a
term with only one instance. Thus the idempotence with
respect to choice is lost, i.e. P �= P + P .

Once a derivation graph has been generated for a par-
ticular model this forms the basis of the Markov process
on which performance analysis will be carried out. A state
of the Markov process is associated with each node of the
graph, and the transition rate between states is simply the
sum of the rates of actions labelling arcs between the cor-
responding nodes. The information about action types is
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lost in the Markov process. It is established in [31] that this
generates a unique Markov process.

At the time at which stochastic process algebras emerged
little attention had been paid to equivalence relations for
Markov processes, although there was some work dating
back to the 1960s looking at partitions of Markov processes.
Driven by the problem of state space explosion, there had
been keen interest in the prospect of aggregating Markov
processes: essentially this amounts to taking a coarser view
of the state space, grouping states into clusters or lumps, and
redefining the dynamics of the system at this level. Unfor-
tunately, if this is done in an arbitrary way the resulting pro-
cess does not retain the Markov property. In 1960 Kemeny
and Snell [40] established that if the partition of the state
space has a property called lumpability then the resulting
aggregated system maintains the Markov property. A con-
sequence of this is that the aggregated system can be solved
to yield exact results with respect to the original Markov
process.

Definition 3.1 (Kemeny and Snell [40]) χ is a strongly
lumpable partition of Markov process X(t) with state space
S = {s0, . . . , sN} if for any X[l],X[k] ∈ χ, si, sj ∈ X[k]

q(si,X[l]) = q(sj ,X[l])

where q(s,X) denotes the aggregated transition rate from
state s to partition X .

PEPA has been equipped with a number of equivalence
relations which have been shown to be useful for a variety of
purposes [31]. The most significant is strong equivalence,
sometimes termed Markovian bisimulation. Just as with the
bisimulation for classical process algebra, the central notion
here is that each of a pair of components should be able to
mimic the behaviour of the other from the perspective of an
external observer. This observer is now assumed to have
the ability to time the behaviour over many repetitions and
thus deduce information about the apparent rates of actions.
This means that for components to be strongly equivalent
they must have the same apparent rate for all action types.

Definition 3.2 (Strong equivalence) An equivalence rela-
tion R ⊆ C × C is a strong equivalence if whenever
(P,Q) ∈ R then for all α ∈ A and for all [C] ∈ C/R

q(P, [C], α) = q(Q, [C], α)

where q(P, [C], α) is the total conditional transition rate,
i.e. the total rate of transition from the state P to the equiv-
alence class of states [C] via α type activities.

Consider the two components P and Q, shown below:

�

�

�

�
�

�

�

�

�

P
(α, r)

(γ, t)

(β, s)

(δ, u)

Q

(δ, u)(γ, t)

(β, s)

(α, r)

(α, r)

Disregarding the activity rates they are equivalent with
respect to traces but distinguished by bisimulation because
when Q has performed an α action it cannot offer the choice
of β and γ in the manner of P . In the Markovian setting we
can immediately deduce they are not bisimilar because the
apparent rates with respect to α in the initial states are not
the same. P has apparent rate r for α while Q has apparent
rate 2r. Note that this is a bisimulation in the same style
as the bisimulation defined by Larsen and Skou for a prob-
abilistic variant of CCS [44].

An important property of strong equivalence in PEPA
is that it induces a lumpable partition on the underlying
Markov process. Thus when the PEPA process is consid-
ered only up to bisimulation and a state in the stochastic
process is associated with each equivalence class of states
rather than with individual states, the resulting stochastic
process still has the Markov property. This forms the basis
of an exact model reduction technique, termed aggregation.
Moreover, due to the congruence property of strong equiv-
alence the reduction technique can be applied composition-
ally within a model [30].

3.2 Independence

In common with most state-based modelling techniques,
SPA models suffer from problems of state space explosion
— in many instances the matrix characterising the under-
lying Markov process, and the corresponding steady state
probability vector, are simply too large to be readily stored
on standard computing equipment. A variety of approaches
to this problem for numerical solution of Markov processes
have appeared in the literature, including using disk-based
storage [18], Kronecker and BDD-based representation of
these entities [33, 26] and decomposed solutions of various
forms [32].

Much work on PEPA has studied the extent to which the
compositional structure in the process algebra description
can be exploited in the solution of the underlying Markov
process, i.e. if the Markov processes corresponding to the
components can be solved separately and their solutions
combined to obtain a solution of the whole Markov process.
This work is discussed in this subsection.

