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e Performance Evaluation Process Algebra (PEPA) is used as a formal description
language for Markov chain modelling. PEPA is a compact language with a
small number of primitive operations.

Prefix: («,r).P performs « at rate r to become P.

Choice: P + () sets up a race between P and (). The first to perform an
action wins: the other is discarded.

Cooperation: P Dﬁ ( runs P and () in parallel, synchronising on activities
in L.

Hiding: P/L hides the activities in L, preventing cooperands from

synchronising on them.
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e Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

e The PEPA syntax can be represented simply as an ML datatype.

datatype Component =

PREFIX of (Activity * Rate) * Component (x . *)
| CHOICE of Component * Component (x + *)
| COOP of Component * Component * Activity list  (* [=] *)
| HIDING of Component * Activity list (x /| *)
| VAR of Identifier (x X *)
| DEF of Identifier * Component * Component (* = *)
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fun derivative E (PREFIX (a as (alpha, rate), P)) = [(a, P)]
| derivative E (CHOICE (P, Q)) =
(derivative E P) @ (derivative E Q)
| derivative E (COOP (P, Q, L)) =
let
val (dP, dQ) = (derivative E P, derivative E Q)
val (fP, fQ) = (filterout dP L, filterout dQ L)
in
(map (fn (a, P’) => (a, COOP (P’, Q, L))) £fP)
@ (map (fn (a, Q’) => (a, COOP (P, Q’, L))) £fQ)
@ cooperations dP dQ L
end
| derivative E (HIDING (P, L)) = ...
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e With the ML edition of the PEPA Workbench it was possible to solve small
models using exterior solvers such as Maple and Matlab.

e However, users of the workbench wanted to make more detailed models (with
larger state spaces).

e The ML edition of the PEPA Workbench could not solve Robert Holton's
robotic workcell model efficiently enough so we interfaced it with an external
solver written in C.

e Other users wanted to run the workbench on Solaris, Windows and Linux
machines so we ported the Workbench and the solver to Java.
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g fThe PEFA Workbench [Java edition, 21-1-2003]

Status |[Complete

File Options Run 5Show |Solver | Experiment Simulate

Solve for steady state solution

>4 P14
=% P1s
& PlE
ST P14
8Pl
9Pl
20 Fl4
&1 P14
&2 P1%
&3 P14
B4 P15
&5 P14
B& P14
&7 PL1s
&8 P14
&2 P14
FOP14
F1Fl4
2 P14

S5et steady state solver parameters
<Iregldl> 514" <]reg v p repls e 515

<{regldls 514 <{req] Solve for transient solution replShs 515
<iregl4}> 514" <{reg] Set transient solver parameters replsis 515

<{regldi= 514" <{reqg] . . . replsi= 515
Solve via successive over-relaxation
<{regl4dl> 514" <{reg] replsl> 515

<{regl4}> 514 <iregl| SeLSOR solver parameters repl5}s 515
<{regldl> 514 «<{regle, repld)> DEL1S: <{repléls 516" <{regls, replSls> 515
<{regl4dl> 514 <{regle, repl4dl> DB1G <{replél> 516 <{regl%, replsi= 515%°
<fregldls 314 «{regle, repld)> DBE1e <{replel> 316" <{regls, replsls 515°
<{regl4dl> 514 <{regle, repld}> DB1G <{replél= 516" <{regls, replSlt> 515
<fregldis 514" <{reqle, repldts DB1S <{replels 316" <{reql%, replsis 515"
<{regl4di= 514" <{regle, repld}= DB1S <{repl&}= 516" <{reqls, replSl=> 515
<{regldi= 514" <{regle, repldl> DBl1e <{replel> 516 <{regls, replSt> 5151
<{regl4dl> 514" <{regle, repld}> DBle <{repl&}=> 51&"' <{regls, replSls> 515"
<{regldi= 514" <{regle, repldl> DBl1e <{replels> 516" <{reqls, replsls= 515
<{regl4dl> 514 <{regle, repld)> DEL1S <{replél> 516" <{regls, replSlts> 5151
<{regl4di= 514 <{regle, repldls DBE1G <{replels 516" <{regls, replSts 5151
<fregl4d}s 314" <{regle, repld}> DBLS <{reple}s> 516" <{reqls, replsl= 515
<{regl4dl>= 514" <{regle, repld}> DB1& <{repl&}= 51&" <{reqls, replSl> 515"

[ »

KN

=

| ¥]

States found T2 Transitions found 240
Mumber of iterations Error value
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e Graham Clark had extended the ML edition of the workbench and developed
the Java edition of the workbench from his Peparoni simulator for PEPA.

e He then implemented an editor for PEPA in the Mobius multi-paradigm
modelling framework, extending PEPA to PEPA;. with guards and parameters.

