
Fitting General Distributions within PEPA Terms
Nil Geisweiller

Office National d’Études et de Recherches Aérospatiales
Toulouse, France

Email: nil.geisweiller@cert.fr

Abstract— This paper presents an algorithm to fit distribution
functions or data sets within PEPA terms. The advantages that
motivate the author for fitting distributions within PEPA terms
instead of Markov chains are :

1) It is easier to define prior knowledge on the structure of
the model and therefore to reuse and handle it better.

2) PEPA is a well known and efficient algebra to design
stochastic communication systems recognised by the prob-
abilistic model checker PRISM and other performance
evaluation tools.

The given algorithm is based on the expectation-maximisation
method (EM) and can be seen as an extension of the work of
Soren Asmussen, Olle Nerman and Marita Olsson on the fitting
procedure of phase-type distributions.

I. INTRODUCTION

Probabilistic model checking [3], [6], [7], [5] is a useful
and versatile way to define performance constraints and check
them automatically without any need of developing specific
mathematical analysis. Apart from statistical model checking
[16] the models that are checkable by the current model
checkers must be Markovian1 or semi-markovian2 [12] but not
yet generalised semi-markovian3. In spite of this limitation it
is possible to represent a wide variety of complex behaviours
using only markovian process, most of the time by adding
a part of the process’ history in its current state. Following
the same idea it is also possible to represent non-exponential
distributions describing the probability for taking a transition
of a continuous-time Markov process by representing a single
transition by a sub-Markov chain, which is called phase-type
distribution [13]. So it is possible to insert quite realistic
distributions in a markovian model. Furthermore there exist
algorithms that attempt to find the best values of a phase-type
distribution in order to fit data sets or distribution functions
[4], [14]. However when the distribution to approach is the
result of a set of components that the designer wants to model
separately, these methods are not adapted because the obtained
Markov chain is quite intricate and hard to analyse.

A. Overview of the Main Result

To address this difficulty we propose in this paper to extend
the algorithm of Soren Asmussen, Olle Nerman and Marita
Olsson [4] in a way so that it can work properly over a
PEPA model, PEPA [11] for Performance Evaluation Process
Algebra is a stochastic process algebra that permits to describe

1memory-less property
2memory over a unique dimension of time
3memory over several dimensions of time

k states

. . .
kλ kλ

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

ba
bi

lit
y

Time for taking the last transition

Distribution of an Erlang-10 law with rate 1/2

Fig. 1. Erlang-k Distribution

a CTMC in a compositional way. The goal of this method
it to improve the realism of a model according to absorption
durations gotten from the real system while keeping the model
under a high level description, that is under a form of a PEPA
program. Our algorithm takes in inputs 1) a PEPA model, 2) a
set of absorption durations and returns the most (or almost the
most) likely values of the unknown parameters of the model.

The difficulty is that when the PEPA model is translated
to its underlying CTMC the unknown parameters, or say
variables, are dispatched irregularly into the CTMC and
blended with the other values and variables. To deal with these
variables the algorithm has to consider the derivation graph of
the PEPA model (see Section II-C for the definition of the
derivation graph) and its underlying CTMC.

B. Outline

The paper is organised as follows : Section II recalls the defi-
nitions of phase-type distributions, PEPA and derivation graph.
Section III gives an algorithm that addresses the presented
issue. Section IV describes a possible use of this algorithm by
extracting a model of the response time of a network without
measuring it directly. Finally Section V concludes.

II. BASIC NOTIONS

A. Phase-Type Distributions

A phase-type distribution, PTD for short, is defined by a
finite CTMC composed of several transient states (the phases)
and one absorption state. It corresponds to the probability of
being in the absorption state with respect to time. (see Figures
1, 2 and 3 for examples of special phase-type distributions
called respectively Erlang, hyper-exponential and Coxian).
Figure 4 is also a phase-type distribution, s1 and s2 are the
phases and s3 the absorption state.

We recall below the mathematical definition of a phase type
distribution :

π1

π2

λ1

λ2

..

.

