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Background

This talk is about PEPA.

PEPA with CMTC semantics — a continuous-time process algebra
PEPA with ODE semantics — a continuous-space process algebra

Are they different?
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Background: Deterministic processes

A process is a deterministic process if knowledge of its values up to
and including time t allows us to unambiguously predict its value
at any infinitesimally later time t + dt.
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Background: ODEs are memoryless deterministic processes

A set of ordinary differential equations defines a memoryless
deterministic process.

X(t + dt) = X(t) + f (X(t), t)dt

dX

dt
= f (X, t)
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Background: Stochastic processes

A process is a stochastic process if knowledge of its values up to
and including time t allows us to probabilistically predict its value
at any infinitesimally later time t + dt.

Stochastic processes subsume deterministic processes.
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Background: CTMCs are memoryless stochastic processes

A continuous-time Markov chain is a memoryless stochastic
process.

Pr(X (tn+1) = xn+1 | X (tn) = xn, . . . ,X (t1) = x1)
= Pr(X (tn+1) = xn+1 | X (tn) = xn)
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Background: Same mean, different standard deviations
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Background: Same standard deviations, different mean
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Background: converting PEPA to ODEs

Two classes of PEPA models can be used to generate ODEs.

High/Low models1: High and low concentrations of components
are modelled, to indicate increase or decrease in
quantity.

Direct style2: Models encode the behaviour of the system directly
without the use of high and low labels.

This talk: models in direct style.

1“Automatically deriving ODEs from process algebra models of signalling
pathways”, Muffy Calder, Stephen Gilmore and Jane Hillston, Computational
Methods in Systems Biology (CMSB 2005), Edinburgh, Scotland, April 2005.

2“Fluid Flow Approximation of PEPA models”, Jane Hillston, Quantitative
Evaluation of SysTems (QEST 2005), Torino, Italy, September 2005.
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Outline

1 Quantitative modelling with CTMCs and ODEs
Modelling with quantified process algebras
Analysis based on Continuous-time Markov Chains
Analysis based on Ordinary Differential Equations

2 Performance modelling with process algebras
Performance Evaluation Process Algebra
PEPA model of jobs and servers
Analysis of the model

3 Comparing performance measures
Computed with continuous time
Computed with continuous space
Comparison of computed measures

4 Commentary and comparison
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Modelling with quantified process algebras
Analysis based on Continuous-time Markov Chains
Analysis based on Ordinary Differential Equations

Modelling with quantified process algebras

Tiny example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

This example defines a system with nine reachable states:

1 P1 ‖ P1

2 P1 ‖ P2

3 P1 ‖ P3

4 P2 ‖ P1

5 P2 ‖ P2

6 P2 ‖ P3

7 P3 ‖ P1

8 P3 ‖ P2

9 P3 ‖ P3

The transitions between states have quantified duration r which
can be evaluated against a CTMC or ODE interpretation.
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Modelling with quantified process algebras

Tiny example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

This example defines a system with nine reachable states:

1 P1 ‖ P1

2 P1 ‖ P2

3 P1 ‖ P3

4 P2 ‖ P1

5 P2 ‖ P2

6 P2 ‖ P3

7 P3 ‖ P1

8 P3 ‖ P2

9 P3 ‖ P3

The transitions between states have quantified duration r which
can be evaluated against a CTMC or ODE interpretation.
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Analysis based on Continuous-time Markov Chains

Tiny example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 0:

1 1.0000

2 0.0000

3 0.0000

4 0.0000

5 0.0000

6 0.0000

7 0.0000

8 0.0000

9 0.0000
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Analysis based on Continuous-time Markov Chains

Tiny example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 1:

1 0.1642

2 0.1567

3 0.0842

4 0.1567

5 0.1496

6 0.0804

7 0.0842

8 0.0804

9 0.0432
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Analysis based on Continuous-time Markov Chains

Tiny example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 2:

1 0.1056

2 0.1159

3 0.1034

4 0.1159

5 0.1272

6 0.1135

7 0.1034

8 0.1135

9 0.1012
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Analysis based on Continuous-time Markov Chains

