b

One hundred years of the PEPA tools

Stephen Gilmore
Laboratory for Foundations of Computer Science
The University of Edinburgh

12th June 2003

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

b

One hundred years of the PEPA tools

Stephen Gilmore
Laboratory for Foundations of Computer Science
The University of Edinburgh

12th June 2003

PEPA is ten years old!

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

b

One hundred years of the PEPA tools

Stephen Gilmore
Laboratory for Foundations of Computer Science
The University of Edinburgh

12th June 2003

PEPA is ten years old!

One year programming in ML = ten years programming in Java

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

e Performance Evaluation Process Algebra (PEPA) is used as a formal description
language for Markov chain modelling. PEPA is a compact language with a
small number of primitive operations.

Prefix: («,r).P performs « at rate r to become P.

Choice: P + () sets up a race between P and (). The first to perform an
action wins: the other is discarded.

Cooperation: P Dﬁ (runs P and () in parallel, synchronising on activities
in L.

Hiding: P/L hides the activities in L, preventing cooperands from

synchronising on them.

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

e Performance Evaluation Process Algebra (PEPA) is used as a formal description
language for Markov chain modelling. PEPA is a compact language with a
small number of primitive operations.

Prefix: («,r).P performs « at rate r to become P.

Choice: P + () sets up a race between P and (). The first to perform an
action wins: the other is discarded.

Cooperation: P Dﬁ (runs P and () in parallel, synchronising on activities
in L.

Hiding: P/L hides the activities in L, preventing cooperands from

synchronising on them.

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

e Performance Evaluation Process Algebra (PEPA) is used as a formal description
language for Markov chain modelling. PEPA is a compact language with a
small number of primitive operations.

Prefix: («,r).P performs « at rate r to become P.

Choice: P + () sets up a race between P and (). The first to perform an
action wins: the other is discarded.

Cooperation: P Dﬁ (runs P and () in parallel, synchronising on activities
in L.

Hiding: P/L hides the activities in L, preventing cooperands from

synchronising on them.

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

e Performance Evaluation Process Algebra (PEPA) is used as a formal description
language for Markov chain modelling. PEPA is a compact language with a
small number of primitive operations.

Prefix: («,r).P performs « at rate r to become P.

Choice: P + () sets up a race between P and (). The first to perform an
action wins: the other is discarded.

Cooperation: P Dﬁ @ runs P and () in parallel, synchronising on activities
in L.

Hiding: P/L hides the activities in L, preventing cooperands from

synchronising on them.

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

e Performance Evaluation Process Algebra (PEPA) is used as a formal description
language for Markov chain modelling. PEPA is a compact language with a
small number of primitive operations.

Prefix: («,r).P performs « at rate r to become P.

Choice: P + () sets up a race between P and (). The first to perform an
action wins: the other is discarded.

Cooperation: P Dﬁ (runs P and () in parallel, synchronising on activities
in L.

Hiding: P/L hides the activities in L, preventing cooperands from

synchronising on them.

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

e Performance Evaluation Process Algebra (PEPA) is used as a formal description
language for Markov chain modelling. PEPA is a compact language with a
small number of primitive operations.

Prefix: («,r).P performs « at rate r to become P.

Choice: P + () sets up a race between P and (). The first to perform an
action wins: the other is discarded.

Cooperation: P Dﬁ (runs P and () in parallel, synchronising on activities
in L.

Hiding: P/L hides the activities in L, preventing cooperands from

synchronising on them.