πk λk
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

Time for being in the absorbing state

A three states hyperexponentional distribution

Fig. 2. Hyper-exponential Distribution

α1 αk

β3 β2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

ba
bi

lit
y

Time for being in the absorbing state

Coxian distribution

Fig. 3. Coxian Distribution

Definition 1: A phase-type distribution (PTD) is given by :

• S a finite set of states, including the absorption state,
noted nil. Sph is the set of phases, that is S without nil.

• t : Sph 7→ R+ called the exit vector, is a column vector
describing the density of going out of the set of phases.

• T : Sph×Sph 7→ R the infinitesimal generator of phases,
such that ∀s ∈ Sph

T(s, s) = −t(s) −
∑

s′∈Sph,

s′ 6=s

T(s, s′)

• π : Sph is the initial distribution such that :
∑

s∈Sph

π(s) = 1

By default π is a row vector. If π(s) = 1 for some s ∈
Sph and π(s′) = 0 for any s′ 6= s, then we call s the
initial state of the phase type distribution and we note πs

its initial distribution.
The infinitesimal generator, say Q, of the CTMC
embodying a phase type distribution with T as infinitesimal
generator of phases and t as exit vector will be noted

Q =

(

T t

0, . . . , 0 0

)

.

s1 nil

2
s2

w

2v + w





−2 + w 2 w
0 −2v − w 2v + w
0 0 0





Fig. 4. On the up side is a CTMC with an absorption state, that is a phase
type distribution, on the down side is its infinitesimal generator.

B. PEPA with Variables

PEPA for Performance Evaluation Process Algebra is a
stochastic process algebra defined by Jane Hillston [11] which
allows to describe any finite4 CTMC in terms of components
executing actions and interacting together.

A PEPA model is composed by a set of declarations of
PEPA terms and a root term defining the initial state of the
process.

For the purpose of the paper a set of variables V is added
in the definition of PEPA. V represents the set of unknown
variables of the fitting problem. We also define ev : V 7→ R+

an evaluation function of V . When it will be clear that we
are speaking about the value of v instead of the variable itself
the function ev will be omitted. The idle process nil has been
also added to emphasise the definition of the PEPA model as
a phase-type distribution.

Definition 2: Let A be a set of action names, or say actions,
V a set of variables. τ represents the invisible action and >
the unknown rate. Below is the definition of the rules defining
the syntax of the PEPA terms and an informal description of
its semantic :

P ::= (α, r).P |P BC
L

P |P + P |P/L|A|nil

• (α, r).P is the Prefix operator, α is an action name, r the
transition rate and P the description of the process after
having taken the transition. In this paper a transition can
be a positive real, the unknown rate or an element of V ,
that is r ∈ V ∪ R

+ ∪ {>}.
• P BC

L
Q, the cooperation operator, is the synchronised

product between P and Q over the set of cooperation
actions L ⊆ A\{τ}.

• P + Q is the choice operator.
• P/L is the hiding operator which makes unavailable the

interactions belonging to L between P and the other
processes.

• A is a constant declared by A
def
= P .

• nil is the idle process. Note that nil is not a necessary
key word to defined the absorption state in PEPA,
instead it shall be seen as a macro to a term like
(α, 1).P BC

{α,β}
(β, 1).P .

The underlying CTMC of a PEPA model is gotten by two
steps :

1) Obtaining the derivation graph induced by the Opera-
tional Semantic of PEPA, a set of rules given in a Plotkin
style [11].

2) Obtaining the CTMC from the derivation graph by
deleting the action names from the transitions and lump-
ing the equivalent ones.

Example 3: An example of a PEPA model is given below,
the root term is Model :

4and also a subclass of infinite CTMCs

(τ, 2)

`

(α, v).End + (β, v).End + (γ, w).End
´

BC
{α}

Loop

End BC
{α}

Loop

(α, v)
(β, v) (γ, w)

(α, w)
Model

Fig. 5. Example of a derivation graph. The underlying CTMC is the same
as the one given in Figure 4. Let’s describe the correspondences between
them : the state Model becomes s1, the state

`

(α, v).End + (β, v).End +
(γ, w).End

´

./
{α}

Loop becomes s2 and the state End ./
{α}

Loop becomes

the absorption one, that is nil. The transition (τ, 2) becomes the one rated
2 and the transition (α, w) becomes the one rated w. The three transitions
(α, v), (β, v) and (γ, w) become the one rated 2v + w after aggregating
them.