3.2.1 Product form models

One class of Markov processes which are susceptible to an
efficient solution technique are those which exhibit a prod-
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uct form equilibrium distribution. Consider a Markov pro-
cess X(t), whose state space S is of the form S ⊆ S1 ×S2,
i.e. each state s = s1 × s2 contains two pieces of informa-
tion capturing different aspects of the current state. In gen-
eral, these aspects may be dependent in many ways. When
the process X(t) exhibits a product form solution (i.e. the
steady state probability of an arbitrary state s, π(s), can be
expressed as π1(s1) × π2(s2)) it indicates that these dif-
ferent aspects of the state description are independent with
respect to steady state.

Product form distributions have been widely used in the
analysis of queueing networks and, due to their efficient so-
lution, have contributed to the popularity of queueing net-
works in performance analysis. For example, Jackson net-
works [38] and their generalisation BCMP-networks [5],
have been widely employed. In these cases the underly-
ing Markov process is known to have a reversible or quasi-
reversible structure.

Work on finding PEPA models which give rise to product
form solutions has drawn on the previous work on queueing
networks. Essentially this can be seen as an investigation
of when components interact and yet remain statistically
independent at steady state. It is clear that when a PEPA
model consists of completely independent components, i.e.
P ‖ Q, the steady state distribution will have product form:

π(P ‖ Q) = πP (P ) × πQ(Q)

where πP and πQ are the steady state distributions over the
local states of P and Q respectively. However, few real
systems consist of components which are independent in
this way. The challenge has been to find circumstances in
which interacting components P and Q exhibit statistical
independence. A number of classes of such models have
been identified and these fall broadly into two families. In
the first family we introduce a limited form of direct inter-
action between components (reversible and quasi-reversible
models). Here the activities on which components cooper-
ate and the role that these activities play within the compo-
nents may be restricted. In the second family there is no
direct interaction between components, but they indirectly
interact via contention for another component (Boucherie
resource contention and queueing discipline models). We
discuss the essence of each class and the resulting product
form in the following paragraphs.

Reversible models Informally, a reversible Markov pro-
cess is one which behaves identically when we observe it
with time reversed as when we observe it with time flowing
forward. More formally, an irreducible, stationary Markov
process X(t) is reversible if it satisfies the detailed balance
equations:

π(j)q(j, k) = π(k)q(k, j) (3.1)

where q(j, k) is the instantaneous transition rate from state j
to state k and π(·) is the steady state probability distribution.

An initial study of the structure of the state space of SPA
models giving rise to reversible Markov processes was pre-
sented by Bhabuta et al. in [7]. In [34], Hillston and Thomas
identified syntactic conditions which a PEPA model must
satisfy in order for the underlying process to be reversible.
The problem is tackled in two stages. First, a basic class of
sequential components which give rise to reversible struc-
tures are identified. Then, assuming that a known class of
reversible PEPA components exist, the authors investigate
under what circumstances the conditions for reversibility
will be preserved if reversible components are composed
using the combinators of the PEPA language.

Fundamental to the basic class of reversible sequential
components is the notion of a reverse pair. A pair of ac-
tion types (α,−α) form a reverse pair if, in any state, any
α transition leads to a state in which a −α transition leads
back to the original state. This ability to “undo” any tran-
sition in the subsequent transition seems to be fundamental
to reversibility. It is clear that this is a necessary condition
for equation 3.1 to be satisfied.

Quasi-reversible models Like reversibility, quasi-
reversibility originates in queueing theory. Formally, a
stationary Markov process X(t) is quasi-reversible if, for
all times t0 the state X(t0) is independent of

1. the input process after t0 and

2. the output process before t0.

Rather than the detailed balance equations which charac-
terised reversibility, a quasi-reversible process satisfies par-
tial balance equations:

π(i)
∑
j∈S′

q(i, j) =
∑
j∈S′

π(j)q(j, i) (3.2)

for all states i and a corresponding subset of states S′. More
details of the definition of quasi-reversibility can be found
in [39].

In [23], a PEPA characterisation of this class is pre-
sented. As in the work on reversibility, the approach is to
first find simple instances of PEPA processes which give
rise to quasi-reversible structure in their associated Markov
processes. Then, conditions are established under which
these components can be composed whilst maintaining the
quasi-reversible property. Again the notion of a reverse pair
is important and strong restrictions are placed on the inter-
actions between components: each must be a flow coopera-
tion. This means that the “positive” half of a reverse pair in
one component is carried out in cooperation with the “neg-
ative” half of a reverse pair in another.

6
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Boucherie resource contention models Other classes of
models have been considered in which the interaction be-
tween components is indirect i.e. the components them-
selves are composed in parallel (without cooperation) in
the model definition, but they compete over cooperation
with a third component. Boucherie characterised a class of
Markov processes which fit into this framework. In his def-
inition, otherwise independent Markov processes compete
for exclusive access to shared resources, causing blocking
while a resource is held [8].