Tiny example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 3:

1 0.1082

2 0.1106

3 0.1100

4 0.1106

5 0.1132

6 0.1125

7 0.1100

8 0.1125

9 0.1119
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Analysis based on Continuous-time Markov Chains

Tiny example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 4:

1 0.1106

2 0.1108

3 0.1111

4 0.1108

5 0.1110

6 0.1113

7 0.1111

8 0.1113

9 0.1116
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Analysis based on Continuous-time Markov Chains

Tiny example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 5:

1 0.1111

2 0.1110

3 0.1111

4 0.1110

5 0.1110

6 0.1111

7 0.1111

8 0.1111

9 0.1111
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Analysis based on Continuous-time Markov Chains

Tiny example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 6:

1 0.1111

2 0.1111

3 0.1111

4 0.1111

5 0.1110

6 0.1111

7 0.1111

8 0.1111

9 0.1111
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Analysis based on Continuous-time Markov Chains

Tiny example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 7:

1 0.1111

2 0.1111

3 0.1111

4 0.1111

5 0.1111

6 0.1111

7 0.1111

8 0.1111

9 0.1111
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Analysis based on Ordinary Differential Equations

Tiny example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 0: P1 2.0000
P2 0.0000
P3 0.0000

Stephen Gilmore. LFCS, University of Edinburgh. Continuous-time and continuous-space process algebras



Quantitative modelling with CTMCs and ODEs
Performance modelling with process algebras

Comparing performance measures
Commentary and comparison

Modelling with quantified process algebras
Analysis based on Continuous-time Markov Chains
Analysis based on Ordinary Differential Equations

Analysis based on Ordinary Differential Equations

Tiny example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 1: P1 0.8121
P2 0.7734
P3 0.4144
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Analysis based on Ordinary Differential Equations

Tiny example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 2: P1 0.6490
P2 0.7051
P3 0.6457
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Analysis based on Ordinary Differential Equations

Tiny example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 3: P1 0.6587
P2 0.6719
P3 0.6692
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Analysis based on Ordinary Differential Equations

Tiny example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 4: P1 0.6648
P2 0.6665
P3 0.6685

Stephen Gilmore. LFCS, University of Edinburgh. Continuous-time and continuous-space process algebras



Quantitative modelling with CTMCs and ODEs
Performance modelling with process algebras

Comparing performance measures
Commentary and comparison

Modelling with quantified process algebras
Analysis based on Continuous-time Markov Chains
Analysis based on Ordinary Differential Equations

Analysis based on Ordinary Differential Equations

Tiny example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 5: P1 0.6666
P2 0.6663
P3 0.6669
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Analysis based on Ordinary Differential Equations

Tiny example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 6: P1 0.6666
P2 0.6666
P3 0.6666
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Analysis based on Ordinary Differential Equations

Tiny example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 7: P1 0.6666
P2 0.6666
P3 0.6666
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Slightly larger example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 0: P1 3.0000
P2 0.0000
P3 0.0000
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Analysis based on Ordinary Differential Equations

Slightly larger example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 1: P1 1.1782
P2 1.1628
P3 0.6590
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Analysis based on Ordinary Differential Equations

Slightly larger example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 2: P1 0.9766
P2 1.0754
P3 0.9479
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Analysis based on Ordinary Differential Equations

Slightly larger example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 3: P1 0.9838
P2 1.0142
P3 1.0020

Stephen Gilmore. LFCS, University of Edinburgh. Continuous-time and continuous-space process algebras



Quantitative modelling with CTMCs and ODEs
Performance modelling with process algebras

Comparing performance measures
Commentary and comparison

Modelling with quantified process algebras
Analysis based on Continuous-time Markov Chains
Analysis based on Ordinary Differential Equations

Analysis based on Ordinary Differential Equations

Slightly larger example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 4: P1 0.9981
P2 0.9995
P3 1.0023
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Analysis based on Ordinary Differential Equations

Slightly larger example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 5: P1 1.0001
P2 0.9996
P3 1.0003
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Analysis based on Ordinary Differential Equations

Slightly larger example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 6: P1 1.0001
P2 0.9999
P3 1.0000
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Analysis based on Ordinary Differential Equations

Slightly larger example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 7: P1 1.0000
P2 0.9999
P3 0.9999
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Analysis based on Ordinary Differential Equations

Slightly larger example

P1
def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 8: P1 1.0000
P2 1.0000
P3 1.0000
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What just happened?

