
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Software performance design environments

Stephen Gilmore
Laboratory for Foundations of Computer Science

The University of Edinburgh, Scotland

Joint work with Catherine Canevet, Jane Hillston and Perdita Stevens

1

Structure of this talk

• Modelling with UML and PEPA

• UML state diagrams

• Describing performance measures in UML

• Software architecture

• An example: extracting, solving, reflecting

• Related work

• Conclusions

2

Introduction

• The Unified Modelling Language (UML) is an effective and popular notation
which is used to capture high-level designs for software systems.

• One aspect of software system design which is not typically captured in a UML
document is a record of the likely (or desired) rate of performance of the major
activities of the system.

• When this information is not included in the initial UML description of a system
it increases the likelihood that the performance of the software system being
developed will not be considered until very late in the software development
process.

3

Motivation

• Our motivation for working with UML in the performance modelling process is
to introduce the benefits of performance analysis without the complexities and
conceptual challenges which are normally associated with formal description
techniques such as process algebras.

• The UML modeller can compose models and solve these for performance
results without needing to understand the PEPA language, its formal definition
or even how their model is represented in PEPA.

4

Aims

• We aim to achieve two goals in this work:

1. to show how UML models enhanced with performance information can be
mapped into PEPA; and

2. to show how the results of the performance analysis of the PEPA models
which are produced by this process can be presented to the UML modeller
in the terms of their UML model.

• We concentrate primarily on one type of UML diagram here: state diagrams.

5

State diagrams in ArgoUML

6

Problems in specifying performance measures

• Performance measures can be described by building a reward structure on the
model.

– However, associating locations in the equilibrium probability distribution
with syntactic states of the model exposes details of the representation such
as orderings of components in the PEPA system description.

– This would present the UML modeller with much of the difficulty of working
directly with Markov Chains.

• Higher-level description languages for specifying performance measures exist,
such as PMLµ and CSL, but these notations would be formidable for a typical
UML developer to use.

7

Specifying performance measures simply

• For this reason we aggregate the state space of the system over the local
states of each component. This has two beneficial effects:

1. it avoids the need for any descriptions of state-space representations, whether
high-level or low-level; and

2. instead of working with a large set of very small numbers the modeller works
with a small set of numbers which are orders of magnitude larger.

• We can express more complex performance measures by defining UML
components which expose the configurations of interest in the model.
Behaviourally, such components may be redundant, but they are necessary
for expressing performance measures.

8

Example

• A component such as the following might be redundant in the model considered
as a whole but utilisation can be directly read from the model solution as the
percentage of time that the component spends in the Busy state.

/∗ An idle resource can be acquired ∗/
Idle

def= (acquire,>).Busy

/∗ A busy resource can be released ∗/
Busy

def= (release,>).Idle

• We present this example in PEPA notation here but the modeller working with
our method would describe this using the equivalent UML state diagram.

9

Software architecture

.xmi

.xmi

.pepa

.xml

Extractor

Reflector

Argo PEPA
Workbench

UML

10

The PEPA Workbench

• The PEPA stochastic process algebra is supported by a range of tools including
the PEPA Workbench, the Möbius Modeling Framework and the PRISM
probabilistic symbolic model checker.

• We adapted the Java edition of the PEPA Workbench to interoperate with
our Extractor and Reflector tools. The PEPA Workbench processes an input
PEPA model which the Extractor generates from an input UML model in XMI
format. It writes its results as an XML document which is processed by the
Reflector tool.

• It would be impractical to use the PEPA Workbench user interface together
with ArgoUML so we added a command-line interface to the PEPA Workbench,
allowing it to be invoked from a script.

11

Extractor

• The Extractor takes as its parameter the original XMI file generated when
saving a UML model with ArgoUML and returns an equivalent PEPA input.
We use the Minidom XML parser to parse the XMI file. Once we have the
XMI as a DOM object, we can access individual tags by name.