In [35] Hillston and Thomas characterise this class of
Markov processes in PEPA. As in the underlying Markov
models, the PEPA models consist of non-interacting com-
ponents which give rise to the constituent processes of the
Markov process. These components compete, via synchro-
nisation with resource components. A PEPA component is
termed a resource if it is never free to act independently.
The general form of these process algebra terms and the re-
sulting product form is, schematically:

π
(
(P ‖ Q) ��

L
R

)
= B × πP (P ��

L
R) × πQ(Q ��

L
R)

where the component R represents the resource, πP and
πQ are the steady state distributions over the derivatives of
P ��

L
R and Q ��

L
R respectively, and B is the normalis-

ing constant. The decomposition is formed by considering
each of the model terms (P and Q in this case) acting in
cooperation with the resource (R) in isolation. Although
presented here informally, these conditions are defined as
formal syntactical conditions which can be checked on the
model specification.

Queueing discipline models In his PhD thesis [13], Clark
defined a new combinator QA,ξ for PEPA which forces se-
quential components within its scope to observe first-come-
first-served (FCFS) discipline with respect to action types
within the set A. Moreover the rates of activities of those
types are no longer controlled by the individual components
but by the vector ξ. This is a derived combinator, mean-
ing that any expression involving the combinator can be re-
expressed using the existing PEPA combinators. In particu-
lar for a set of components, S1, . . . , Sn,

QA,ξ(S1, . . . , Sn) ≡ (S1 ‖ · · · ‖ Sn) ��
Mξ

Rξ

for suitably chosen Mξ and Rξ.
This class of models is shown to be insensitive and there-

fore to have a product form solution so that the steady state
probability of the complete model can be written as an ex-
pression involving the steady state probabilities of the indi-
vidual models solved in isolation. In [15] it is established
that this class of models is related to BCMP queueing net-
works, capturing infinite server and FCFS stations from the
user’s perspective.

Unlike the other classes which have been discussed
above, characterisation does not necessitate the definition
of syntactic rules which may be used to check whether any
model instance belongs to the class of not. Instead the use
of the derived combinator means that models can be con-
structed with a guaranteed product form solution.

The advantage of characterising these classes of mod-
els in terms of PEPA is that by “lifting” the definition from
the stochastic process level to a formally defined high-level
modelling paradigm we can facilitate the automatic detec-
tion of these structures when they occur, thus avoiding the
construction of the original Markov process.

Recent work on product form PEPA models has taken
a slightly different form. In Harrison’s work on the Re-
versed Compound Agent Theorem (RCAT) the process al-
gebra has been used to establish a framework in which
the relationships between different classes of product form
Markov processes can be compared [22]. Within this frame-
work Harrison has been able to demonstrate that the product
forms which arise in Jackson networks [38] and G-networks
[20] are based on the same fundamental mechanisms: this
becomes apparent when they are represented in PEPA.

4 Enhanced qualitative evaluation

It quickly became apparent that SPA offered an excel-
lent framework in which both qualitative and quantitative
aspects of a system could be captured. However it also be-
came apparent that while the use of logics and other formal
tools for querying the functional behaviour of process al-
gebra models was well-developed there was no equivalent
formal apparatus for performance analysis. When a Markov
process is analysed, either for steady state or transient be-
haviour, the result is a probability distribution over the en-
tire state space. This is rarely, if ever, the final objective of
modelling. Yet little attention had been given to develop-
ing formal techniques and tools for querying performance
models. The advent of SPA provided some of the impetus
for such work to begin.

At the most basic level the modeller wishes to construct
a reward structure over the state space of the Markov pro-
cess, to be used in conjunction with the probability distri-
bution vector to derive performance measures. For steady
state measures the reward structure is itself a vector record-
ing a “reward” for each state, although for many states the
reward value will be zero. Thus the problem becomes one of
identifying the appropriate set of states to attach a non-zero
reward to. Clearly, when the Markov process arises from a
SPA model we prefer to characterise the states of interest at
the process algebra level.
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Within the context of PEPA Clark et al. developed a
stochastic logic, PMLµ, for this purpose [14]. Inspired by
the probabilistic modal logic of Larsen and Skou, PML [44],
PMLµ is able to differentiate PEPA terms which perform
the same activities but at different rates. The key to this is
a modification to Hennessy-Milner logic in which the dia-
mond operator becomes decorated with a rate. The seman-
tics of an expression in the logic is a subset of states, and
thus logical expressions may be used, in conjunction with a
value, to specify a reward structure.

