From SAN to PEPA:
a Technology Transfer

H
Leila Kloul & Jane Hillston

LFCS

University of Edinburgh

Outline

1. Introduction
2. SAN Formalism

3. PEPA Formalism

4. Functional Dependencies

- Modelling Flexibility
- Model Size Reduction

- Tensor Representation

- Vector-Matrix Product

5. Conclusions

1. Introduction '

Traditional performance models

e Synchronisation constraints

e System size constraint

— Complex models
— Exponential growth of the number of states

New formalisms

e Stochastic Petri Nets (SPN)
e Stochastic Automata Networks (SAN)
e Stochastic Process Algebra (SPA)

1. Introduction '

State space explosion problem

e A compact representation of the generator matrix

— to avoid the generation of the complete matrix (SAN, SPN)

e An aggregation or decomposition technique
— to reduce the model size (SPN, PEPA)

Objective
e The functional dependencies in PEPA models

e The compact representation of the generator matrix in PEPA

2. SAN Formalism.

e A Stochastic Automata Network (SAN) is a set of N finite

state automata and s synchronization events.

An automaton consists of
— states,

— local transitions: fixed or network-dependent rates (F3),

— synchronized transitions (S;).

e The whole SAN is associated to a multidimensionnal

continuous (discrete) time Markov chain.

Q= @FJFZ@(@SM éé))

ece 1—=1

2. SAN Formalism'

Example 1:

2. SAN Formalism'

e Automata Interaction by synchronizations

OEmoN;

S S S|
SHONBONBONRO
My K Mq

where S7 rate is \1.

2. SAN Formalism'

e Automata Interaction by function

0 otherwise

3. PEPA Formalism'

System = set of components which interact between them.

They engage, either singly or multiply, in activities.

e An activity a is caracterised by:

— an action type: a € A

— a duration which is a r.v. exponentially distribued: 1/r

e The set of activities is defined as Act C A x RT where

Rt ={rlr>0;r e RYU{T}

3. PEPA Formalism'

e Interaction in PEPA by cooperation

Buffer,
Buffer,
Buffers
Buffers

Arrival,,,

Arrival off

System

in, T).Buffer,
in, T).Buffery + (service, u). Buffer,
in, T).Buffers + (service, u). Buffer,

(
(
(
(

service, u). Buffer,

(in, A). Arrivaly, + (off, V).Arrivaloﬁ

(on,n).Arrivaly,

Buffer, {?ﬂ} Arrival,,,

4. Functional Dependencies'

¢ One component

- the rate value depends on the component state
=> the rate is a positive number and can never be zero

e Several components

- an activity to be performed by a component depends on the

current state of one or more other components

- the rate value depends on the components current state

=> the rate is a positive number and can be zero

The set of activities Act is now defined as Act C A x R* where

R ={rlr>0;re RIU{T}

4.1. Modelling Flexibility'

e Component interaction by cooperation

Buffer,
Buffer,
Buffer,
Buffers

Arrival,,,

Arrival off

System

in, T).Buffer,

(i
(in, T).Buffers + (service, u). Buffer,
(in, T).Buffers + (service, u). Buffer,
(

service, |t). Buffer,

(in, \). Arrival,, + (off, V).Arrivaloﬁ

(on,n).Arrivaly,

Buffer, {|_>4} Arrival,,

4.1. Modelling Flexibility'

e Component interaction by functions

Buffer, (in, A X f).Buffer,

Buffer, (in, A X f).Buffery + (service, u). Buffer,
Buffer, (

Buffer, (

in, A X f).Buffer; + (service, u). Buffer;

service, u). Buffer,

Arrivalop, (off, V).Arrivalojjc

Arm’valoﬁ (on,n).Arrivalon

1 if 2 =o0on
where f(i) =
0 otherwise

System = Buffer, || Arrivaly,

4.2. Model Size Reduction'

Example 2: The resource sharing system
- N processors
- M resources with M < N

- Different rates: \;, y;, 1 <71 < N

e PEPA Model without functions

— Components Processoréi), 1< <N

— Component Number R,

4.2. Model Size Reduction'

i) def
Processor(()) (use;, A\;).Processor

(2)
1

(2)
1

(4)
Processor (free;, wi).Processor

NumberR (use;, T).NumberR,

1=1

N
NumberR; (use;, T).NumberRa + Z (free;, T).NumberRy

1=1 1=1

NumberR (free;, T).NumberRps—1

=1

D

System = (Processaré . ||P7“OC€SSOT(()N)) > NumberRy

where K = {use1,...,usen, freei, ..., freen}

4.2. Model Size Reduction'

e PEPA Model with functions

Pfr’ocessor(gi) = (usei, A\j X f(x1,...,xN)).Processor
gi) & (freei,m).Pmcessor(()i)

(2)
1

Processor

1 if Z;.Vzlazj<M z; € {0,1}

0 otherwise

where f(z1,...,xN) =

(V)

System = P'rocessorél)ﬂ ... ||Processory

4.2. Model Size Reduction'

e PEPA Model without functions
— N + 1 components

— 2N(M + 1) states

e PEPA Model with functions

— N components

— 2N states

4.3. Tensor Representation'

Global Generator Matrix

N N N
Q=P R+ Y . (®Pz-,a—®m,a)
1=1 1=1 1=1

acZ

where

e R, is the transition matrix of component C; relating solely to
its individual activities.

P; o is the probability transition matrix of component C; due

to activity of type a. Its elements’ values are between 0 and 1.

P; o 1s a matrix representing the normalization associated with

the shared activity a in component C;.

ro is the minimum of the functional rates of action type a over
all components C;, 1 =1...N.

4.4. The Vector-Matrix Product'

e Global Generator Matrix

2Z+N N

Q=Y Q.

k=1 1=1

e Markov Chain Solution

2|1 Z|+N

- Y @

k=1 1=1

where

- x is a vector of length IT¥ , T;

- T; is the size of component C}

4.4. The Vector-Matrix Product'

e If the matrices contain only constant values
N

Cost =11}, T; x » T,
i=1

e If the matrices contains functional rates, but there is no cycle
in the functional dependency graph

N
Cost = IIY | T; ZTZ-
i=1

e If there is a cycle in the functional dependency graph,

N

Cost = (H,‘Z\LlTi) (HleT') (

where t is the number of automata involved in the cycle.

5. Conclusions '

e Introduction of functional dependencies in PEPA

— modelling flexibility
— model size reduction in some cases

— direct tensoriel representation of the Markov chain

e In the future ...

— implement and incorporate our approach to PEPA
Workbench

— investigate the solving techniques which exploit the

Kronecker representation

