Modelling of Packet Loss
 in an Asynchronous Packet Switch using PEPA

Wim Vanderbauwhede
Department of Computing Science
University of Glasgow

Overview

- Asynchronous Packet Switch
- Building the PEPA Model
- Some Results
- Conclusion

Asynchronous Packet Switch (1)

Asynchronous Packet Switch (2)

Basic Functionality

- Switches data packets between ports
- Contention occurs when two or more packets want to occupy the same destination port
- Buffering is used to resolve contention

Asynchronous Packet Switch (3)

Properties

- Store-and-forward: packet is stored in buffer cell, then forwarded
- Packet must have left buffer cell completely before another packet can occupy the same cell
- Simultaneous egress from buffers is possible (transparent)
- Switch fabric is a black box

Asynchronous Packet Switch (4)

Schematic

Asynchronous Packet Switch (5)

Steady-State Packet Loss

- Important performance measure for packet switch
- Depends on load and buffer depth,
- But also on traffic distribution and switch architecture.
- PEPA is useful to analyse the former, for the latter a DES is required.

Asynchronous Packet Switch (6)

Queue Model for Packet Switch

The switch can be modelled as a system of c interacting $M / M / c / N$ queues:

The PEPA Model for the Switch

Organisation of the PEPA Model

G: traffic generator; Q: buffer queue; M: output multiplexer
//: components in parallel (empty interaction)
\rightarrow : direction of active/passive interaction

Building the Model - Traffic generator

Two-state traffic generator

- Models packet traffic for packets with variable length and interarrival time
- We use following definitions:
$\tau_{o n}, \tau_{o f f}$: time period during which the source is on resp. off.
$\lambda_{o n}=1 / \tau_{o n}, \lambda_{o f f}=1 / \tau_{o f f}$: the corresponding rates
- Model: $\quad G=\left(o f f, \lambda_{o f f}\right) \cdot\left(o n, \lambda_{o n}\right) \cdot G$

Building the Model - Buffer system (1)

Buffer System Model: Definitions and Notations

- Define the base state Q_{i} as the set of states in which i out of N buffers are occupied
- Let j be the number of packets entering the buffer, k the number of packet leaving the buffer.
- We introduce following notation:

$$
Q_{i}^{+k}, i \in\{0, \ldots, N\} ; j \in\{0,1\} ; k \in\{0, \ldots, c\}
$$

- Read as: "The queue Q has i filled buffers, j packets are arriving and k are leaving"

Building the Model - Buffer system (2)

Analysis of states and transitions for a single $M / M / c / N$ queue

- Example for M/M/1/N queue

Building the Model - Buffer system (3)

Actions and Rates

- State transitions are caused by the arrival of a packet or the arrival of a signal telling a packet to leave.
- Presence/absence of a packet at the ingress/egress port is modelled by the actions $\{o n, o f f\}_{\{i n, o u t\}}$ with corresponding rates $\lambda_{\{o n, o f f\},\{i n, o u t\}}$
- Buffer filling rate $\lambda_{o n, i n}$: models the packet length, and therefore $\lambda_{\text {on,in }} \equiv \lambda_{\text {on,out }}$.
- Signalling rate $\lambda_{\text {off, out }}$: models the delay between the the egress port becoming free and the packet starting to leave the buffer.

Building the Model - Buffer system (4)

Model for single egress ($c=1$):

$$
\begin{aligned}
& Q_{i}^{+0}=\left(o f f_{\text {in }}, \lambda_{o f f, \text { in }}\right) \cdot Q_{i}^{+0}+\left(o f f_{\text {out }}, \lambda_{o f f, o u t}\right) \cdot Q_{i}^{+0} \\
& Q_{i}^{-0}=\left(o n_{\text {in }}, \lambda_{\text {on, in }}\right) \cdot Q_{i+1}^{+0}+\left(o f f_{\text {out }}, \lambda_{\text {off }, \text { out }}\right) \cdot Q_{i}^{+-1} \\
& Q_{i}^{+-1}=\left(o f f_{\text {in }}, \lambda_{\text {off }, \text { in }}\right) \cdot Q_{i}^{+1}+\left(o n_{\text {out }}, \lambda_{\text {on }, \text { out }}\right) \cdot Q_{i-1}^{+0} \\
& Q_{i}^{-1}=\left(\text { on }_{\text {in }}, \lambda_{\text {on }, \text { in }}\right) \cdot Q_{i+1}^{+0}+\left(\text { on }_{\text {out }}, \lambda_{\text {on }, \text { out }}\right) \cdot Q_{i-1}^{+1}
\end{aligned}
$$

