
From SAN to PEPA:
a Technology Transfer

Lëıla Kloul & Jane Hillston
LFCS

University of Edinburgh

1

Outline

1. Introduction

2. SAN Formalism

3. PEPA Formalism

4. Functional Dependencies

- Modelling Flexibility

- Model Size Reduction

- Tensor Representation

- Vector-Matrix Product

5. Conclusions

2

1. Introduction

Traditional performance models

• Synchronisation constraints

• System size constraint

→ Complex models
→ Exponential growth of the number of states

New formalisms

• Stochastic Petri Nets (SPN)

• Stochastic Automata Networks (SAN)

• Stochastic Process Algebra (SPA)

3

1. Introduction

State space explosion problem

• A compact representation of the generator matrix
→ to avoid the generation of the complete matrix (SAN, SPN)

• An aggregation or decomposition technique
→ to reduce the model size (SPN, PEPA)

Objective

• The functional dependencies in PEPA models

• The compact representation of the generator matrix in PEPA

4

2. SAN Formalism

• A Stochastic Automata Network (SAN) is a set of N finite
state automata and s synchronization events.

An automaton consists of

– states,

– local transitions: fixed or network-dependent rates (Fi),

– synchronized transitions (Si,e).

• The whole SAN is associated to a multidimensionnal
continuous (discrete) time Markov chain.

Q =
N

⊕

i=1

Fi +
∑

e∈ε

τe

(

N
⊗

i=1

Si,e +
N

⊗

i=1

Si,e

)

5

2. SAN Formalism

Example 1:

λ1 µ1
1
 C =3

off on

ν

η

6

2. SAN Formalism

• Automata Interaction by synchronizations

1
A :

1s
off on

ν

η

A :
0

1s1s 1s

µ 1 µ 1
µ 1

1 20 3

where S1 rate is λ1.

7

2. SAN Formalism

• Automata Interaction by function

1
A :

A :
0

µ 1 µ 1
µ 1

0f(x) 0f(x) 0f(x)

1 20 3

off on

ν

η

where f(x0) =







1 if x0 = on

0 otherwise

8

3. PEPA Formalism

System = set of components which interact between them.
They engage, either singly or multiply, in activities.

• An activity a is caracterised by:

– an action type: α ∈ A

– a duration which is a r.v. exponentially distribued: 1/r

• The set of activities is defined as Act ⊆ A×R+ where

R+ = {r|r > 0; r ∈ R} ∪ {>}

9

3. PEPA Formalism

• Interaction in PEPA by cooperation

Buffer0
def= (in,>).Buffer1

Buffer1
def= (in,>).Buffer2 + (service, µ).Buffer0

Buffer2
def= (in,>).Buffer3 + (service, µ).Buffer1

Buffer3
def= (service, µ).Buffer2

Arrivalon
def= (in, λ).Arrivalon + (off, ν).Arrivaloff

Arrivaloff
def= (on, η).Arrivalon

System def= Buffer0 ./
{in}

Arrivalon

10

4. Functional Dependencies

• One component

- the rate value depends on the component state
=> the rate is a positive number and can never be zero

• Several components

- an activity to be performed by a component depends on the
current state of one or more other components

- the rate value depends on the components current state
=> the rate is a positive number and can be zero