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

e Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

e The PEPA syntax can be represented simply as an ML datatype.

datatype Component =

PREFIX of (Activity * Rate) * Component (x . *)
| CHOICE of Component * Component (x + *)
| COOP of Component * Component * Activity list (* [=] *)
| HIDING of Component * Activity list (x /| *)
| VAR of Identifier (x X *)
| DEF of Identifier * Component * Component (* = *)

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

e Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

e The PEPA syntax can be represented simply as an ML datatype.

datatype Component =

PREFIX of (Activity * Rate) * Component (x . *)
| CHOICE of Component * Component (x + *)
| COOP of Component * Component * Activity list (* [=] *)
| HIDING of Component * Activity list (x /| *)
| VAR of Identifier (x X *)
| DEF of Identifier * Component * Component (* = *)

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

e Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

e The PEPA syntax can be represented simply as an ML datatype.

datatype Component =

PREFIX of (Activity * Rate) * Component (x . *)
| CHOICE of Component * Component (x + *)
| COOP of Component * Component * Activity list (* [=] *)
| HIDING of Component * Activity list (x /| *)
| VAR of Identifier (x X *)
| DEF of Identifier * Component * Component (* = *)

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

e Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

e The PEPA syntax can be represented simply as an ML datatype.

datatype Component =

PREFIX of (Activity * Rate) * Component (x . *)
| CHOICE of Component * Component (x + *)
| COOP of Component * Component * Activity list (* [x] *)
| HIDING of Component * Activity list (x /| *)
| VAR of Identifier (x X *)
| DEF of Identifier * Component * Component (* = *)

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

e Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

e The PEPA syntax can be represented simply as an ML datatype.

datatype Component =

PREFIX of (Activity * Rate) * Component (x . *)
| CHOICE of Component * Component (x + *)
| COOP of Component * Component * Activity list (* [=] *)
| HIDING of Component * Activity list (x /| *)
| VAR of Identifier (x X *)
| DEF of Identifier * Component * Component (* = *)

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

e Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

e The PEPA syntax can be represented simply as an ML datatype.

datatype Component =

PREFIX of (Activity * Rate) * Component (x . *)
| CHOICE of Component * Component (x + *)
| COOP of Component * Component * Activity list (* [=] *)
| HIDING of Component * Activity list (x /| *)
| VAR of Identifier (x X *)
| DEF of Identifier * Component * Component (* = *)

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

e Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

e The PEPA syntax can be represented simply as an ML datatype.

datatype Component =

PREFIX of (Activity * Rate) * Component (x . *)
| CHOICE of Component * Component (* 4+ *)
| COOP of Component * Component * Activity list (* [=] *)
| HIDING of Component * Activity list (x / *)
| VAR of Identifier (x X *)
| DEF of Identifier * Component * Component (* = %)

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

e Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

e The PEPA syntax can be represented simply as an ML datatype.

datatype Component =

PREFIX of (Activity * Rate) * Component (x . *)
| CHOICE of Component * Component (x + *)
| COOP of Component * Component * Activity list (* [=] *)
| HIDING of Component * Activity list (x /| *)
| VAR of Identifier (x X *)
| DEF of Identifier * Component * Component (* = *)

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

fun derivative E (PREFIX (a as (alpha, rate), P)) = [(a, P)]
| derivative E (CHOICE (P, Q)) =
(derivative E P) @ (derivative E Q)
| derivative E (COOP (P, Q, L)) =
let
val (dP, dQ) = (derivative E P, derivative E Q)
val (fP, fQ) = (filterout dP L, filterout dQ L)
in
(map (fn (a, P’) => (a, COOP (P’, Q, L))) £fP)
@ (map (fn (a, Q’) => (a, COOP (P, Q’, L))) £fQ)
@ cooperations dP dQ L
end
| derivative E (HIDING (P, L)) = ...

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

fun derivative E (PREFIX (a as (alpha, rate), P)) = [(a, P)]
| derivative E (CHOICE (P, Q)) =
(derivative E P) @ (derivative E Q)
| derivative E (COOP (P, Q, L)) =
let
val (dP, dQ) = (derivative E P, derivative E Q)
val (fP, fQ) = (filterout dP L, filterout dQ L)
in
(map (fn (a, P’) => (a, COOP (P’, Q, L))) £fP)
@ (map (fn (a, Q’) => (a, COOP (P, Q’, L))) £fQ)
@ cooperations dP dQ L
end
| derivative E (HIDING (P, L)) = ...