Building the Model - Buffer system (5)

Introducing Drop States

- We are interested in the packet loss in steady state.
- We calculate this as sum of the probabilities of being in a state where the packet is being dropped.
- To do so, we must introduce "drop states".
- The full state $(i=N)$ leads to a drop state on arrival of a packet:

$$
\begin{aligned}
Q_{N}^{+0} & =\left(\text { off } f_{\text {in }}, \lambda_{o f f, \text { in }}\right) \cdot Q_{N, d}^{-0}+\left(o f f_{\text {out }}, \lambda_{o f f, \text { out }}\right) \cdot Q_{N}^{+-1} \\
Q_{N}^{+0} & =\left(o f f_{\text {in }}, \lambda_{o f f, \text { in }}\right) \cdot Q_{N, d}^{+1}+\left(o n_{\text {out }}, \lambda_{\text {on }, \text { out }}\right) \cdot Q_{N-1}^{+0}
\end{aligned}
$$

Building the Model - Buffer system (5)

- All base states $(0<i \leq N)$ gain 2 drop states: while the packet is being dropped, a packet can start/stop leaving the buffer, leading to a lower base state.

$$
\begin{aligned}
Q_{i, d}^{-0} & =\left(o n_{\text {in }}, \lambda_{\text {on }, \text { in }}\right) \cdot Q_{i}^{+0}+\left(o f f_{\text {out }}, \lambda_{\text {off }, \text { out }}\right) \cdot Q_{i, d}^{+1} \\
Q_{i, d}^{-1} & =\left(o n_{\text {in }}, \lambda_{\text {on }, \text { in }}\right) \cdot Q_{i}^{+-1}+\left(o n_{\text {out }}, \lambda_{\text {on }, \text { out }}\right) \cdot Q_{i-1, d}^{-1}
\end{aligned}
$$

Building the Model - Buffer system (6)

Multiple Egress Model:

- Let $m=\min (N, c)$ and $\lambda_{\{o n, o f f\}, o u t, k}=k . \lambda_{\{o n, o f f\}, o u t}$.
- The previous equations change to $(0<i<N, 0<k<m)$:

$$
\begin{array}{r}
Q_{i}^{+-k}=\left(o f f_{\text {in }}, \lambda_{\text {off }, \text { in }}\right) \cdot Q_{i}^{+k}+\left(o n_{\text {out }}, \lambda_{\text {on }, \text { out }, k}\right) \cdot Q_{i-1}^{-(k-1)} \\
+\left(o f f_{\text {out }}, \lambda_{\text {off }, \text { out }, m-k}\right) \cdot Q_{i}^{-(k+1)} \\
Q_{i}^{-(k+1)}=\left(o f f_{\text {in }}, \lambda_{\text {off }, \text { in }}\right) \cdot Q_{i+1}^{+-k}+\left(o n_{\text {out }}, \lambda_{\text {on }, \text { out }, k}\right) \cdot Q_{i-1}^{+-1}+\frac{+1}{-(k-1)} \\
\\
+\left(o f f_{\text {out }}, \lambda_{\text {off }, \text { out }, m-k}\right) \cdot Q_{i}^{-(k+1)}
\end{array}
$$

Building the Model - Buffer system (7)

