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1. Introduction '

Traditional performance models

e Synchronisation constraints

e System size constraint

— Complex models
— Exponential growth of the number of states

New formalisms

e Stochastic Petri Nets (SPN)
e Stochastic Automata Networks (SAN)
e Stochastic Process Algebra (SPA)



1. Introduction '

State space explosion problem

e A compact representation of the generator matrix

— to avoid the generation of the complete matrix (SAN, SPN)

e An aggregation or decomposition technique
— to reduce the model size (SPN, PEPA)

Objective
e The functional dependencies in PEPA models

e The compact representation of the generator matrix in PEPA




2. SAN Formalism.

e A Stochastic Automata Network (SAN) is a set of N finite

state automata and s synchronization events.

An automaton consists of
— states,

— local transitions: fixed or network-dependent rates (F3),

— synchronized transitions (S; ).

e The whole SAN is associated to a multidimensionnal

continuous (discrete) time Markov chain.
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2. SAN Formalism'

Example 1:




2. SAN Formalism'

e Automata Interaction by synchronizations
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where S7 rate is \1.




2. SAN Formalism'

e Automata Interaction by function

0 otherwise




3. PEPA Formalism'

System = set of components which interact between them.

They engage, either singly or multiply, in activities.

e An activity a is caracterised by:

— an action type: a € A

— a duration which is a r.v. exponentially distribued: 1/r

e The set of activities is defined as Act C A x RT where

Rt ={rlr>0;r e RYU{T}




3. PEPA Formalism'

e Interaction in PEPA by cooperation
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4. Functional Dependencies'

¢ One component

- the rate value depends on the component state
=> the rate is a positive number and can never be zero

e Several components

- an activity to be performed by a component depends on the

current state of one or more other components

- the rate value depends on the components current state

=> the rate is a positive number and can be zero

The set of activities Act is now defined as Act C A x R* where

R ={rlr>0;re RIU{T}




4.1. Modelling Flexibility'

e Component interaction by cooperation
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4.1. Modelling Flexibility'

e Component interaction by functions
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4.2. Model Size Reduction'

Example 2: The resource sharing system
- N processors
- M resources with M < N

- Different rates: \;, y;, 1 <71 < N

e PEPA Model without functions

— Components Processoréi), 1< <N

— Component Number R,




4.2. Model Size Reduction'
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4.2. Model Size Reduction'

e PEPA Model with functions
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4.2. Model Size Reduction'

e PEPA Model without functions
— N + 1 components

— 2N(M + 1) states

e PEPA Model with functions

— N components

— 2N states




4.3. Tensor Representation'

Global Generator Matrix
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where

e R, is the transition matrix of component C; relating solely to
its individual activities.

P; o is the probability transition matrix of component C; due

to activity of type a. Its elements’ values are between 0 and 1.

P; o 1s a matrix representing the normalization associated with

the shared activity a in component C;.

ro is the minimum of the functional rates of action type a over
all components C;, 1 =1...N.




4.4. The Vector-Matrix Product'

e Global Generator Matrix
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e Markov Chain Solution
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where

- x is a vector of length IT¥ , T;

- T; is the size of component C}




4.4. The Vector-Matrix Product'

e If the matrices contain only constant values
N

Cost =11}, T; x » T,
i=1

e If the matrices contains functional rates, but there is no cycle
in the functional dependency graph

N
Cost = IIY | T; ZTZ-
i=1

e If there is a cycle in the functional dependency graph,

N

Cost = (H,‘Z\LlTi) (HleT') (

where t is the number of automata involved in the cycle.




5. Conclusions '

e Introduction of functional dependencies in PEPA

— modelling flexibility
— model size reduction in some cases

— direct tensoriel representation of the Markov chain

e In the future ...

— implement and incorporate our approach to PEPA
Workbench

— investigate the solving techniques which exploit the

Kronecker representation