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

fun derivative E (PREFIX (a as (alpha, rate), P)) [(a, P)]
| derivative E (CHOICE (P, Q)) =
(derivative E P) @ (derivative E Q)
| derivative E (COOP (P, Q, L)) =
let
val (dP, dQ) = (derivative E P, derivative E Q)
val (fP, fQ) = (filterout dP L, filterout dQ L)
in
(map (fn (a, P’) => (a, COOP (P’, Q, L))) £fP)
@ (map (fn (a, Q’) => (a, COOP (P, Q’, L))) £fQ)
@ cooperations dP dQ L
end

| derivative E (HIDING (P, L)) = ...

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

fun derivative E (PREFIX (a as (alpha, rate), P)) = [(a, P)]
| derivative E (CHOICE (P, Q)) =
(derivative E P) @ (derivative E Q)
| derivative E (COOP (P, Q, L)) =
let
val (dP, dQ) = (derivative E P, derivative E Q)
val (fP, fQ) = (filterout dP L, filterout dQ L)
in
(map (fn (a, P’) => (a, COOP (P’, Q, L))) fP)
@ (map (fn (a, Q’) => (a, COOP (P, Q’, L))) £fQ)
Q@ cooperations dP dQ L
end
| derivative E (HIDING (P, L)) = ...

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

fun derivative E (PREFIX (a as (alpha, rate), P)) = [(a, P)]
| derivative E (CHOICE (P, Q)) =
(derivative E P) @ (derivative E Q)
| derivative E (COOP (P, Q, L)) =
let
val (dP, dQ) = (derivative E P, derivative E Q)
val (fP, fQ) = (filterout dP L, filterout dQ L)
in
(map (fn (a, P’) => (a, COOP (P’, Q, L))) £fP)
@ (map (fn (a, Q’) => (a, COOP (P, Q’, L))) £fQ)
@ cooperations dP dQ L
end
| derivative E (HIDING (P, L)) = ...

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

e With the ML edition of the PEPA Workbench it was possible to solve small
models using exterior solvers such as Maple and Matlab.

e However, users of the workbench wanted to make more detailed models (with
larger state spaces).

e The ML edition of the PEPA Workbench could not solve Robert Holton's
robotic workcell model efficiently enough so we interfaced it with an external
solver written in C.

e Other users wanted to run the workbench on Solaris, Windows and Linux
machines so we ported the Workbench and the solver to Java.

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

g fThe PEFA Workbench [Java edition, 21-1-2003]

Status |[Complete

File Options Run 5Show |Solver | Experiment Simulate

Solve for steady state solution

>4 P14
=% P1s
& PlE
ST P14
8Pl
9Pl
20 Fl4
&1 P14
&2 P1%
&3 P14
B4 P15
&5 P14
B& P14
&7 PL1s
&8 P14
&2 P14
FOP14
F1Fl4
2 P14

S5et steady state solver parameters
<Iregldl> 514" <]reg v p repls e 515

<{regldls 514 <{req] Solve for transient solution replShs 515
<iregl4}> 514" <{reg] Set transient solver parameters replsis 515

<{regldi= 514" <{reqg] . . . replsi= 515
Solve via successive over-relaxation
<{regl4dl> 514" <{reg] replsl> 515

<{regl4}> 514 <iregl| SeLSOR solver parameters repl5}s 515
<{regldl> 514 «<{regle, repld)> DEL1S: <{repléls 516" <{regls, replSls> 515
<{regl4dl> 514 <{regle, repl4dl> DB1G <{replél> 516 <{regl%, replsi= 515%°
<fregldls 314 «{regle, repld)> DBE1e <{replel> 316" <{regls, replsls 515°
<{regl4dl> 514 <{regle, repld}> DB1G <{replél= 516" <{regls, replSlt> 515
<fregldis 514" <{reqle, repldts DB1S <{replels 316" <{reql%, replsis 515"
<{regl4di= 514" <{regle, repld}= DB1S <{repl&}= 516" <{reqls, replSl=> 515
<{regldi= 514" <{regle, repldl> DBl1e <{replel> 516 <{regls, replSt> 5151
<{regl4dl> 514" <{regle, repld}> DBle <{repl&}=> 51&"' <{regls, replSls> 515"
<{regldi= 514" <{regle, repldl> DBl1e <{replels> 516" <{reqls, replsls= 515
<{regl4dl> 514 <{regle, repld)> DEL1S <{replél> 516" <{regls, replSlts> 5151
<{regl4di= 514 <{regle, repldls DBE1G <{replels 516" <{regls, replSts 5151
<fregl4d}s 314" <{regle, repld}> DBLS <{reple}s> 516" <{reqls, replsl= 515
<{regl4dl>= 514" <{regle, repld}> DB1& <{repl&}= 51&" <{reqls, replSl> 515"