Multiple Egress Drop States

- For $0<i \leq N, 0<k<m$

$$
\begin{array}{r}
Q_{i, d}^{+-k}=\left(o f f_{\text {in }}, \lambda_{o f f, \text { in }}\right) \cdot Q_{i}^{+-k}+\left(o n_{\text {out }}, \lambda_{\text {on }, \text { out }, k}\right) \cdot Q_{i-1, d}^{-(-1-1)}+\substack{+1 \\
+1 \\
-(k+1)} \\
\\
+\left(o f f_{\text {out }}, \lambda_{o f f, \text { out }, m-k}\right) \cdot Q_{i, d}^{-(k+1)}
\end{array}
$$

- For $0<i \leq N, k=0$
$Q_{i, d}^{+-0}=\left(o f f_{\text {in }}, \lambda_{o f f, \text { in }}\right) \cdot Q_{i}^{+0}+\left(o f f_{\text {out }}, \lambda_{o f f, o u t, m-k}\right) \cdot Q_{i, d}^{+1}$
- For $0<i \leq N, k=m$

$$
Q_{i, d}^{-m}=\left(o f f_{\text {in }}, \lambda_{o f f, \text { in }}\right) \cdot Q_{i}^{-{ }_{i}^{-m}}+\left(\text { on }_{\text {out }}, \lambda_{\text {on }, \text { out }, k}\right) \cdot Q_{i-1, d}^{\substack{+(m-1)}}
$$

Building the Model - Complete Switch

Modelling Interacting Queues

- To combine C of the above queues Q_{c} with c outputs into a switch, we first introduce a multiplexer M :

$$
M=\left(o n_{\text {out }}, T\right) \cdot\left(o f f_{\text {out }}, \lambda_{\text {off }, \text { out }}\right) \cdot M
$$

- The final switch consists of C cooperations of G and Q_{c} in parallel, cooperating with c multiplexers in parallel

$$
\begin{aligned}
& S_{c}=G \underset{o n_{i n}, f_{f i n}}{\not f_{i n}} Q_{c} \\
& \text { Switch }=\left(S_{c}\|\ldots\| S_{c}\right)_{\substack{\nsim \\
\text { onotut, of ofout }}}^{\otimes}(M\|\ldots\| M)
\end{aligned}
$$

Using the PEPA Model

Toolchain for this work

- PEPA Workbench to calculate the TRM
- MatLab to calculate the steady-state solution
- A Perl script to drive the simulation:
- generate the input file for the PEPA Workbench \& run
- generate a MatLab file \& run
- calculate the packet loss probability from the steady-state
- The Simulation::Automate Perl package to automate the DOE

Some Results (1)

Influence of the Signalling Delay $\left(\frac{1}{\lambda_{\text {off.out }}}\right)$

M/M/c/N queue analysis with PEPA Workbench:
influence of signalling rate

Some Results (2)

Comparison with Discrete Event Simulator

Packet loss for 2×2 switch: PEPA Workbench+MatLab vs DES

Some Results (3)

Comparison with Rate-based Model

PEPA models for 2×2 switch: on/off vs rate-based

Conclusion

- A methodology for analytical modelling of steady-state packet loss in an asynchronous packet switch
- For asynchronous buffered switches, the state space is very large
- Building a PEPA model with explicit states is non-trivial

Appendix: Rate-based Model (1)

Rate-Based PEPA Model

- Define a traffic generator generating packets at rate λ :

$$
G=(i n, \lambda) \cdot G
$$

- And a multiplexer taking in packets at rate μ, defined as $\frac{\lambda}{\rho}$, with ρ the load:

$$
M=(o u t, \mu) \cdot M
$$

Appendix: Rate-based Model (2)

- The queue model is:

$$
\begin{gathered}
Q_{0}=(\text { in }, \lambda) \cdot Q_{1} \\
Q_{i}=(\text { in }, \top) \cdot Q_{i+1}+(\text { out }, \mu) \cdot Q_{i-1} \quad, 0<i<N \\
Q_{N}=(\text { in }, \top) \cdot Q_{N d}+(\text { out }, \mu) \cdot Q_{N-1} \\
Q_{N d}=(\text { in }, \top) \cdot Q_{N d}+(\text { out }, \mu) \cdot Q_{N-1}
\end{gathered}
$$