In an alternative approach Argent-Katwala et al. have re-
cently developed stochastic probes to express soft perfor-
mance bounds [2]. These probes are mapped into PEPA
terms and then considered in cooperation with the original
PEPA model in order to extract particular performance mea-
sures in both steady state and transient behaviour.

Both PMLµ and stochastic probes seek to provide a for-
mal framework for the calculation or derivation of perfor-
mance measures. A more standard model checking ap-
proach is represented by the work on Continuous Stochastic
Logic (CSL) [3]. Introduced by Aziz et al. in 1996 CSL is
a modal logic which may be used to express temporal prop-
erties over continuous time Markov chains (Markov pro-
cesses). Influenced by performance analysis, it was later
extended by Baier et al. to incorporate a steady state oper-
ator [4]. Performance properties as well as integrated qual-
itative and quantitative measures (performability measures)
are readily expressed in CSL [24]. However the approach
is the usual model-checking one — a formula is checked
against a model and returns true or false1 There is no sup-
port for deriving the actual measure indicated by the model.

PEPA models have access to CSL model checking
through the PRISM tool [43]. PRISM is a probabilis-
tic model checker developed by Kwiatkowska’s group at
the University of Birmingham. It supports discrete time
Markov chains and Markov decision processes as well as
Markov processes. The standard input to PRISM is a model
described in a simple reactive modules language. PEPA
was integrated into the tool via a compiler which translates
PEPA models into this language.

5 Accessibility

One of the beliefs of the originators of stochastic process
algebras was that the formalisms would make performance
evaluation accessible to a wider audience. Whilst this has
perhaps been the case within academia, with other aca-
demics undertaking performance analysis which they might
not have otherwise undertaken (e.g. [19, 36]) it is not true
more generally. The expectation was perhaps somewhat

1N.B. Counter-examples are not given in the case of a false judgement
due to the quantified nature of the formulae c.f. [42].

naı̈ve. For although it is true that languages such as LO-
TOS have been adopted within an industrial context it is
nevertheless within a highly specialised one.

In order to really increase the accessibility of perfor-
mance analysis techniques amongst the software engineer-
ing community we have to be realistic about the formalisms
software designers are prepared to use. In the CEC-funded
DEGAS project2 we have sought to take advantage of
the popularity of the Unified Modelling Language (UML).
Within the project we have developed a framework in which
suitably annotated UML models may be used to assess per-
formance and security properties of software designs, via
process algebra models [1]. PEPA is used for performance
analysis whilst LySa, a variant of the Spi calculus, is used
for security analysis [45].

Formal mappings from UML diagrams to process alge-
bra models have been developed and implemented. The key
functionality is provided by a pair of software modules, the
extractor and the reflector [12]. For performance analysis
these form a bridge between the UML modelling environ-
ment and the PEPA tools. Annotations are added to the
UML model according to a pre-determined stereotype. The
UML is then saved in the usual way in XMI format. The
extractor produces a corresponding PEPA format which can
be loaded into the PEPA Workbench. This allows a steady
state probability distribution corresponding to the states of
the PEPA model to be derived. However this is still inac-
cessible to the UML modeller — it is essential that results
are reported in terms which make sense to the software de-
signer, i.e. in terms of the original UML model. This func-
tionality is provided by the reflector module which aggre-
gates the steady state probability distribution data to pro-
duce suitable annotations to the UML model.

This scheme is not specific to UML models. For exam-
ple, an extractor has recently been developed for models
developed in BPEL4WS, a web service composition lan-
guage [47].

6 Conclusions

Stochastic process algebra has gained acceptance as one
of the suite of techniques available for performance mod-
elling. Moreover, these formalisms have opened a door
between theoretical computer science and the performance
community, creating new opportunities for interaction and
new directions for research.

The extent to which SPAs have been able to address
the problems which originally motivated them is varied.
Perhaps the most success has been gained in the area of
integrated qualitative and quantitative evaluation of sys-
tems. The issue of accessibility is now being tackled, albeit

2Design Environments for Global ApplicationS project IST-2001-
32072 funded by the FET Proactive Initiative on Global Computing
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through the intermediary of the UML. Decomposed solu-
tion of Markov processes remains a difficult topic but con-
sidering it from the process algebra perspective is providing
new insight as well as practical techniques.

Meanwhile the formalisms are attracting new users from
wider domains of application. Both the stochastic π-
calculus and PEPA have recently been used for modelling
and evaluating biochemical signalling pathways. These new
domains bring new challenges for both expression and eval-
uation.
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