Model
def
= Begin BC

{α}
Loop

Begin
def
= (τ, 2).

(

(α, v).End + (β, v).End + (γ, w).End
)

+ (α, w).End

Loop
def
= (α,>).Loop

End
def
= nil

C. The Derivation Graph of a PEPA model

Let V be the set of variables of the fitting problem of a
PEPA model.

Definition 4: A derivation graph is an oriented labelled
multi-graph (S, Act, s?, T) :

• S is a set of states, every element of S is a PEPA term,
• Act is a set of action names, or say actions,
• s? is the root term,
• T is a multi-set of transitions ζ : S × S 7→ Act× (R+ ∪

V ∪ {>})
We have also to assume that the derivation graph we work on
have an absorption state5, this absorption state could be nil or
nil BC

∅
nil or (α, 1).P BC

{α,β}
(β, 1).P or any state which does

not have any outgoing transition. We will now introduce some
notations :

• rate : T 7→ R+ ∪ V ∪ {>} denotes the rate of any
transition of T .

• T : V 7→ P(T) defines for all v ∈ V the multi-set T(v)
that contains all transitions of rate v.

∀v ∈ V T(v) = {ζ ∈ T | rate(ζ) = v}

The Figure 5 gives the derivation graph of the PEPA model
given in the example 3. For a full explanation on how to derive
a derivation graph from a PEPA model and the underlying
CTMC from a derivation graph the reader is invited to consult
[11].

We also define an infinite CTMC6 X = (Xt)t∈R+
associated

with the derivation graph, the purpose of this CTMC is only
theoretical and will be enlightened later. The state space of

5if it has several we can just lump them together to get only one
6the reader has to be careful not to confuse this infinite CTMC with what

is called the underlying CTMC of the derivation graph

X is S × T × N and we define three additional stochastic
processes in order to represent each component of the state
space :

• (Xt)t∈R+
denotes the state of the PEPA process at the

time t, remark that (St)t∈R+
is actually what is called

the underlying CTMC of a PEPA model,
• (Tt)t∈R+

denotes the last transition it has taken before or
during t,

• (Ct)t∈R+
denotes the number of transitions it has taken

since its start.

III. THE EM ALGORITHM WITHIN PEPA TERMS

A. Overview of the EM Algorithm

The EM algorithm (Expectation Maximisation) [9], [15]
is an iterative method to find parameters in a probabilistic
model that maximise -or almost maximise- the likelihood of
a data set. It is useful when the data is composed of partial
observations and that it is not possible to directly maximise
the likelihood. Here a complete observation, noted x, is the
trajectory of the process defined by a PEPA model. However
we have only a partial observation of x which is the time for
the process to reach the absorption state nil, noted y. Let
X = (Xt)t∈R+

be an infinite CTMC associated with a PEPA
model as defined in Section II-C and Y be a random variable
denoting the absorption time of X . Let χ be the product of
n independent processes X and Y their absorption times.
Let x = x1, . . . , xn be the set of the unobserved trajectories
and y = y1, . . . , yn the associated observed durations. Since
we do not know the trajectories associated to the observed
durations it is not possible to directly calculate the parameters
of the model (the variables of the PEPA model) which
maximise the likelihood of Y = y. However it is possible to
calculate the expectation of some relevant random variables
(given an initial choice of the parameters of the model) and
then maximise the likelihood of these expectations. Since they
are not real observations but only expectations that depend
of the current chosen model, it is possible to improve the
current likelihood by repeating that process until a maximum
(possibly local) is reached.

B. The Expectation Step

For any v ∈ V let Sv be the set of states that have at least
one outgoing transition of rate v :

∀v ∈ V, SV = {s ∈ Sph|∃ζ ∈ T, rate(ζ) = v}

Let SV ⊆ Sph be the set of states that have at least one
outgoing transition of some rate v ∈ V :

SV =
⋃

v∈V

Sv

In this problem the relevant random variables associated with
X are Zv and Nv with v ∈ V . Zv is the total time spent
in all states s ∈ Sv and Nv is the total number of times
the transitions belonging to T(v) have been taken. Let H =

(

Zv, Nv)v∈V be a family of random variables associated with
X , a value of H will be noted h.