[»

KN

=

| ¥]

States found T2 Transitions found 240
Mumber of iterations Error value

Stephen Gilmore

PEPA tools

PASTA workshop, Edinburgh

e Graham Clark had extended the ML edition of the workbench and developed
the Java edition of the workbench from his Peparoni simulator for PEPA.

e He then implemented an editor for PEPA in the Mobius multi-paradigm
modelling framework, extending PEPA to PEPA;. with guards and parameters.

Consume[a,b] = [a > 0] => (outa, ar).Consumela-1,Db]
+ [(b > 0) & (a == 0)] => (outb, br).Consumel[a,b-1];

Breakdown = (outa, T).Breakdown
+ (fail,fr).(recover,RecoverRate) .Breakdown ;

System = Consume[0,0] <outa> Breakdown;

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

e Graham Clark had extended the ML edition of the workbench and developed
the Java edition of the workbench from his Peparoni simulator for PEPA.

e He then implemented an editor for PEPA in the Mobius multi-paradigm
modelling framework, extending PEPA to PEPA;. with guards and parameters.

Consume[a,b] = [a > 0] => (outa, ar).Consumela-1,Db]
+ [(b > 0) & (a == 0)] => (outb, br).Consumel[a,b-1];

Breakdown = (outa, T).Breakdown
+ (fail,fr).(recover,RecoverRate) .Breakdown ;

System = Consume[0,0] <outa> Breakdown;

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

e Graham Clark had extended the ML edition of the workbench and developed
the Java edition of the workbench from his Peparoni simulator for PEPA.

e He then implemented an editor for PEPA in the Mobius multi-paradigm
modelling framework, extending PEPA to PEPA;. with guards and parameters.

Consume[a,b] = [a > 0] => (outa, ar).Consumela-1,Db]
+ [(b > 0) & (a == 0)] => (outb, br).Consumela,b-1];

Breakdown = (outa, T).Breakdown
+ (fail,fr).(recover,RecoverRate) .Breakdown ;

System = Consume[0,0] <outa> Breakdown;

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

e Graham Clark had extended the ML edition of the workbench and developed
the Java edition of the workbench from his Peparoni simulator for PEPA.

e He then implemented an editor for PEPA in the Mobius multi-paradigm
modelling framework, extending PEPA to PEPA;. with guards and parameters.

Consume[a,b] = [a > 0] => (outa, ar).Consumela-1,Db]
+ [(b > 0) & (a == 0)] => (outb, br).Consumel[a,b-1];

Breakdown = (outa, T).Breakdown
+ (fail,fr).(recover,RecoverRate) .Breakdown ;

System = Consume[0,0] <outa> Breakdown;

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

CQETMT, =) CPETMT, =] . MEMT |
[getMz,). (relM2,-). Hemz;

= (getM1,g1), Creltl, ri. Bus;
[getMz, g2y, (relMz, r) Bus;

CRetMt, =) Cuse, udd, CreTMt =0, Cupdate, p1), Cthink,t). Proc;
CgetMz, =), (use, u2), (relMz, =), Cupdate,p2), (think,t), Froc;

S o= {getMt, getMz, relMt, relM2k;

system ;= (Proc | Proc | Procd <5: BUS <5: [Memd | Memz)

UltraE0M Mabivs PEPA Editor 1.0 alpha

. MultiProcessorExanple Version Humber: 1

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

e PRISM is a probabilistic model checker which supports modelling in DTMCs,
CTMCs and MDPs with PTCL and CSL model checking.

e The matrix storing the state space of the system is expressed as an MTBDD
built using the CUDD package.

e Support for the PEPA language in PRISM was provided in two steps:

1. extending the PRISM input language with a new system construct providing
the PEPA composition operators for synchronisation over activity sets and
hiding; and

2. compiling the PEPA language into the extended PRISM language.