• When processing the XMI file we look for all the elements that we will need
to provide in the PEPA model which we produce as output (statemachine,
context, transition, collaboration, base, . . .).

– We print for each state machine a defining PEPA expression of the following
form: #source=(workload,rate).target+... For each state, if it is a
source, we find its transitions with the correct workload, rate and target.

– Finally we print the collaboration line (e.g. P1 <a,b> P3).

12

Reflector

• The Reflector takes as its parameter the original XMI file and the XML file
that contains all the results from the PEPA Workbench. It returns a modified
XMI file, which when loaded in ArgoUML will show the modified model.

• We use Minidom to parse the original XMI file and also to build the
modified XMI file by creating the branches and leaves of the document.
The xml.dom.minidom module supports a very simple interface for adding
new XML tags and data to an XML document.

• We modify our original XMI file using the results from the PEPA Workbench
where for each statemachine, for each state, we add the corresponding
probability.

13

A simple example (before)

14

A simple example (extracting)

%r = 2.0;
%s = 2.0;
%t = 2.0;

#P4 = (c,r).P5 + (b,t).P3;
#P5 = (b,s).P3;
#P3 = (a,infty).P4;
#P1 = (a,r).P2;
#P2 = (b,s).P1;

P1 < a,b > P3

15

A simple example (solving)

%r = 2.0;
%s = 2.0;
%t = 2.0;

#P4 = (c,r).P5 + (b,t).P3;
#P5 = (b,s).P3;
#P3 = (a,infty).P4;
#P1 = (a,r).P2;
#P2 = (b,s).P1;

P1 < a,b > P3

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE PEPA Workbench Results SYSTEM "PepaResults.dtd">
<PEPA Workbench Results>

<Component Name="0">
<State Name="P1">
<Probability>0.5</Probability>

</State>
<State Name="P2">
<Probability>0.5</Probability>

</State>
</Component>
<Component Name="1">

<State Name="P5">
<Probability>0.25</Probability>

</State>
<State Name="P3">
<Probability>0.5</Probability>

</State>
<State Name="P4">
<Probability>0.25</Probability>

</State>
</Component>

</PEPA Workbench Results>

16

A simple example (reflecting)
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE PEPA Workbench Results SYSTEM "PepaResults.dtd">
<PEPA Workbench Results>
<Component Name="0">

<State Name="P1">
<Probability>0.5</Probability>

</State>
<State Name="P2">
<Probability>0.5</Probability>

</State>
</Component>
<Component Name="1">
<State Name="P5">
<Probability>0.25</Probability>

</State>
<State Name="P3">
<Probability>0.5</Probability>

</State>
<State Name="P4">
<Probability>0.25</Probability>

</State>
</Component>

</PEPA Workbench Results>

17

A simple example (after)

18

Related work

• Pooley previously discussed generating PEPA models from a combination of
sequence diagrams, collaboration diagrams, and a combined collaboration/state
diagram.

• Mitton and Holton undertake an alternative mapping between PEPA and UML
statecharts.

• Thomas, Munro, King and Pooley combine PEPA models with graphical
notations for visualising derivation graphs, component interfaces and other
aspects of the system under study.

• Petriu and Shen which maps UML models via XMI into layered queueing
network (LQN) performance models.

19

Conclusions

• We have presented a method of deriving performance information from UML
models.

• The method is supported by a tool set which comprises some existing modelling
tools (ArgoUML and the PEPA Workbench) and other translators which we
have written to connect them (the Extractor and the Reflector).

• The translators which interconnect the applications are general-purpose and
can be adapted to work with other modelling tools.

• We have applied our approach to a range of small examples. We plan to
investigate its usefulness when applied to larger examples.

20

Acknowledgements
This work has been supported by the DEGAS (Design Environments for Global
ApplicationS) project IST-2001-32072 funded by the FET Proactive Initiative on
Global Computing.

