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1 Introduction

Quantitative methods seek to explore how a system evolves in the dimensions
of space and time. The usual notion of space is a discrete one such as
the reachable states of a high-level model, but others are possible, such
as fluid models. The usual notion of time is a continuous one such as the
average duration of activities, as used in stochastic processes governed by the
exponential distribution. Alternative models for the time domain include a
discrete “clock ticks” model as used in synchronous process algebras.

Taking only the split between continuous and discrete, and space and
time, one can fashion four classes of process algebras.

Discrete time, discrete space: Examples include Synchronous CCS [1].

Discrete space, continuous time: Examples include Markovian PEPA
with continuous-time Markov chain (CTMC) semantics [2] and Timed
Automata based on finitely many real-valued clocks [3].

Continuous space, discrete time: Examples include Fluid PEPA with
ordinary differential equation (ODE) semantics [4].

Continuous space, continuous time: Examples include partial labelled
Markov processes [5].

Other modelling options are available, such as those which have a mix of
continuous and discrete space or continuous and discrete time, e.g. Fluid
stochastic Petri nets [6] and Hybrid Automata [7].

This paper is concerned with understanding the relationship between
PEPA with its CTMC semantics [2] and PEPA with its ODE semantics [4].
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Fundamentally, the two interpretations are different because Markov chains
define a stochastic process whereas differential equations define a determin-
istic process.

A process is a stochastic process if knowledge of its values up
to and including time t allows us to probabilistically predict its
value at any infinitesimally later time t + dt.

Probability does not play a role in deterministic processes.

A process is a deterministic process if knowledge of its values up
to and including time t allows us to unambiguously predict its
value at any infinitesimally later time t + dt.

Clearly, the class of stochastic processes includes that of deterministic pro-
cesses.

Classical process algebras such as CCS [1] describe something else again,
namely a non-deterministic process.

A process is a non-deterministic process if knowledge of its values
up to and including time t does not allows us to even probabilis-
tically predict its value at any infinitesimally later time t + dt.

However, this difference is described in terms of the execution or simulation
of a process, where we attempt to predict the state of the system a small
distance ahead in the future. Most studies in PEPA modelling do not eval-
uate the system in this way, but rather through its long-run behaviour, as
seen from the steady-state probability distribution of the system.

Set against this, there are some similarities. Both differential equations
and Markov chains are memoryless processes. That is, predictions of future
behaviour depend only on the current state, not on the history of previous
states prior to this one. The memoryless property for Markov chains is
expressed formally as follows.

Pr(X(tn+1) = xn+1 | X(tn) = xn, . . . , X(t1) = x1)
= Pr(X(tn+1) = xn+1 | X(tn) = xn)

The difference between deterministic and stochastic processes is a funda-
mental one, not only a technicality. For example, for a deterministic process
we can determine with absolute certainty the state of the system at a point
arbitrarily far ahead in time. In contrast, for a stochastic process future
behaviour can be predicted with vanishing certainty. More precisely, the
question “Given its state at time t, what will the state of this stochastic
process be at time t+dt?” can be answered with a usefully significant prob-
ability only for small values of dt. (For a non-deterministic process it is not
possible to answer this even probabilistically, even for small dt.)
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Put another way, there is no notion of a random walk over a deterministic
process, and the simulation trace produced from the differential equations
is unique. We do not need to repeatedly re-run it and compute confidence
intervals. The solution is canonical; as the steady-state probability distri-
bution of a Markov chain is.

For complex systems, one might try either non-deterministic, stochastic
or deterministic modelling. When I watch a film with Jane, I’m usually
not paying enough attention. Thus I view the movie as a non-deterministic
process where pretty much anything might happen next. (“Huh? You mean
Bruce Willis was dead all the way through?”) Jane pays careful attention
to clues and dialogue and so she views the movie as a stochastic process;
one outcome is a lot more likely than the others. (“Hmm, no-one except the
little boy is talking to Bruce Willis.”) In reality, the movie is a determin-
istic process, which ends up the same way whether you are paying careful
attention or not.

2 Computing performance measures

In performance modelling based on continuous-time Markov chains, mea-
sures of system performance are often derived by a calculation which uses
the steady-state probability distribution. In this section, consider the ex-
ample of a queue modelled in PEPA.

Q0
def= (arrive, λ).Q1

Qi
def= (arrive, λ).Qi+1 + (serve, µ).Qi−1 (0 < i < N)

QN
def= (serve, µ).QN−1

A typical performance measure for a model based on queues is the aver-
age queue length, which is computed in different ways, depending on the
observations offered by the chosen semantics for the interpretation of the
model.

2.1 The continuous-time view

When modelling in the Markovian interpretation we obtain the steady-state
probability distribution, π. For a given queue bound, say 8, the average
queue length is computed by weighting the probability of a state (Qi denotes
the state where the queue is of length i) by the number of customers in the
queue at that point.

a =
8∑

i=0

iπ(i)
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2.2 The continuous-space view

We do not obtain a probability distribution from the differential equation
model. We solve the initial value problem for the ODEs to see how the
numbers of each type of component change from initial (known) values at
time t = 0, as time progresses forwards. Five sample plots for different
values of arrival rate λ and service rate µ are shown in Figure 1.