An ODE specifies how the value of some continuous variable varies
over continuous time. For example, the temperature in a container
may be modelled by an ODE describing how the temperature will
change dependent on the current temperature and pressure. The
pressure can be similarly modelled and the equations together form
a system of ODEs describing the state of the container.
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What just happened?

In a PEPA model the state at any current time is the local
derivative or state of each component of the model. When we
have large numbers of repeated components it can make sense to
represent each component type as a continuous variable, and the
state of the model as a whole as the set of such variables. The
evolution of each such variable can then be described by an ODE.
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What just happened?

The PEPA definitions of the component specify the activities
which can increase or decrease the number of components
exhibited in the current state. The cooperations show when the
number of instances of another component will have an influence
on the evolution of this component.
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Isn’t this just the Chapman-Kolmogorov equations?

It is possible to perform transient analysis of a continuous-time
Markov chain by solving the Chapman-Kolmogorov differential
equations:

dπ(t)

dt
= π(t)Q

[Stewart, 1994]

That’s not what we’re doing. We go directly to ODEs.
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What’s the value proposition?

The bottleneck for Markovian modelling of systems is the size
of the solution vector, which is bounded by the product of the
state-space sizes of the processes which are composed in
parallel (“state-space explosion”).

The size of the solution vector for the system of ODEs may be
exponentially smaller.
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Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

The rate at which an activity is performed is quantified by some
component in each co-operation. The symbol > indicates that the
rate value is quantified elsewhere (not in this component).

(α, r).P Prefix
P1 + P2 Choice
P1 BC

L
P2 Co-operation

P/L Hiding
X Variable
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Derived forms and additional syntax

P1 ‖ P2 is a derived form for P1 BC
∅

P2.

Because we are interested in transient behaviour we use the
deadlocked process Stop.

When working with large numbers of jobs and servers, we write
P[n] to denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)
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Because we are interested in transient behaviour we use the
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When working with large numbers of jobs and servers, we write
P[n] to denote an array of n copies of P executing in parallel.
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P1 ‖ P2 is a derived form for P1 BC
∅

P2.

Because we are interested in transient behaviour we use the
deadlocked process Stop.
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Modelling jobs and nodes

Consider jobs with a number of ordered stages. (Here three.)

Jobs must be loaded onto a node before execution. Stage 1 must
be completed before Stage 2 and Stage 2 before Stage 3. After
Stage 3 the job is cleared by being unloaded from the node, and is
then finished.

Here the number of compute jobs is larger than the number of
nodes available to execute them. Nodes specify the rate at which
jobs are completed.
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Jobs must be loaded onto a node before execution. Stage 1 must
be completed before Stage 2 and Stage 2 before Stage 3. After
Stage 3 the job is cleared by being unloaded from the node, and is
then finished.

Here the number of compute jobs is larger than the number of
nodes available to execute them. Nodes specify the rate at which
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PEPA model of jobs and nodes

Jobs

Job
def
= (load ,>).Job1

Job1
def
= (stage1 ,>).Job2

Job2
def
= (stage2 ,>).Job3

Job3
def
= (stage3 ,>).Clearing

Clearing
def
= (unload ,>).Finished

Finished
def
= Stop
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PEPA model of jobs and nodes

Nodes

NodeIdle
def
= (load , r0).Node1

Node1
def
= (stage1 , r1).Node2

Node2
def
= (stage2 , r2).Node3

Node3
def
= (stage3 , r3).Node4

Node4
def
= (unload , r0).NodeIdle
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PEPA model of jobs and nodes

System

NodeIdle[100] BC
L

Job[1000]

where L is { load , stage1 , stage2 , stage3 , unload }.
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Analysis of the model

Analysis of the model proceeds by choosing particular values for
the rates. The values below are chosen to make the analysis easy
to follow.