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

FRISM .31

Model

Engine

Options

b I ~Properties

iskfhomefIifcsz fstaipub

Exit Cirl-Q k :

20 PCE0PC40 PCS0 PCEOS]L
ariables: PC10 _STATE PC20_STATE PCE0_STATE PC40_5T]
Gtates: 768

[»

ersion: 1.3.1
Cate: Mon Jun 0% 11:21:46 BST 2003

Building maodel. ..

MTEDD wariables used (10r, 10c) PC10O_STATE QO PC10_STATE. O PC2O_STATE QO PCZQSTATE O PCR0_STATE O PCR0

Camputing reachakle states. ..

-

| #

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

10 — |

e PEPA modelling with PRISM has proved to be very effective in practice. The
largest PEPA model so far solved has been solved with PRISM.

e However, there are a number of places where the user needs to understand the
tool chain thoroughly:

— The PEPA-to-PRISM compiler rejects (valid) PEPA models which use
active/active synchronisation or anonymous components;

— The compiler can fail during compilation with Java stack overflow;

— PRISM can reject models which the PEPA-to-PRISM compiler outputs;

— The CUDD package can fail with out-of-memory errors and need to be
reconfigured.

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

A Y
Y

e

11 -~

The Imperial PEPA compiler (IPC) compiles PEPA models into Petri nets which
are solved with the Dnamaca solver. Dnamaca provides a number of numerical
solvers and outperforms PRISM on small PEPA models.

\transition{Pl_start} {
type { start }

P1 = (start, rl) .P2;

Stephen Gilmore

%/ PEPA action
\condition{ P1
\action {
next -> P1
next -> P2
+
\priority{1}
\rate{ PEPA_r1l

PEPA tools

>

+

0 %}
P1 - 1;
P2 + 1;

PASTA workshop, Edinburgh

12

Suppose that two copies of P synchronise on the run activity.

\transition{P2_run__P2_1_run} {

P2 = (run, r2).P3;

Stephen Gilmore

%% PEPA action type { run }
\condition{ P2 > 0 && P2_1 > 0 }
\action {
next -> P2_1 = P2_1 - 1;
next -> P3_1 = P3_1 + 1;

next -> P2 = P2 - 1;
next -> P3 = P3 + 1;
+
\priority{1}

\rate{ PEPA_r2 }

PEPA tools PASTA workshop, Edinburgh

13 — |

e More of the PEPA language is supported by IPC/Dnamaca than by PRISM.
Active/active synchronisation and anonymous components are supported.

e However, there are still a number of places where the user needs to understand
the tool chain thoroughly:

— The IPC compiler can fail during compilation with Haskell memory

exhaustion:
— Dnamaca can reject models which IPC outputs; and

— Dnamaca’s numerical procedures can fail to converge.

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

14 '--...___ﬁ.

e Because Dnamaca supports non-Markovian modelling, beyond the models
which are expressible in PEPA, it would be possible to support PEPA extensions
with Dnamaca:

— PEPA guards and parameters;
— Weighted (WSCCS-style) PEPA;
— PEPA nets with priorities;

— Semi-Markov PEPA:

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

e PEPA nets are Petri nets with PEPA tokens. An example token is

Agent Z (go, \).Agent’

Agent’ Z (interrogate, r;).Agent”
Agent” Z (return, 1).Agent””’
Agent’”’ ! (dump, rg).Agent

go and return are firings of the PEPA net. interrogate and dump are local
transitions.

e A PEPA net can be processed with the PEPA Workbench for PEPA nets or
compiled to PEPA using the PEPA net compiler.

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

16

e The PEPA nets compiler compiles out token movement.