Consume[a,b] = [a > 0] => (outa, ar).Consumela-1,Db]
+ [(b > 0) & (a == 0)] => (outb, br).Consumel[a,b-1];

Breakdown = (outa, T).Breakdown
+ (fail,fr).(recover,RecoverRate) .Breakdown ;

System = Consume[0,0] <outa> Breakdown;
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CQETMT, =) CPETMT, =] . MEMT |
[getMz, ). (relM2,-). Hemz;

= (getM1,g1), Creltl, ri. Bus;
[getMz, g2y, (relMz, r) Bus;

CRetMt, =) Cuse, udd, CreTMt =0, Cupdate, p1), Cthink,t). Proc;
CgetMz, =), (use, u2), (relMz, =), Cupdate,p2), (think,t), Froc;

S o= {getMt, getMz, relMt, relM2k;

system ;= (Proc | Proc | Procd <5: BUS <5: [Memd | Memz)

UltraE0M Mabivs PEPA Editor 1.0 alpha

. MultiProcessorExanple  Version Humber: 1
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e PRISM is a probabilistic model checker which supports modelling in DTMCs,
CTMCs and MDPs with PTCL and CSL model checking.

e The matrix storing the state space of the system is expressed as an MTBDD
built using the CUDD package.

e Support for the PEPA language in PRISM was provided in two steps:

1. extending the PRISM input language with a new system construct providing
the PEPA composition operators for synchronisation over activity sets and
hiding; and

2. compiling the PEPA language into the extended PRISM language.
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FRISM .31
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Engine

Options

b I ~Properties
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e PEPA modelling with PRISM has proved to be very effective in practice. The
largest PEPA model so far solved has been solved with PRISM.

e However, there are a number of places where the user needs to understand the
tool chain thoroughly:

— The PEPA-to-PRISM compiler rejects (valid) PEPA models which use
active/active synchronisation or anonymous components;

— The compiler can fail during compilation with Java stack overflow;

— PRISM can reject models which the PEPA-to-PRISM compiler outputs;

— The CUDD package can fail with out-of-memory errors and need to be
reconfigured.
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The Imperial PEPA compiler (IPC) compiles PEPA models into Petri nets which
are solved with the Dnamaca solver. Dnamaca provides a number of numerical
solvers and outperforms PRISM on small PEPA models.

\transition{Pl_start} {
type { start }

P1 = (start, rl) .P2;

Stephen Gilmore

%/ PEPA action
\condition{ P1
\action {
next -> P1
next -> P2
+
\priority{1}
\rate{ PEPA_r1l

PEPA tools

>

+

0 %}
P1 - 1;
P2 + 1;
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Suppose that two copies of P synchronise on the run activity.

\transition{P2_run__P2_1_run} {

P2 = (run, r2).P3;

Stephen Gilmore

%% PEPA action type { run }
\condition{ P2 > 0 && P2_1 > 0 }
\action {
next -> P2_1 = P2_1 - 1;
next -> P3_1 = P3_1 + 1;

next -> P2 = P2 - 1;
next -> P3 = P3 + 1;
+
\priority{1}

\rate{ PEPA_r2 }

PEPA tools PASTA workshop, Edinburgh
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e More of the PEPA language is supported by IPC/Dnamaca than by PRISM.
Active/active synchronisation and anonymous components are supported.

e However, there are still a number of places where the user needs to understand
the tool chain thoroughly:

— The IPC compiler can fail during compilation with Haskell memory

exhaustion:
— Dnamaca can reject models which IPC outputs; and

— Dnamaca’s numerical procedures can fail to converge.
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e Because Dnamaca supports non-Markovian modelling, beyond the models
which are expressible in PEPA, it would be possible to support PEPA extensions
with Dnamaca:

— PEPA guards and parameters;
— Weighted (WSCCS-style) PEPA;
— PEPA nets with priorities;

— Semi-Markov PEPA:
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e PEPA nets are Petri nets with PEPA tokens. An example token is

Agent Z (go, \).Agent’

Agent’ Z (interrogate, r;).Agent”
Agent” Z (return, 1).Agent””’
Agent’”’ ! (dump, rg).Agent

go and return are firings of the PEPA net. interrogate and dump are local
transitions.

e A PEPA net can be processed with the PEPA Workbench for PEPA nets or
compiled to PEPA using the PEPA net compiler.
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e The PEPA nets compiler compiles out token movement.

Agent__at__P?2

Agent’__at__P1
Agent’__at__P3
Agent”__at__P1
Agent”__at__P3
Agent”'__at__P2

o__to__P1,\).Agent’__at__P1
go__to__P3, \).Agent’__at__P3

(g
(
(interrogate__at__P1,r;).Agent”__at__P1
(interrogate__at__P3,r;).Agent”’ __at__P3
(return__to__P2, 1).Agent”’'__at__P2
(return__to__P2, 1).Agent”’'__at__P2
(dump__at__P2, ry).Agent__at__P2

e (Strictly speaking, tokens must specify their cells within places. Different cells
at the same place fall under different synchronisation sets.)

Stephen Gilmore
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e |In PEPA nets it is possible for tokens to synchronise on their exit actions from
a place:

(go, r) (go, r)
P —l—{Pl(go.1).P] B4 Pl(go, ) P~} P[]

e The PEPA nets compiler cannot compile this idiom because the two tokens
must go to different cells—cells can only contain a single token—and their exit
activities must specify the destination cell. Therefore these activity renamings
are distinct and so synchronisation is not possible.

e We consider this to be a small loss of expressivity.
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PEPA nets in DrawNET
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e Compiling PEPA and PEPA net models to other formalisms seems to be a very
profitable activity.

e However, there are typically many small details in the translation which need
to be taken care of.

e |t is tempting to lift features of the host tool back to the PEPA level but
sometimes desirable properties of the PEPA language are lost.

e |t is important to strike a balance between exploiting opportunities and losing
theoretical properties.
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