The computation of the conditional expectations of Zv and
Nv knowing an observation y is given below (see Appendix
A and B for their mathematical derivations) :

E[Zv |Y = y] =

∑

s∈Sv
cs
s(y)

πs?
b(y)

E[Nv |Y = y] =

∑

ζ∈T(v) ev(v)

πs?
b(y)

×

{

c•ζ
ζ•(y) if ζ• 6= nil

aζ•(y) if ζ• = nil

Where a, b and (cs)s∈Sph
are |S|+ 1 vectors of functions

defined from R+ to R
Sph

+ :

a(t) = πs?
etT

b(t) = etTt

∀s ∈ Sph cs(t) =
∫ t

0
πs?

euTπ′
se

(t−u)Ttdu

A component s ∈ Sph of a vector function, a(t) for instance,
is noted as(t). π′

s denotes the vector πs transposed. In [4]
it is shown that a, b and (cs)s∈Sph

define three ordinary
differential equation systems solvable using, in their case, the
Runge-Kutta method in the fourth order.

We define now Zv and Nv for all v ∈ V which are
respectively the total time spent in Sv of all processes of χ and
the total number of times the transitions of rate v have been
taken by all processes of χ. Zv = n×Zv and Nv = n×Nv

since the n processes of χ are identical. We define the family
of random variable H = (Zv ,Nv)v∈V , a value of H is noted
h. The expectations of E[Zv |Y = y] and E[Nv|Y = y] are
defined below :

E[Zv |Y = y] =
n

∑

k=1

E[Zv|Y = yk]

E[Nv|Y = y] =

n
∑

k=1

E[Nv|Y = yk]

C. The Maximisation Step

The goal of this step is to maximise the likelihood of H = h

when h contains the computed expectations of Zv and Nv,
noted zv and nv :

h = (zv ,nv)v∈V

It is shown in [10] that maximising L(H = h) amounts
to maximising the function below (v1, . . . , vm is the set of
variables of V) :

L(v1, . . . , vm) =
∏

v∈V

e−v×zv × vnv

Then it is easy to verify (by deriving L and seeking its
zeros) that ∀v ∈ V , v = nv

zv
maximises L(v1, . . . , vm).

More intuitively the idea of the maximisation step consists

Network
?

Computer Middleware

Fig. 6. Scheme of the example

of considering for any v ∈ V a big transition, that is T(v),
instead of a single transition (as in [4]) and a big state as well,
Sv. The total number of times the big transition has been taken,
that is nv is divided by the total time spent in the big state,
that is zv , the result of the division is the rate for taking v.

D. Definition of the EM Algorithm for PTDV

The definition of the EM algorithm is now presented. Let
Lpre and Lnew be the logarithm of the likelihood L(H = h)
for the previous and the current step of the algorithm. Let
ε be the precision to be reached by the algorithm, that is
|Lnew − Lpre| < ε. The algorithm is given below :

Inputs : a data set and a derivation graph
Output : an evaluation function ev

• Choose an initialisation of ev.
• Initialise Lpre and Lnew by −∞.
• Until |Lnew − Lpre| < ε do :

1) E step :

– Lpre := Lnew

– ∀ v ∈ V compute the expectations of
Zv and Nv, noted zv and nv .

– Compute Lnew

2) M step : ∀v ∈ V ev(v) := nv

zv
.

• Return ev.

E. Fitting Continuous Distributions

According to [4], the EM algorithm can be used to
approximate continuous distributions in the same way as data
sets. See [4] and [10] for more details.

The next section gives an example of its use based on a real
data set obtained from CERTI [8] an implementation of the
real-time simulation architecture HLA [1], [2].

IV. EXAMPLE : EXTRACTING A MODEL OF A NETWORK

This section illustrates a possible use of the given algorithm
through a simple example.