Agent__at__P?2

Agent’__at__P1
Agent’__at__P3
Agent”__at__P1
Agent”__at__P3
Agent”'__at__P2

o__to__P1,\).Agent’__at__P1
go__to__P3, \).Agent’__at__P3

(g
(
(interrogate__at__P1,r;).Agent”__at__P1
(interrogate__at__P3,r;).Agent”’ __at__P3
(return__to__P2, 1).Agent”’'__at__P2
(return__to__P2, 1).Agent”’'__at__P2
(dump__at__P2, ry).Agent__at__P2

e (Strictly speaking, tokens must specify their cells within places. Different cells
at the same place fall under different synchronisation sets.)

Stephen Gilmore

PEPA tools PASTA workshop, Edinburgh

16 ~

e |In PEPA nets it is possible for tokens to synchronise on their exit actions from
a place:

(go, r) (go, r)
P —l—{Pl(go.1).P] B4 Pl(go,) P~} P[]

e The PEPA nets compiler cannot compile this idiom because the two tokens
must go to different cells—cells can only contain a single token—and their exit
activities must specify the destination cell. Therefore these activity renamings
are distinct and so synchronisation is not possible.

e We consider this to be a small loss of expressivity.

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

16 ~

e |In PEPA nets it is possible for tokens to synchronise on their exit actions from
a place:

(go, r) (go, r)
PL] —{—{Pl(go.n)-P] B2 P[(go,n).PI—f—{ P[]

e The PEPA nets compiler cannot compile this idiom because the two tokens
must go to different cells—cells can only contain a single token—and their exit
activities must specify the destination cell. Therefore these activity renamings
are distinct and so synchronisation is not possible.

e We consider this to be a small loss of expressivity.

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

16 ~

e |In PEPA nets it is possible for tokens to synchronise on their exit actions from
a place:

(go, r) (go, r)
PP L) B Pl PP

e The PEPA nets compiler cannot compile this idiom because the two tokens
must go to different cells—cells can only contain a single token—and their exit
activities must specify the destination cell. Therefore these activity renamings
are distinct and so synchronisation is not possible.

e We consider this to be a small loss of expressivity.

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

16 ~

e |In PEPA nets it is possible for tokens to synchronise on their exit actions from
a place:

(g0, 1) (go, r)
ST P B Pl —{ PPl

e The PEPA nets compiler cannot compile this idiom because the two tokens
must go to different cells—cells can only contain a single token—and their exit
activities must specify the destination cell. Therefore these activity renamings
are distinct and so synchronisation is not possible.

e We consider this to be a small loss of expressivity.

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

17

PEPA nets in DrawNET

& DRAW NET
Fle Edt Mode Edge Model Help Execute

[OfEw) (==

Rate: Lambda_| Rate: Labda_r
Type: g0 Type: go

Fle Edt Node Edge Model Help Exeaute 13
- 13 I

INECIBEE PN EIERTS oo rer

Fle Edt Node Edge Model Help Execute

Cooperation

Rate:ra
e: analyse

Rate:m Rate:m
e moritor ype: moritor
8 bRaw NET Y o
® Fperdams @
| Fie Edt Node Edge Model Hep Everte] yper damp
Master Wester1
. (MECIBCOICCE D6 e———
abe m
Rate: Rl Rote; Lanbda Ratei i Rate: My Ratei Rd ks
Satoity__,, i
- @ bz T e Tl T
Tperrieagae | Type: enogate Agent agentt agentz Agents
[m ate: Rd ate: R
Typer domy Typerdume
[eold [Jitale see: [io] pe: dump pe: dp QI
" B |

Cleokd O wskc s

PEPA tools PASTA workshop, Edinburgh

Stephen Gilmore

18 — |

e Compiling PEPA and PEPA net models to other formalisms seems to be a very
profitable activity.

e However, there are typically many small details in the translation which need
to be taken care of.

e |t is tempting to lift features of the host tool back to the PEPA level but
sometimes desirable properties of the PEPA language are lost.

e |t is important to strike a balance between exploiting opportunities and losing
theoretical properties.

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh

