From SAN to PEPA: a Technology Transfer

Leïla Kloul \& Jane Hillston
LFCS

University of Edinburgh

Outline

1. Introduction
2. SAN Formalism
3. PEPA Formalism
4. Functional Dependencies

- Modelling Flexibility
- Model Size Reduction
- Tensor Representation
- Vector-Matrix Product

5. Conclusions

1. Introduction

Traditional performance models

- Synchronisation constraints
- System size constraint
\rightarrow Complex models
\rightarrow Exponential growth of the number of states

New formalisms

- Stochastic Petri Nets (SPN)
- Stochastic Automata Networks (SAN)
- Stochastic Process Algebra (SPA)

1. Introduction

State space explosion problem

- A compact representation of the generator matrix
\rightarrow to avoid the generation of the complete matrix (SAN, SPN)
- An aggregation or decomposition technique \rightarrow to reduce the model size (SPN, PEPA)

Objective

- The functional dependencies in PEPA models
- The compact representation of the generator matrix in PEPA

2. SAN Formalism

- A Stochastic Automata Network (SAN) is a set of N finite state automata and s synchronization events.

An automaton consists of

- states,
- local transitions: fixed or network-dependent rates $\left(F_{i}\right)$,
- synchronized transitions $\left(S_{i, e}\right)$.
- The whole SAN is associated to a multidimensionnal continuous (discrete) time Markov chain.

$$
Q=\bigoplus_{i=1}^{N} F_{i}+\sum_{e \in \varepsilon} \tau_{e}\left(\bigotimes_{i=1}^{N} S_{i, e}+\bigotimes_{i=1}^{N} \bar{S}_{i, e}\right)
$$

2. SAN Formalism

Example 1:

2. SAN Formalism

- Automata Interaction by synchronizations

where S_{1} rate is λ_{1}.

2. SAN Formalism

- Automata Interaction by function

where $f\left(x_{0}\right)= \begin{cases}1 & \text { if } x_{0}=\text { on } \\ 0 & \text { otherwise }\end{cases}$

3. PEPA Formalism

System $=$ set of components which interact between them. They engage, either singly or multiply, in activities.

- An activity a is caracterised by:
- an action type: $\alpha \in \mathcal{A}$
- a duration which is a r.v. exponentially distribued: $1 / r$
- The set of activities is defined as $\mathcal{A} c t \subseteq \mathcal{A} \times R^{+}$where

$$
R^{+}=\{r \mid r>0 ; r \in R\} \cup\{\top\}
$$

3. PEPA Formalism

- Interaction in PEPA by cooperation

$$
\begin{aligned}
\text { Buffer }_{0} & \stackrel{\text { def }}{=}(\text { in }, \top) \cdot \text { Buffer }_{1} \\
\text { Buffer }_{1} & \stackrel{\text { def }}{=}(\text { in, } \top) \cdot \text { Buffer }_{2}+(\text { service, } \mu) \cdot \text { Buffer }_{0} \\
\text { Buffer }_{2} & \stackrel{\text { def }}{=}(\text { in, } \top) \cdot \text { Buffer }_{3}+(\text { service }, \mu) \cdot \text { Buffer }_{1} \\
\text { Buffer }_{3} & \stackrel{\text { def }}{=}(\text { service }, \mu) \cdot \text { Buffer }_{2} \\
\text { Arrival }_{o n} & \stackrel{\text { def }}{=}(\text { in, } \lambda) \cdot \text { Arrival }_{o n}+(\text { off }, \nu) \cdot \text { Arrival }_{\text {off }} \\
\text { Arrival }_{\text {off }} & \stackrel{\text { def }}{=}(o n, \eta) \cdot \text { Arrival }_{o n} \\
\text { System } & \stackrel{\text { def }}{=} \text { Buffer }_{0}^{\infty} \text { Ain\} }^{\text {Arrival }}{ }_{o n}
\end{aligned}
$$

4. Functional Dependencies

- One component
- the rate value depends on the component state $=>$ the rate is a positive number and can never be zero
- Several components
- an activity to be performed by a component depends on the current state of one or more other components
- the rate value depends on the components current state $=>$ the rate is a positive number and can be zero