We cannot compute the average queue length in the same way as for
the CTMC because we do not have the stationary probability distribution.
Instead we calculate it by considering a collection of 90 (say) independent
queues all of capacity 8. The average queue length at time t is

a =
8∑

i=0

i
[Qi(t)]

90

where the term [Qi(t)] is understood to mean “the number of instances of Qi

at time t”. We divide by 90 because that is the number which we have in
our collection.

2.3 Comparing the results

We compute the average queue length numerically using both CTMC-based
and ODE-based approaches, up to a specified accuracy of the numerical so-
lution procedures (that is, a specified number of decimal places of accuracy).
When we compare these we find good agreement in the results, up to the
specified accuracy of the calculation of the solutions.

Av. queue length Av. queue length Difference
λ µ (CTMCs at equilibrium) (ODEs at t = 200)

1 4 0.333299009029 0.333298753978 2.5× 10−7

1 2 0.982387959648 0.982386995556 9.6× 10−7

1 1 4.000000000000 4.000000266670 −2.6× 10−7

2 1 7.017612040350 7.017613704440 −1.6× 10−6

4 1 7.666700990970 7.666701306580 −3.2× 10−7

The solutions are computed using two entirely different numerical proce-
dures. For the Markov chain, Jacobian over-relaxation, and for the differ-
ential equations, fifth-order Runge-Kutta with an adaptive step size.

It is pleasing to have such good agreement in the results but it is also
something of a mystery as to why the agreement is so good. To understand
this better, we look in the next section into the Markov chain and ODE
representations of a bounded queue.
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λ = 1, µ = 4 λ = 1, µ = 2

λ = 1, µ = 1 λ = 2, µ = 1

λ = 4, µ = 1

Figure 1: Time/value plots of the PEPA queue model interpreted as a system
of differential equations
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3 Relating Markov chains and ODEs

In order to illuminate the relationship between the CTMC and ODE in-
terpretations we consider a simple instance of the model above, a single
sequential component with only two states defining a two-place queue.

Q0
def= (arrive, λ).Q1

Q1
def= (arrive, λ).Q2 + (serve, µ).Q0

Q2
def= (serve, µ).Q1

3.1 The continuous-time view

This process is at least enough to contain a use of a choice (in Q1). When
interpreted against the operational semantics of Markovian PEPA [2] this
generates the following CTMC.

Q =

 −λ λ 0
µ −λ− µ λ
0 µ −µ


The stationary probability distribution of this Markov chain, π, is obtained
by solving the equation

πQ = 0

subject to the requirement that the distribution is a good probability dis-
tribution (i.e. sums to 1). ∑

π = 1

The symbolic solution of the above set of simultaneous linear equations is

π =

[
µ2

λ2 + µλ + µ2
,

µ λ

λ2 + µλ + µ2
,

λ2

λ2 + µλ + µ2

]
.

3.2 The continuous-space view

When interpreted against the ODE semantics of PEPA [4], the above model
instead gives rise to the following system of ordinary differential equations.

dQ0

dt
= −λQ0 + µQ1

dQ1

dt
= λQ0 − λQ1 − µQ1 + µQ2

dQ2

dt
= λQ1 − µQ2
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A system of differential equations has a stationary solution, which occurs,
as you might expect, when nothing is changing. That is, for our queue:

0 = −λQ0 + µQ1

0 = λQ0 − λQ1 − µQ1 + µQ2

0 = λQ1 − µQ2

If we re-write the above system of linear equations in vector-matrix form,
we find that it is:

0 = [Q0 Q1 Q2]Q

If we then solve this initial value problem for the above system of differential
equations for initial values of Q0 = 1, Q1 = 0, Q2 = 0 then, because of
conservation of mass, the equilibrium points will coincide with the steady-
state distribution of the CTMC model. Therefore all measures calculated
from the steady-state probability distribution (such as average queue length)
will coincide.

Thus, it seems likely that there is a correspondence between the steady-
state probability distribution and the stationary points of the differential
equations for any sequential PEPA component.

4 Conclusions

In the process algebra world, algebras with an interleaving semantics are
termed false concurrency. PEPA [2] was the first timed process algebra to
have an interleaving semantics allowing it to generate a CTMC. The inter-
leaving semantics gives rise to the state-space explosion problem. Process
algebras without an interleaving semantics are termed true concurrency pro-
cess algebras. The search for a true concurrency timed process algebra has
been a open problem for more than ten years.

For a PEPA model based on differential equations one does not compute
a probability distribution. The motivation to avoid this is that the proba-
bility distribution is the bottleneck in Markovian modelling, of potentially
vast size even for small models, growing exponentially.

PEPA [4] is the first timed process algebra to have a true concurrency
semantics via the mapping to ODEs. The true concurrency semantics
avoids the state-space explosion problem and opens the door to vast, as-
yet-unexplored domains of application.
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