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Background

• Performance Evaluation Process Algebra (PEPA) is used as a formal description
language for Markov chain modelling. PEPA is a compact language with a
small number of primitive operations.

Prefix: (α, r).P performs α at rate r to become P .

Choice: P + Q sets up a race between P and Q. The first to perform an

action wins: the other is discarded.

Cooperation: P BC
L

Q runs P and Q in parallel, synchronising on activities

in L.

Hiding: P/L hides the activities in L, preventing cooperands from

synchronising on them.
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A first PEPA tool: The PEPA Workbench

• Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

• The PEPA syntax can be represented simply as an ML datatype.

datatype Component =
PREFIX of (Activity * Rate) * Component (* . *)

| CHOICE of Component * Component (* + *)

| COOP of Component * Component * Activity list (* BC *)

| HIDING of Component * Activity list (* / *)

| VAR of Identifier (* X *)

| DEF of Identifier * Component * Component (*
def= *)

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh



3

A first PEPA tool: The PEPA Workbench

• Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

• The PEPA syntax can be represented simply as an ML datatype.

datatype Component =
PREFIX of (Activity * Rate) * Component (* . *)

| CHOICE of Component * Component (* + *)

| COOP of Component * Component * Activity list (* BC *)

| HIDING of Component * Activity list (* / *)

| VAR of Identifier (* X *)

| DEF of Identifier * Component * Component (*
def= *)

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh



3

A first PEPA tool: The PEPA Workbench

• Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

• The PEPA syntax can be represented simply as an ML datatype.

datatype Component =
PREFIX of (Activity * Rate) * Component (* . *)

| CHOICE of Component * Component (* + *)

| COOP of Component * Component * Activity list (* BC *)

| HIDING of Component * Activity list (* / *)

| VAR of Identifier (* X *)

| DEF of Identifier * Component * Component (*
def= *)

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh



3

A first PEPA tool: The PEPA Workbench

• Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

• The PEPA syntax can be represented simply as an ML datatype.

datatype Component =
PREFIX of (Activity * Rate) * Component (* . *)

| CHOICE of Component * Component (* + *)

| COOP of Component * Component * Activity list (* BC *)

| HIDING of Component * Activity list (* / *)

| VAR of Identifier (* X *)

| DEF of Identifier * Component * Component (*
def= *)

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh



3

A first PEPA tool: The PEPA Workbench

• Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

• The PEPA syntax can be represented simply as an ML datatype.

datatype Component =
PREFIX of (Activity * Rate) * Component (* . *)

| CHOICE of Component * Component (* + *)

| COOP of Component * Component * Activity list (* BC *)

| HIDING of Component * Activity list (* / *)

| VAR of Identifier (* X *)

| DEF of Identifier * Component * Component (*
def= *)

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh



3

A first PEPA tool: The PEPA Workbench

• Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

• The PEPA syntax can be represented simply as an ML datatype.

datatype Component =
PREFIX of (Activity * Rate) * Component (* . *)

| CHOICE of Component * Component (* + *)

| COOP of Component * Component * Activity list (* BC *)

| HIDING of Component * Activity list (* / *)

| VAR of Identifier (* X *)

| DEF of Identifier * Component * Component (*
def= *)

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh



3

A first PEPA tool: The PEPA Workbench

• Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

• The PEPA syntax can be represented simply as an ML datatype.

datatype Component =
PREFIX of (Activity * Rate) * Component (* . *)

| CHOICE of Component * Component (* + *)

| COOP of Component * Component * Activity list (* BC *)

| HIDING of Component * Activity list (* / *)

| VAR of Identifier (* X *)

| DEF of Identifier * Component * Component (*
def= *)

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh



3

A first PEPA tool: The PEPA Workbench

• Our first PEPA tool was the PEPA Workbench, implemented in Standard ML.

• The PEPA syntax can be represented simply as an ML datatype.

datatype Component =
PREFIX of (Activity * Rate) * Component (* . *)

| CHOICE of Component * Component (* + *)

| COOP of Component * Component * Activity list (* BC *)

| HIDING of Component * Activity list (* / *)

| VAR of Identifier (* X *)

| DEF of Identifier * Component * Component (*
def= *)

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh



4

The PEPA Workbench: derivatives

fun derivative E (PREFIX (a as (alpha, rate), P)) = [(a, P)]
| derivative E (CHOICE (P, Q)) =

(derivative E P) @ (derivative E Q)
| derivative E (COOP (P, Q, L)) =

let
val (dP, dQ) = (derivative E P, derivative E Q)
val (fP, fQ) = (filterout dP L, filterout dQ L)

in
(map (fn (a, P’) => (a, COOP (P’, Q, L))) fP)

@ (map (fn (a, Q’) => (a, COOP (P, Q’, L))) fQ)
@ cooperations dP dQ L

end
| derivative E (HIDING (P, L)) = ...
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Beyond ML

• With the ML edition of the PEPA Workbench it was possible to solve small
models using exterior solvers such as Maple and Matlab.

• However, users of the workbench wanted to make more detailed models (with
larger state spaces).

• The ML edition of the PEPA Workbench could not solve Robert Holton’s
robotic workcell model efficiently enough so we interfaced it with an external
solver written in C.

• Other users wanted to run the workbench on Solaris, Windows and Linux
machines so we ported the Workbench and the solver to Java.
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Beyond the PEPA Workbench

• Graham Clark had extended the ML edition of the workbench and developed
the Java edition of the workbench from his Peparoni simulator for PEPA.

• He then implemented an editor for PEPA in the Möbius multi-paradigm
modelling framework, extending PEPA to PEPAk with guards and parameters.