Rate Value Interpretation

r0 1 (Un)loading takes one time unit
r1 0.1 Stage 1 takes ten time units
r2 0.05 Stage 2 takes twenty time units
r3 0.025 Stage 3 takes forty time units
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Analysis of the model: Nodes

Stephen Gilmore. LFCS, University of Edinburgh. Continuous-time and continuous-space process algebras



Quantitative modelling with CTMCs and ODEs
Performance modelling with process algebras

Comparing performance measures
Commentary and comparison

Performance Evaluation Process Algebra
PEPA model of jobs and servers
Analysis of the model

Analysis of the model: Jobs
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A failure/repair model

We take the modelling decision to ignore the potential failures
which could occur during the very brief stages of loading and
unloading jobs.

We model a failure and repair cycle taking a job back to re-execute
the present stage (rather than restart the execution of the job from
the beginning).
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Nodes

NodeIdle
def
= (load , r0).Node1

Node1
def
= (stage1 , r1).Node2 + (fail1 , r4).NodeFailed1

Node2
def
= (stage2 , r2).Node3 + (fail2 , r4).NodeFailed2

Node3
def
= (stage3 , r3).Node4 + (fail3 , r4).NodeFailed3

Node4
def
= (unload , r0).NodeIdle

NodeFailed1
def
= (repair1 , r5).Node1

NodeFailed2
def
= (repair2 , r5).Node2

NodeFailed3
def
= (repair3 , r5).Node3

Stephen Gilmore. LFCS, University of Edinburgh. Continuous-time and continuous-space process algebras



Quantitative modelling with CTMCs and ODEs
Performance modelling with process algebras

Comparing performance measures
Commentary and comparison

Performance Evaluation Process Algebra
PEPA model of jobs and servers
Analysis of the model

Failure rates

With regard to the rates of failure of jobs, we estimate that one in
ten jobs may fail during stage 3 (and so one in 20 during stage 2
and one in 40 during stage 1) and that the cost of repairs is
relatively high, perhaps requiring a reboot of the failed node.

Rate Value Interpretation

r4 0.0025 On average 1 in 10 stage 3
jobs will fail

r5 0.0025 Repairing may require the reboot
of a node
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Analysis of the failure/repair model: Nodes
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Analysis of the failure/repair model: Jobs
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Computing performance measures: CTMCs

Queue example

Q0
def
= (arrive, λ).Q1 Qi

def
= (arrive, λ).Qi+1 + (serve, µ).Qi−1

Q8
def
= (serve, µ).Q7 (0 < i < 8)

A queue with arrivals at rate λ, service at rate µ and capacity 8
(thus 0 ≤ len < 9).
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Computing performance measures: CTMCs

Queue example

Q0
def
= (arrive, λ).Q1 Qi

def
= (arrive, λ).Qi+1 + (serve, µ).Qi−1

Q8
def
= (serve, µ).Q7 (0 < i < 8)

A queue with arrivals at rate λ, service at rate µ and capacity 8
(thus 0 ≤ len < 9). For λ = 1, µ = 4 steady-state is:

0 0.7500

1 0.1875

2 0.0468

3 0.0117

4 0.0029

5 0.0007

6 0.0000

7 0.0000

8 0.0000
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Computing performance measures: CTMCs

Queue example

Q0
def
= (arrive, λ).Q1 Qi

def
= (arrive, λ).Qi+1 + (serve, µ).Qi−1

Q8
def
= (serve, µ).Q7 (0 < i < 8)

A queue with arrivals at rate λ, service at rate µ and capacity 8
(thus 0 ≤ len < 9). For λ = 1, µ = 2 steady-state is:

