From Interaction Overview Diagrams to PEPA nets

Leïla Kloul PRiSM, Université de Versailles

Juliana Küster-Filipe School of Computer Science The University of Birmingham

Contents

- 1. Motivation
- 2. Design Notation
 - Dynamic Models in UML 2.0
 - IODs vs Activity Diagrams
 - Using IODs for Mobility
- 3. PEPA nets
- 4. Formal Translation
- 5. Conclusions

Contents

- 1. Motivation
- 2. Design Notation
 - Dynamic Models in UML 2.0
 - IODs vs Activity Diagrams
 - Using IODs for Mobility
- 3. PEPA nets
- 4. Formal Translation
- 5. Conclusions

Motivation

- Model and analyse mobile systems.
- System consists of several locations. Some objects can move between locations. Within a location objects can interact with others.
- Choice of modelling language: for designers vs for analysis.

Motivation

- Model and analyse mobile systems.
- System consists of several locations. Some objects can move between locations. Within a location objects can interact with others.
- Choice of modelling language: for designers vs for analysis.

UML 2.0 vs PEPA nets

Dynamic Models in UML 2.0

- Individual behaviour is modelled using state diagrams intra-object behaviour.
- Collaborative behaviour is modelled using interaction diagrams - inter-object behaviour. These diagrams include
 - Sequence diagrams
 - Interaction overview diagrams (IODs)

Sequence diagrams

- Are a visual scenario-based formalism.
- Describe the instances involved in an interaction, and the messages exchanged for the interaction (partially ordered over time).
- Contain two dimensions: a vertical dimension denoting time; a horizontal dimension representing the instances involved in the interaction.

Sequence diagrams in UML 2.0

- Have new improved structure and expressiveness (through so-called interaction fragments)
- Loops and conditional branching can be indicated more clearly
- Parallel behaviour can be expressed as well as ordering of non-related communications

Sequence diagrams in UML 2.0

- Have new improved structure and expressiveness (through so-called interaction fragments)
- Loops and conditional branching can be indicated more clearly loop alt
- Parallel behaviour can be expressed as well as ordering of non-related communications par strict

Example Diagram

Example Diagram

Example Diagram

Interaction Overview Diagram

- High level structuring mechanism for sequence diagrams.
- Special kind of activity diagram with control flow only.
- Nodes are interactions (sequence diagrams); edges show the order in which these interactions occur.
- Uses forks, joins, decision and merge nodes from activity diagrams.

Semantics of an IOD

Flattening

Flattening

Which Case to Allow?

- Both interpretations are sensible: strong and weak sequential composition.
- We need different notation for each case.

Strong Sequential Composition

Object Flow in ADs

Alternative input/output pins

Weak Sequential Composition

IODs for Mobility

- Nodes represent locations in the system (interaction name).
- Explicit object flow is used to indicate object mobility.
- $\{upperBound = value\}$ indicates the maximum number of tokens allowed in a pin.
- $\{initBound = value\}$ indicates the initial number of tokens in a pin.
- $\{weight = value\}$ indicates the number of tokens carried in an edge.

Secret Agents

Secret Agents

Secret Agents