The set of activities $\mathcal{A} c t$ is now defined as $\mathcal{A} c t \subseteq \mathcal{A} \times R^{*}$ where

$$
R^{*}=\{r \mid r \geq 0 ; r \in R\} \cup\{\top\}
$$

4.1. Modelling Flexibility

- Component interaction by cooperation

$$
\begin{aligned}
\text { Buffer }_{0} & \stackrel{\text { def }}{=}(\text { in }, \top) \cdot \text { Buffer }_{1} \\
\text { Buffer }_{1} & \stackrel{\text { def }}{=}(\text { in, } \top) \cdot \text { Buffer }_{2}+(\text { service, } \mu) \cdot \text { Buffer }_{0} \\
\text { Buffer }_{2} & \stackrel{\text { def }}{=}(\text { in, } \top) \cdot \text { Buffer }_{3}+(\text { service }, \mu) \cdot \text { Buffer }_{1} \\
\text { Buffer }_{3} & \stackrel{\text { def }}{=}(\text { service }, \mu) \cdot \text { Buffer }_{2} \\
\text { Arrival }_{o n} & \stackrel{\text { def }}{=}(\text { in, } \lambda) \cdot \text { Arrival }_{o n}+(\text { off, } \nu) \cdot \text { Arrival }_{\text {off }} \\
\text { Arrival }_{\text {off }} & \stackrel{\text { def }}{=}(\text { on, } \eta) \cdot \text { Arrival }_{o n} \\
\text { System } & \stackrel{\text { def }}{=} \text { Buffer }_{\substack{\bowtie \\
\{\mathbf{i n}\}}} \text { Arrival }_{o n}
\end{aligned}
$$

4.1. Modelling Flexibility

- Component interaction by functions

$$
\begin{aligned}
\text { Buffer }_{0} & \stackrel{\text { def }}{=}(\text { in }, \lambda \times f) \cdot \text { Buffer }_{1} \\
\text { Buffer }_{1} & \stackrel{\text { def }}{=}(\text { in }, \lambda \times f) \cdot \text { Buffer }_{2}+(\text { service, } \mu) \cdot \text { Buffer }_{0} \\
\text { Buffer }_{2} & \stackrel{\text { def }}{=}(\text { in, } \lambda \times f) \cdot \text { Buffer }_{3}+(\text { service, } \mu) \cdot \text { Buffer }_{1} \\
\text { Buffer }_{3} & \stackrel{\text { def }}{=}(\text { service }, \mu) \cdot \text { Buffer }_{2} \\
\text { Arrivalon } & \stackrel{\text { def }}{=}(o f f, \nu) \cdot \text { Arrival }_{\text {off }} \\
\text { Arrival }_{\text {off }} & \stackrel{\text { def }}{=}(o n, \eta) \cdot \text { Arrivalon }
\end{aligned}
$$

where $f(i)= \begin{cases}1 & \text { if } i=\text { on } \\ 0 & \text { otherwise }\end{cases}$

$$
\text { System } \stackrel{\text { def }}{=} \text { Buffer }_{0} \| \text { Arrival }_{o n}
$$

4.2. Model Size Reduction

Example 2: The resource sharing system

- N processors
- M resources with $M \leq N$
- Different rates: $\lambda_{i}, \mu_{i}, 1 \leq i \leq N$
- PEPA Model without functions
- Components Processor ${ }_{0}^{(i)}, 1 \leq i \leq N$
- Component Number R_{0}

4.2. Model Size Reduction

$$
\begin{aligned}
& \text { Processor } \left._{0}^{(i)}\right) \xlongequal{\text { def }}\left(\text { use }_{i}, \lambda_{i}\right) \cdot \text { Processor }_{1}^{(i)} \\
& \text { Processor }_{1}^{(i)} \stackrel{\text { def }}{=}\left(\text { free }_{i}, \mu_{i}\right) \cdot \text { Processor }_{0}^{(i)}
\end{aligned}
$$