0 0.5009

1 0.2504

2 0.1252

3 0.0626

4 0.0313

5 0.0156

6 0.0078

7 0.0039

8 0.0019
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Computing performance measures: CTMCs

Queue example

Q0
def
= (arrive, λ).Q1 Qi

def
= (arrive, λ).Qi+1 + (serve, µ).Qi−1

Q8
def
= (serve, µ).Q7 (0 < i < 8)

A queue with arrivals at rate λ, service at rate µ and capacity 8
(thus 0 ≤ len < 9). For λ = 1, µ = 1 steady-state is:

0 0.1111

1 0.1111

2 0.1111

3 0.1111

4 0.1111

5 0.1111

6 0.1111

7 0.1111

8 0.1111
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Computing performance measures: CTMCs

Queue example

Q0
def
= (arrive, λ).Q1 Qi

def
= (arrive, λ).Qi+1 + (serve, µ).Qi−1

Q8
def
= (serve, µ).Q7 (0 < i < 8)

A queue with arrivals at rate λ, service at rate µ and capacity 8
(thus 0 ≤ len < 9). For λ = 2, µ = 1 steady-state is:

0 0.0019

1 0.0039

2 0.0078

3 0.0156

4 0.0313

5 0.0626

6 0.1252

7 0.2504

8 0.5009
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Computing performance measures: CTMCs

Queue example

Q0
def
= (arrive, λ).Q1 Qi

def
= (arrive, λ).Qi+1 + (serve, µ).Qi−1

Q8
def
= (serve, µ).Q7 (0 < i < 8)

A queue with arrivals at rate λ, service at rate µ and capacity 8
(thus 0 ≤ len < 9). For λ = 4, µ = 1 steady-state is:

0 0.0000

1 0.0000

2 0.0000

3 0.0007

4 0.0029

5 0.0117

6 0.0468

7 0.1875

8 0.7500
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Calculating average queue length: CTMCs

To calculate the average queue length, weight the probability of a
state by the number of customers in the queue at that point.

a =
8∑

i=0

iπ(i)

Arrival rate Service rate Av. queue length
(λ) (µ) (at equilibrium)
1 4 0.3333
1 2 0.9824
1 1 4.0000
2 1 7.0176
4 1 7.6667
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To calculate the average queue length, weight the probability of a
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Queues and differential equations

CTMC: d
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Computing performance measures: ODEs

λ = 1

µ = 4
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Computing performance measures: ODEs

λ = 1

µ = 2
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Computing performance measures: ODEs

λ = 1

µ = 1
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Calculating average queue length: ODEs

To calculate the average queue length, weight the fraction of
queues of a given length by the number of customers in the queue.

a =
8∑

i=0

i
[Qi ]

90

Arrival rate Service rate Av. queue length
(λ) (µ) (at t = 50)
1 4 0.3333
1 2 0.9824
1 1 3.9914
2 1 7.0176
4 1 7.6667
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Comparison of computed measures

Av. queue length Av. queue length Difference
λ µ (CTMCs at equilibrium) (ODEs at t = 50)
1 4 0.333299009029 0.333298624889 3.8× 10−7

1 2 0.982387959648 0.982387242222 7.1× 10−7

1 1 4.000000000000 3.991409877780 8.6× 10−3

2 1 7.017612040350 7.017612412220 −3.7× 10−7

4 1 7.666700990970 7.666701341490 −3.5× 10−7
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Av. queue length Av. queue length Difference
λ µ (CTMCs at equilibrium) (ODEs at t = 50)
1 4 0.333299009029 0.333298624889 3.8× 10−7

1 2 0.982387959648 0.982387242222 7.1× 10−7

1 1 4.000000000000 3.991409877780 8.6× 10−3
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Av. queue length Av. queue length Difference
λ µ (CTMCs at equilibrium) (ODEs at t = 100)
1 4 0.333299009029 0.333298736822 2.7× 10−7