A. Description of the Problem

Let’s take a system composed of three components, a com-
puter, a network and another computer hosting a middleware,
see Figure 6. The data set is obtained by sending messages of
a fixed length from the computer to the network and measuring
their echo response durations. Every message must :

1) cross the network to the middleware,

2) be processed by the middleware,
3) cross the network back to the computer.

The goal in this example is to obtain a good approximation
of the response time of the network, knowing that :

1) we already have a prior model of the time response of
the middleware,

2) we assume that crossing the network from the computer
to the middleware or from the middleware to the com-
puter gives equivalent behaviours.

We will first give a simplified description of the PEPA model
that codes the behaviour of a message then present some
results obtained with a more complex PEPA model and from
a data set obtained from measurements of messages that has
been used in the communication of a real-time distributed
simulation.

Example 5: Let System be the root term of the model.
Let V = v1, . . . , v5 be the set of variables of the fitting
problem. System is composed by the synchronised prod-
uct of the components NetworkToMid, Middleware and
NetworkFromMid.

The terms NetworkToMid and NetworkFromMid de-
note a Coxian distribution with 3 states of phases. The terms
NTR1 to NTR3 and NFR1 to NFR3 are used to express
the phases of the Coxian distribution of the model of the
network respectively from the computer to the middleware and
from the middleware to the computer. The variables v1 to v5

are both used in NetworkToMid and NetworkFromMid
in order to represent their identity of behaviour. The term
Middleware is an Erlang-4 distribution with rate 4λ where
λ is a known value. There are two action names inMid and
outMid defining respectively the interactions of the message
going out of the network to the middleware and going out
of the middleware to the network. When the message is in
the wires of the network or in the silicium of the computer
hosting the middleware the invisible action τ is used to model

the internal changes.

System
def
= NetworkToMid
BC

{inMid}
Middleware

BC
{outMid}

NetworkMiddleware

NetworkToMid
def
= NTR1

NTR1
def
= (τ, v1).NTR2
+ (outMid, v2).nil

NTR2
def
= (τ, v3).NTR3
+ (outMid, v4).nil

NTR3
def
= (outMid, v5).nil

Middleware
def
= (inMid,>).(τ, λ).(τ, λ)

.(τ, λ).(outMid, λ).nil

NetworkFromMid
def
= (outMid,>).NFR1

NFR1
def
= (τ, v1).NFR2
+ (τ, v2).nil

NFR2
def
= (τ, v3).NFR3
+ (τ, v4).nil

NFR3
def
= (τ, v5).nil

B. Results

The same model, but with 16 states for the network and 64
states for the middleware, has been tested with EMPEPA7, a
program developed by the author implementing the presented
algorithm. The data set consists of 10000 absorption durations
obtained by measuring the transmission time between two
simulators during a distributed simulation execution.

1) Getting a Model of the Middleware: The algorithm has
first been used to find an approximation of the model of the
middleware, an Erlang-64 distribution. After 4 iterations8 (a
couple of hours) the algorithm converged toward the right
value, see Figure 7.

2) Getting a Model of the Network: Then the complete
model of the system has been given to the algorithm, the
set of variables of the problem consists of 31 variables
defining the Coxian distribution of NetworkToMid and
NetworkFromMid. The Figure 8 shows the result of the
obtained model after 180 iterations (about 2 days of compu-
tation). The model of the network has been extracted very
easily, by replacing the variables by the obtained values in
the PEPA term NetworkToMid or -which is the same-
NetworkFromMid. Figure 9 shows the distribution of the
one way response time of the network. Figure 10 shows the
different obtained distributions together.

