Grid-enabled Performance Analysis using Stochastic Logics

Tamas Suto

Department of Computing Imperial College London

8 September 2005

PASTA'05

_ ⊸

- < ∃ >

Tamas Suto GRAIL

Aim of Research Relevance

Aim of Research

- Develop new theoretical methods in stochastic logics and model-checking
- To enable the formal verification of natural language-based performance requirements in industrial-scale models
- Using distributed and parallel computing in a Grid environment

- ∢ ≣ ▶

Aim of Research Relevance

Relevance

Telecommunications Industry

- Need response time guarantees for wireless services
- QoS modelling and analysis for strategic planning essential

Health Care

 Need response time analysis of patient flow models to achieve QoS improvement amidst ever growing service demand

Financial Sector

 Need models and tools for predicting run-time performance of critical applications

< ≣ >

Stochastic Petri Nets

- A useful high-level modelling formalism for representing complex real-life systems
- Underlying Markov chains can be analysed for various performance measures of interest

Continuous Stochastic Logics

- Enable the rigorous, verifiable, expressive and composable specification of complex performance requirements using logical formulae
- ► Various different flavours: CSL, CSRL, aCSL, eCSL
- BUT: verification of logical formulae can be computationally very intensive on larger models

Extended Continuous Stochastic Logic (eCSL)

- One of the latest variants adapted to work on the SMSPN model level
- Allows to express a richer class of passage time quantities than CSL, as well as to specify requirements based on transient and steady-state distributions
- Simple formulae can be composed to form compound queries that can be verified against a model

The Power of eCSL

 Its ability to express, in a single compound logical formula, the availability, reliability and response-time requirements of a semi-Markovian system

$$\vec{m} \models \underbrace{\mathcal{S}_{P_1}(\psi_1)}_{\text{availability}} \land \underbrace{\mathcal{T}_{P_2}^{T_2}(\psi_2, \psi_3)}_{\text{reliability}} \land \underbrace{\mathcal{P}_{P_3}^{T_3}(\psi_4, \psi_5)}_{\text{response time}}$$

イロト イヨト イヨト イヨト

An Example of an eCSL Formula

"Does a passage occur within 10 seconds with at least 90% probability?"

$$\operatorname{Sat}(p_1[35] \land p_5[10]) \models \mathcal{P}^{[0,10)}_{\{0.9,1\}}(p_2[175], p_6[1])$$

・ロン ・四と ・日と ・日と

An Example of an eCSL Formula

$$\operatorname{Sat}(p_1[35] \land p_5[10]) \models \mathcal{P}^{[0,10)}_{\{0.9,1\}}(p_2[175], p_6[1])$$

• Here, the passage is defined by:

- 1. The satisfiability expression on the left \rightarrow start states of the passage
- The first argument of the P tuple → target states of the passage
- 3. The second argument of the \mathcal{P} tuple \rightarrow excluded states through which the passage must not pass
- The p_n[m] expressions define sets of states from the Petri net model

★ E ► ★ E ►

Problem 1

Problem: Stochastic logics are too abstract and hard to understand

Solution: Specify complex QoS requirements in natural language, together with graphical methods → map them automatically onto eCSL

- Simplifies requirements specification
- Maintains expressiveness and analysis power
- No understanding of logical formalism is required

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Problem 2

Problem: Mapping of eCSL formulae onto interface languages of existing analysis tools has to be performed manually

Solution: Automatic performance query mapping

< 4 1 → 4

- < ∃ >

Problem 3

Problem: Limited solution capacity \rightarrow no industrial-scale models

Solution: Use Grid cluster as computational backbone

 \rightarrow vastly extended solution capacity

イロト イヨト イヨト イヨト

Problem 4

Problem: No automated method for decomposing formulae and scheduling the execution of sub-computations

Solution: Automatic analysis of execution dependencies to produce optimised distribution of computation

- ∢ ≣ ▶

Requirements Specification Requirements Mapping Extensions to eCSL

Performance Requirements Specification

Natural language input processing aided by graphical specification methods

Tamas Suto G

イロト イヨト イヨト イヨト

Requirements Specification Requirements Mapping Extensions to eCSL

Performance Requirements Mapping

- eCSL will serve as the intermediary between specification and computation
- Hence, performance requirements need to be mapped onto eCSL
- The eCSL formulae will then be decomposed into a semantic tree-style representation that facilitates optimisation of computation

An Example

"What is the time required to perform a passage between the sets of states A and B ?"

イロト イヨト イヨト イヨト

Requirements Specification Requirements Mapping Extensions to eCSL

Extensions to eCSL

- Expressiveness of eCSL will be further extended to allow the representation of an even wider range of performance requirements
- Arsenal of possible model-level questions will be enlarged, incorporating reward structures and transition-specific metrics

Tool Development Query Processing Grid Scheduling

Tool Development

- A tool featuring all achievements of our research will be developed
- With applications in a wide range of academic and industrial fields

イロト イヨト イヨト イヨト

Tool Development Query Processing Grid Scheduling

Query Processing

- Establish performance requirements and represent in a logical formula
- Disseminate and analyse for opportunities of evaluation optimisation

イロト イヨト イヨト イヨト

2

Tool Development Query Processing Grid Scheduling

Distribution and Grid Scheduling

- Query execution will be distributed amongst existing analysis tools
- Tools will become Grid-enabled and computation will be distributed and parallelised on a Grid architecture
- Optimal Grid scheduling strategies will be developed to maximise the Grid technology exploitation

Thank you for your attention.

Any questions?

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -

æ