1 2 0.982387959648 0.982387201111 7.6× 10−7

1 1 4.000000000000 3.999979511110 2.0× 10−5

2 1 7.017612040350 7.017613132220 −1.1× 10−6

4 1 7.666700990970 7.666701089580 −9.8× 10−8
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Av. queue length Av. queue length Difference
λ µ (CTMCs at equilibrium) (ODEs at t = 200)
1 4 0.333299009029 0.333298753978 2.5× 10−7

1 2 0.982387959648 0.982386995556 9.6× 10−7

1 1 4.000000000000 4.000000266670 −2.6× 10−7

2 1 7.017612040350 7.017613704440 −1.6× 10−6

4 1 7.666700990970 7.666701306580 −3.2× 10−7
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Small queue example: CTMCs

Small queue example

Q0
def
= (arrive, λ).Q1 Q1

def
= (arrive, λ).Q2 + (serve, µ).Q0

Q2
def
= (serve, µ).Q1

Q =


−λ λ 0

µ −λ− µ λ

0 µ −µ

 πQ = 0
∑

π = 1

π =

[
µ2

λ2 + µλ + µ2
,

µ λ

λ2 + µλ + µ2
,

λ2

λ2 + µλ + µ2

]
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Small queue example

Q0
def
= (arrive, λ).Q1 Q1

def
= (arrive, λ).Q2 + (serve, µ).Q0

Q2
def
= (serve, µ).Q1

dQ0

dt
= −λQ0 + µQ1

dQ1

dt
= λQ0 − λQ1 − µQ1 + µQ2

dQ2

dt
= λQ1 − µQ2
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Small queue example: ODEs (stationary points)

Small queue example

Q0
def
= (arrive, λ).Q1 Q1

def
= (arrive, λ).Q2 + (serve, µ).Q0

Q2
def
= (serve, µ).Q1

0 = −λQ0 + µQ1
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Small queue example

Q0
def
= (arrive, λ).Q1 Q1

def
= (arrive, λ).Q2 + (serve, µ).Q0

Q2
def
= (serve, µ).Q1

0 = [Q0 Q1 Q2]


−λ λ 0

µ −λ− µ λ

0 µ −µ
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Small queue example: ODEs (and CTMC solution)
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What just happened?

We found that, for a sequential PEPA component, the differential
equations are recording the same information as found in the
infinitesimal generator matrix of the Markov chain.

The stationary points of the system of ODEs for an initial value
of 1 make up the stationary probability distribution of the CTMC.
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Isn’t this just the Chapman-Kolmogorov equations?

Now that we have discovered that we have a copy of a generator
matrix in the ODEs aren’t we just back to

dπ(t)

dt
= π(t)Q ?

Only if the system is a single sequential component. For even only
two parallel queues, the generator matrix is much larger than the
system of ODEs.
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Generator matrix for two parallel queues

Q =



−2 λ λ λ 0 0 0 0 0 0

µ −2 λ− µ 0 λ λ 0 0 0 0

µ 0 −2 λ− µ 0 λ 0 0 0 λ

0 µ 0 −λ− µ 0 λ 0 0 0

0 µ µ 0 −2 λ− 2 µ λ 0 λ 0

0 0 0 µ µ −λ− 2 µ λ 0 0

0 0 0 0 0 µ −2 µ µ 0

0 0 0 0 µ 0 λ −λ− 2 µ µ

0 0 µ 0 0 0 0 λ −λ− µ
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Steady-state for two parallel queues

π =



µ4

2 µ λ3+3 µ2λ2+2 µ3λ+λ4+µ4 ,

µ3λ
2 µ λ3+3 µ2λ2+2 µ3λ+λ4+µ4 ,

µ3λ
2 µ λ3+3 µ2λ2+2 µ3λ+λ4+µ4 ,

µ2λ2

2 µ λ3+3 µ2λ2+2 µ3λ+λ4+µ4 ,

µ2λ2

2 µ λ3+3 µ2λ2+2 µ3λ+λ4+µ4 ,

µ λ3

2 µ λ3+3 µ2λ2+2 µ3λ+λ4+µ4 ,

λ4

2 µ λ3+3 µ2λ2+2 µ3λ+λ4+µ4 ,

µ λ3

2 µ λ3+3 µ2λ2+2 µ3λ+λ4+µ4 ,

µ2λ2

2 µ λ3+3 µ2λ2+2 µ3λ+λ4+µ4
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Outline