Consume[a,b] = [a > 0] => (outa, ar).Consume[a-1,b]
+ [(b > 0) && (a == 0)] => (outb, br).Consume[a,b-1];

Breakdown = (outa, T).Breakdown
+ (fail,fr).(recover,RecoverRate).Breakdown ;

System = Consume[0,0] <outa> Breakdown;
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PEPA and PRISM

• PRISM is a probabilistic model checker which supports modelling in DTMCs,
CTMCs and MDPs with PTCL and CSL model checking.

• The matrix storing the state space of the system is expressed as an MTBDD
built using the CUDD package.

• Support for the PEPA language in PRISM was provided in two steps:

1. extending the PRISM input language with a new system construct providing
the PEPA composition operators for synchronisation over activity sets and
hiding; and

2. compiling the PEPA language into the extended PRISM language.
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PEPA modelling with PRISM

• PEPA modelling with PRISM has proved to be very effective in practice. The
largest PEPA model so far solved has been solved with PRISM.

• However, there are a number of places where the user needs to understand the
tool chain thoroughly:

– The PEPA-to-PRISM compiler rejects (valid) PEPA models which use
active/active synchronisation or anonymous components;

– The compiler can fail during compilation with Java stack overflow;
– PRISM can reject models which the PEPA-to-PRISM compiler outputs;
– The CUDD package can fail with out-of-memory errors and need to be

reconfigured.
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PEPA and IPC/Dnamaca
The Imperial PEPA compiler (IPC) compiles PEPA models into Petri nets which
are solved with the Dnamaca solver. Dnamaca provides a number of numerical
solvers and outperforms PRISM on small PEPA models.

P1 = (start, r1).P2; =

\transition{P1 start} {
%% PEPA action type { start }
\condition{ P1 > 0 }
\action {

next -> P1 = P1 - 1;
next -> P2 = P2 + 1;

}
\priority{1}
\rate{ PEPA r1 }

}
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Synchronisation in Dnamaca
Suppose that two copies of P synchronise on the run activity.

P2 = (run, r2).P3; =

\transition{P2 run P2 1 run} {
%% PEPA action type { run }
\condition{ P2 > 0 && P2 1 > 0 }
\action {

next -> P2 1 = P2 1 - 1;
next -> P3 1 = P3 1 + 1;
next -> P2 = P2 - 1;
next -> P3 = P3 + 1;

}
\priority{1}
\rate{ PEPA r2 }

}
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PEPA modelling with IPC and Dnamaca

• More of the PEPA language is supported by IPC/Dnamaca than by PRISM.
Active/active synchronisation and anonymous components are supported.

• However, there are still a number of places where the user needs to understand
the tool chain thoroughly:

– The IPC compiler can fail during compilation with Haskell memory
exhaustion;

– Dnamaca can reject models which IPC outputs; and
– Dnamaca’s numerical procedures can fail to converge.

Stephen Gilmore PEPA tools PASTA workshop, Edinburgh



14

Dnamaca features and PEPA extensions

• Because Dnamaca supports non-Markovian modelling, beyond the models
which are expressible in PEPA, it would be possible to support PEPA extensions
with Dnamaca:

– PEPAk guards and parameters; [Clark, Sanders, ’01]

– Weighted (WSCCS-style) PEPA; [Bradley, ’02]

– PEPA nets with priorities; [Gilmore, Hillston, Ribaudo, Kloul, ’03]

– Semi-Markov PEPA; [Bradley, ’03]

– . . .
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PEPA nets

• PEPA nets are Petri nets with PEPA tokens. An example token is

Agent
def= (go, λ).Agent′

Agent′
def= (interrogate, ri).Agent′′

Agent′′
def= (return, µ).Agent′′′

Agent′′′
def= (dump, rd).Agent

go and return are firings of the PEPA net. interrogate and dump are local
transitions.

• A PEPA net can be processed with the PEPA Workbench for PEPA nets or
compiled to PEPA using the PEPA net compiler.
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The PEPA nets compiler

• The PEPA nets compiler compiles out token movement.

Agent at P2
def= (go to P1, λ).Agent′ at P1
+ (go to P3, λ).Agent′ at P3

Agent′ at P1
def= (interrogate at P1, ri).Agent′′ at P1

Agent′ at P3
def= (interrogate at P3, ri).Agent′′ at P3

Agent′′ at P1
def= (return to P2, µ).Agent′′′ at P2

Agent′′ at P3
def= (return to P2, µ).Agent′′′ at P2

Agent′′′ at P2
def= (dump at P2, rd).Agent at P2

• (Strictly speaking, tokens must specify their cells within places. Different cells
at the same place fall under different synchronisation sets.)
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Loss of expressivity

• In PEPA nets it is possible for tokens to synchronise on their exit actions from
a place:

P[ ]
(go, r)

←−[]←−P[(go, r).P] BC
{go}

P[(go, r).P]
(go, r)

−→[]−→ P[ ]

• The PEPA nets compiler cannot compile this idiom because the two tokens
must go to different cells—cells can only contain a single token—and their exit
activities must specify the destination cell. Therefore these activity renamings
are distinct and so synchronisation is not possible.

• We consider this to be a small loss of expressivity.
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PEPA nets in DrawNET
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Conclusions

• Compiling PEPA and PEPA net models to other formalisms seems to be a very
profitable activity.

• However, there are typically many small details in the translation which need
to be taken care of.

• It is tempting to lift features of the host tool back to the PEPA level but
sometimes desirable properties of the PEPA language are lost.

• It is important to strike a balance between exploiting opportunities and losing
theoretical properties.
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