V. CONCLUSION AND POSSIBLE FUTURE IMPROVEMENTS

In this paper an algorithm based on the EM method has been
presented to fit the parameters of a PEPA model according to

7http://sourceforge.net/projects/empepa
8The small number of iterations is due to the fact that the middleware is

modelled by an Erlang distribution and with only one variable, λ. In theory
only one iteration should suffice, perhaps this is the matter of some numerical
imprecision in the first iterations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

ba
bi

lit
y

Time in ms

Cumulative density function of the middleware response time

real middleware
model of the middleware

Fig. 7. Cumulative density function of the middleware respond time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5

P
ro

ba
bi

lit
y

Time in ms

Cumulative density function of the system response time

real system
model of the system

Fig. 8. Cumulative density function of the whole system, that is the
duration for a message to cross the network one way, being processed by
the middleware and come back.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2

P
ro

ba
bi

lit
y

One way crossing time through the network (ms)

Cumulative density function of the one way response time of the network

Fig. 9. Distribution of one way crossing time of the network

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

P
ro

ba
bi

lit
y

Time in ms

Cumulative density function of the middleware, the network and the whole system

Middleware Data Set
model of the middleware

System Data Set
model of the system

Network

Fig. 10. Recapitulating graph

data sets or distribution functions. A simple example has been
given to illustrate the utility of this algorithm by extracting
the unknown values of a component modelling a one-way
network. The present algorithm only works on the PEPA
terms which have their interactions between passive and active
transitions and with data set composed of absorption durations.
Further improvements could be to make it work on the whole
PEPA class and to consider partial observations of executions
instead of simple absorption time observations. This study also
leads to another more interesting and difficult issue which
is the problem of finding the most likely PEPA model that
explains a set of executions.

VI. ACKNOWLEDGEMENT

Special thanks to Bruno d’Ausbourg and Joachim Reigle.

REFERENCES

[1] Defense modeling and simulation office, high level architecture run-
time infrastructure programmer’s guide 1.3 version 5, rti 1.3 distribution.
Technical report, Departement of Defense, 1998.

[2] Departement of defense (u.s), high level architecture interface specifi-
cation, version 1.3. Technical report, Departement of Defense, 1998.

[3] A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton. Verifying
continuous-time markov chains. In Rajeev Alur and Thomas A.
Henzinger, editors, Eighth International Conference on Computer Aided
Verification CAV, volume 1102, pages 269–276, New Brunswick, NJ,
USA, / 1996. Springer Verlag.

[4] S. Asmussen, O. Nerman, and M. Olsson. Fitting phase-type distribution
via the em algorithm. Scandinavian Journal of Statistics, 23:419–441,
1996.

[5] C. Baier, B. Haverkort, H. Hermanns, and J. Katoen. Model checking
continuous-time markov chains by transient analysis. In Proc. CAV,
2000.

[6] C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model
checking of continuous-time markov chains. In Proc. 10th International
Conference on Concurrency Theory (CONCUR’99), volume 1664 of
Lecture Notes in Computer Science, pages 146–161, 1999.

[7] C. Baier and M. Z. Kwiatkowska. Model checking for a probabilistic
branching time logic with fairness. Distributed Computing, 11(3):125–
155, 1998.

[8] B. d’Ausbourg and P. Siron. Certi : Evolutions of the onera rti prototype.
In Fall 2002 Simulation Interoperability Workshop, 2002.

[9] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from
incomplete data via the em algorithm. J. Roy. Soc. Ser. B., 39:1–38,
1977.

[10] N. Geisweiller. Thèse sur la v érification et la mod élisation probabiliste
de systèmes complexes pour l’ évaluation de performances. onera, di-
recteur : Bruno d’ausbourg, 2005.

[11] J. Hillston. A Compositional Approach to Performance Modelling.
Cambridge University Press, 1996.

[12] G. G. I. Lopez, H. Hermanns, and J.-P. Katoen. Beyond memoryless dis-
tributions: Model checking semi-markov chains. In PAPM-PROBMIV,
pages 57–70, 2001.

[13] M. Neuts. Matrix-geometric solution in stochastic models : An algo-
rithmic approach. The Johns Hopkins University Press, 1981.

[14] A. Riska, V. Diev, and E. Smirni. An em-based technique for ap-
proximating long-tailed data sets with ph distributions. Performance
Evaluation, 55:147–164, 2004.

[15] C. Wu. On the convergence properties of the em algorithm. Ann. Statist.,
11:95–103, 1983.

[16] H. L. S. Younes and R. G. Simmons. Probabilistic verification of discrete
event systems using acceptance sampling. In E. Brinksma and K. G.
Larsen, editors, Proceedings of the 14th International Conference on
Computer Aided Verification, volume 2404 of Lecture Notes in Computer
Science, pages 223–235, Copenhagen, Denmark, July 2002. Springer.