The set of activities Act is now defined as Act ⊆ A×R∗ where

R∗ = {r|r ≥ 0; r ∈ R} ∪ {>}

11

4.1. Modelling Flexibility

• Component interaction by cooperation

Buffer0
def= (in,>).Buffer1

Buffer1
def= (in,>).Buffer2 + (service, µ).Buffer0

Buffer2
def= (in,>).Buffer3 + (service, µ).Buffer1

Buffer3
def= (service, µ).Buffer2

Arrivalon
def= (in, λ).Arrivalon + (off, ν).Arrivaloff

Arrivaloff
def= (on, η).Arrivalon

System def= Buffer0 ./
{in}

Arrivalon

12

4.1. Modelling Flexibility

• Component interaction by functions

Buffer0
def= (in, λ× f).Buffer1

Buffer1
def= (in, λ× f).Buffer2 + (service, µ).Buffer0

Buffer2
def= (in, λ× f).Buffer3 + (service, µ).Buffer1

Buffer3
def= (service, µ).Buffer2

Arrivalon
def= (off, ν).Arrivaloff

Arrivaloff
def= (on, η).Arrivalon

where f(i) =

8<: 1 if i = on

0 otherwise

System def= Buffer0||Arrivalon

13

4.2. Model Size Reduction

Example 2: The resource sharing system

- N processors

- M resources with M ≤ N

- Different rates: λi, µi, 1 ≤ i ≤ N

• PEPA Model without functions

– Components Processor(i)
0 , 1 ≤ i ≤ N

– Component NumberR0

14

4.2. Model Size Reduction

Processor(i)0
def= (usei, λi).Processor(i)1

Processor(i)1
def= (f reei, µi).Processor(i)0

NumberR0
def=

NX
i=1

(usei,>).NumberR1

NumberR1
def=

NX
i=1

(usei,>).NumberR2 +
NX

i=1

(f reei,>).NumberR0

.

NumberRM
def=

NX
i=1

(f reei,>).NumberRM−1

System def=
(

Processor(1)
0 || . . . ||Processor(N)

0

)

./
K

NumberR0

where K = {use1, . . . , useN , free1, . . . , freeN}

15

4.2. Model Size Reduction

• PEPA Model with functions

Processor(i)0
def= (usei, λi × f(x1, . . . , xN)).Processor(i)1

Processor(i)1
def= (f reei, µi).Processor(i)0

where f(x1, . . . , xN) =







1 if
∑N

j=1 xj < M xj ∈ {0, 1}
0 otherwise

System def= Processor(1)
0 || . . . ||Processor(N)

0

16

4.2. Model Size Reduction

• PEPA Model without functions

– N + 1 components

– 2N (M + 1) states

• PEPA Model with functions

– N components

– 2N states

17

4.3. Tensor Representation

Global Generator Matrix

Q =
NM

i=1

Ri +
X
α∈Z

rα

NO

i=1

Pi,α −
NO

i=1

P i,α

!
where

• Ri is the transition matrix of component Ci relating solely to
its individual activities.

• Pi,α is the probability transition matrix of component Ci due
to activity of type α. Its elements’ values are between 0 and 1.

• P i,α is a matrix representing the normalization associated with
the shared activity α in component Ci.

• rα is the minimum of the functional rates of action type α over
all components Ci, i = 1 . . . N .

18

4.4. The Vector-Matrix Product

• Global Generator Matrix

Q =
2Z+N
∑

k=1

N
⊗

i=1

Qk,i

• Markov Chain Solution

x Q =
2|Z|+N

∑

k=1

x
N

⊗

i=1

Qk,i = 0

where

- x is a vector of length ΠN
i=1Ti

- Ti is the size of component Ci

19

4.4. The Vector-Matrix Product

• If the matrices contain only constant values

Cost = ΠN
i=1Ti ×

N
∑

i=1

Ti

• If the matrices contains functional rates, but there is no cycle
in the functional dependency graph

Cost = ΠN
i=1Ti ×

N
∑

i=1

Ti

• If there is a cycle in the functional dependency graph,

Cost =
(

ΠN
i=1Ti

) (

Πt
i=1Ti

)

(

N
∑

i=t+1

Ti

)

where t is the number of automata involved in the cycle.

20

5. Conclusions

• Introduction of functional dependencies in PEPA

– modelling flexibility

– model size reduction in some cases

– direct tensoriel representation of the Markov chain

• In the future . . .

– implement and incorporate our approach to PEPA
Workbench

– investigate the solving techniques which exploit the
Kronecker representation

21