1 Quantitative modelling with CTMCs and ODEs
Modelling with quantified process algebras
Analysis based on Continuous-time Markov Chains
Analysis based on Ordinary Differential Equations

2 Performance modelling with process algebras
Performance Evaluation Process Algebra
PEPA model of jobs and servers
Analysis of the model

3 Comparing performance measures
Computed with continuous time
Computed with continuous space
Comparison of computed measures

4 Commentary and comparison
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Commentary and comparison

Previous performance modelling with PEPA used
continuous-time Markov chains (CTMCs). These admit
steady-state and transient analysis (by solving the CTMC).

Steady-state is cheaper but less informative. Transient is more
informative but more expensive.

Major drawback: state-space explosion. Generating the
state-space is slow. Solving the CTMC is slow.

In practice effective only to systems of size 106 states, even
when using clever storage representations.
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state-space is slow. Solving the CTMC is slow.
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when using clever storage representations.
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In practice effective only to systems of size 106 states, even
when using clever storage representations.

Stephen Gilmore. LFCS, University of Edinburgh. Continuous-time and continuous-space process algebras



Quantitative modelling with CTMCs and ODEs
Performance modelling with process algebras

Comparing performance measures
Commentary and comparison

Commentary and comparison

Previous performance modelling with PEPA used
continuous-time Markov chains (CTMCs). These admit
steady-state and transient analysis (by solving the CTMC).

Steady-state is cheaper but less informative. Transient is more
informative but more expensive.

Major drawback: state-space explosion. Generating the
state-space is slow. Solving the CTMC is slow.

In practice effective only to systems of size 106 states, even
when using clever storage representations.

Stephen Gilmore. LFCS, University of Edinburgh. Continuous-time and continuous-space process algebras



Quantitative modelling with CTMCs and ODEs
Performance modelling with process algebras

Comparing performance measures
Commentary and comparison

Commentary and comparison

Mapping PEPA to ODEs admits course-of-values analysis by
solving the ODE (akin to transient analysis).

Major benefit: avoids state-space generation entirely.

Major benefit: ODE solving is effective in practice, leaning
towards suitability for interactive experimentation. Good for
modellers, gaining more insights into the system behaviour.

Effective for systems of size 10106
states and beyond.
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Discussion: process algebras and ODEs

Models in the PEPA stochastic process algebra are concise,
and in direct style they generate a system of ODEs the
number of which is linear in the number of distinct
component types in the PEPA model.

Thus there is no hidden cost in the use of the high-level
language but there are many advantages.

PEPA models can be checked for freedom from deadlock,
satisfaction of logical properties, or compared using relations
such as bisimulation.
As a compositional modelling language PEPA components can
be re-used in other models, promoting best practice.
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Analysis capabilities

Numerical integration, course-of-values analysis
Interested in the solution of initial value problems
Interested in finding stationary points
Verification at process algebra level (freedom from deadlock)

Relationship to other analysis methods

For sequential components, we can understand the relationship
between the CTMC and ODE solution via the (same)
generator matrix.
No such relationship exists for stochastic simulation and
Markov chains.
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False and true concurrency

In the process algebra world, algebras with an interleaving
semantics are termed false concurrency. PEPA [Hillston 1994] was
the first timed process algebra to have an interleaving semantics
allowing it to generate a CTMC. The interleaving semantics gives
rise to the state-space explosion problem.

Process algebras without an interleaving semantics are termed true
concurrency process algebras. The search for a true concurrency
timed process algebra has been a ten-year open problem.

PEPA [Hillston 2005] is the first timed process algebra to have a
true concurrency semantics via the mapping to ODEs. The true
concurrency semantics avoids the state-space explosion problem.
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