Number $R_{0} \stackrel{\text { def }}{=} \sum_{i=1}^{N}\left(\right.$ use $\left._{i}, \mathrm{~T}\right) \cdot$ Number $_{1}$
Number $_{1} \stackrel{\text { def }}{=} \sum_{i=1}^{N}\left(\right.$ use $\left._{i}, \mathrm{~T}\right) \cdot$.Number $R_{2}+\sum_{i=1}^{N}\left(\right.$ free $\left._{i}, \mathrm{~T}\right) \cdot$ Number R_{0}
${\text { Number } R_{M}}^{\stackrel{\text { def }}{=}} \sum_{i=1}^{N}\left(\right.$ free $\left._{i}, \mathrm{~T}\right)$. Number R_{M-1}

$$
\text { System } \left.^{\text {def }}=\text { Processor }_{0}^{(1)}\|\ldots\| \text { Processor }_{0}^{(N)}\right) \stackrel{\bowtie}{K} \text { Number }_{0}
$$

where $K=\left\{\right.$ use $_{1}, \ldots$, use $_{N}$, free $_{1}, \ldots$, free $\left._{N}\right\}$

4.2. Model Size Reduction

- PEPA Model with functions

> Processor $_{0}^{(i)} \stackrel{\text { def }}{=}\left(u s e_{i}, \lambda_{i} \times f\left(x_{1}, \ldots, x_{N}\right)\right)$. Processor $_{1}^{(i)}$
> Processor $_{1}^{(i)}$
where $f\left(x_{1}, \ldots, x_{N}\right)= \begin{cases}1 & \text { if } \sum_{j=1}^{N} x_{j}<M \quad x_{j} \in\{0,1\} \\ 0 & \text { otherwise }\end{cases}$

$$
\text { System } \stackrel{\text { def }}{=} \text { Processor }_{0}^{(1)}\|\ldots\| \text { Processor }_{0}^{(N)}
$$

4.2. Model Size Reduction

- PEPA Model without functions
- $N+1$ components
$-2^{N}(M+1)$ states
- PEPA Model with functions
- N components
-2^{N} states

4.3. Tensor Representation

Global Generator Matrix

$$
Q=\bigoplus_{i=1}^{N} R_{i}+\sum_{\alpha \in \mathcal{Z}} r_{\alpha}\left(\bigotimes_{i=1}^{N} P_{i, \alpha}-\bigotimes_{i=1}^{N} \bar{P}_{i, \alpha}\right)
$$

where

- R_{i} is the transition matrix of component C_{i} relating solely to its individual activities.
- $P_{i, \alpha}$ is the probability transition matrix of component C_{i} due to activity of type α. Its elements' values are between 0 and 1 .
- $\bar{P}_{i, \alpha}$ is a matrix representing the normalization associated with the shared activity α in component C_{i}.
- r_{α} is the minimum of the functional rates of action type α over all components $C_{i}, i=1 \ldots N$.

4.4. The Vector-Matrix Product

- Global Generator Matrix

$$
Q=\sum_{k=1}^{2 \mathcal{Z}+N} \bigotimes_{i=1}^{N} Q_{k, i}
$$

- Markov Chain Solution

$$
x Q=\sum_{k=1}^{2|\mathcal{Z}|+N} x \bigotimes_{i=1}^{N} Q_{k, i}=0
$$

where

- x is a vector of length $\Pi_{i=1}^{N} T_{i}$
- T_{i} is the size of component C_{i}

4.4. The Vector-Matrix Product

- If the matrices contain only constant values

$$
\text { Cost }=\Pi_{i=1}^{N} T_{i} \times \sum_{i=1}^{N} T_{i}
$$

- If the matrices contains functional rates, but there is no cycle in the functional dependency graph

$$
\text { Cost }=\Pi_{i=1}^{N} T_{i} \times \sum_{i=1}^{N} T_{i}
$$

- If there is a cycle in the functional dependency graph,

$$
\text { Cost }=\left(\Pi_{i=1}^{N} T_{i}\right)\left(\Pi_{i=1}^{t} T_{i}\right)\left(\sum_{i=t+1}^{N} T_{i}\right)
$$

where t is the number of automata involved in the cycle.

5. Conclusions

- Introduction of functional dependencies in PEPA
- modelling flexibility
- model size reduction in some cases
- direct tensoriel representation of the Markov chain
- In the future ...
- implement and incorporate our approach to PEPA Workbench
- investigate the solving techniques which exploit the Kronecker representation