APPENDIX

A. Conditional Expectation of the Sojourn Time in Sv

E[Zv|Y = y] =

∫ ∞

0

P(Xt ∈ Sv|Y ∈ dy)

After y the process is in the absorption state nil, since nil 6∈
SV we can consider the integral between 0 and y.

E[Zs | Y = y] =

∫ y

0

P(Xt ∈ Sv | Y = y)dt

=

∫ y

0

∑

s∈Sv

P(Xt = s | Y = y)dt

The next equation is obtained by using the Markov property :

P(Xt = s | Y = y) =
P(Xt = s)P(Y ∈ dy | Xt = s)

P(Y ∈ dy)

Then we can replace the probabilities by their mathematical
expressions using the definition of a Markov chain :

P(Xt = s | Y = y) =
πs?

etTπ′
sπse

(y−t)Ttdt

πs?
eyTt

Finally :

E[Zs | Y = y] =

∑

s∈Sv
πs

∫ y

0 πs?
etTπ′

se
(y−t)Ttdt

πs?
eyTt

=

∑

s∈Sv
cs
s(y)

πs?
b(y)

B. Conditional Expectation of the Total Number of Times T(v)
Has Been Taken

Let Nζ for any ζ ∈ T be a random variable that defines
the number of times the process X has taken the transition ζ.
We assume first that ζ• 6= nil, and we define N∆t

ζ a discreet
version of Nζ with the resolution ∆t.

E[N∆t
ζ |Y = y] =

[y/∆t]−1
∑

i=0

P(Ci∆t+∆t 6= Ci∆t, Ti∆t+∆t = ζ|Y ∈ dy)

=

[y/∆t]−1
∑

i=0

P(Ci∆t+∆t 6= Ci∆t, Ti∆t+∆t = ζ, Y ∈ dy)

P(Y ∈ dy)

=

[y/∆t]−1
∑

i=0

P(Xi∆t+∆t = ζ•, Xi∆t = •ζ, Ci∆t+∆t 6= Ci∆t, Ti∆t+∆t = ζ, Y ∈ dy)

P(Y ∈ dy)

Then we use the Markov property of X :

=

[y/∆t]−1
∑

i=0

P(Xi∆t = •ζ)P(Xi∆t+∆t = ζ•, Ci∆t+∆t 6= Ci∆t, Ti∆t+∆t = ζ|Xi∆t = •ζ)P(Y ∈ dy | Xi∆t+∆t = ζ•)

P(Y ∈ dy)

=

[y/∆t]−1
∑

i=0

∑

ζ∈T(v)(πs?
ei∆tTπ′

•ζ)(ev(rate(ζ))∆t + o(∆t))(πζ•e
(y−i∆t−∆t)Tt)

P(Y ∈ dy)

Finally we consider the limit of ∆t toward 0 :

E[Nζ |Y = y] =

∫ y

0
πs?

etTπ′
•ζev(rate(ζ))πζ•e

(y−t)Ttdt

P(Y ∈ dy)

=
ev(rate(ζ))πζ•

∫ y

0 πs?
etTπ′

•ζe
(y−t)Ttdt

P(Y ∈ dy)

=
c•ζ
ζ•(y)

πs?
b(y)

For the case ζ• = nil, the conditional expectation of the
number of times ζ has been taken amounts to consider the
conditional probability that ζ is the last incoming transition in
the absorption state at time y :

E[Nζ | Y = y] = P(Ty+ε = ζ | Y = y)

(1)

The next equation is obtained by using the Markov property :

=
P(Xy = •ζ)P(Y ∈ dy | Xy = •ζ, Ty+ε = ζ)

P(Y ∈ dy)

=
(πeyTπ′

s)ev(rate(ζ))

πeyTt

=
ev(rate(ζ))as(y)

πb(y)

It follows that :

E[Nv |Y = y] =

∑

ζ∈T(v) ev(v)

πs?
b(y)

×

{

c•ζ
ζ•(y) if ζ• 6= nil

aζ•(y) if ζ• = nil

