

Modelling of Packet Loss in an Asynchronous Packet Switch using PEPA

Wim Vanderbauwhede

Department of Computing Science University of Glasgow

Asynchronous Packet Switch

Building the PEPA Model

Some Results

Conclusion

Asynchronous Packet Switch (1)

Basic Functionality

- Switches data packets between ports
- Contention occurs when two or more packets want to occupy the same destination port
- Buffering is used to resolve contention

Properties

- Store-and-forward: packet is stored in buffer cell, then forwarded
- Packet must have left buffer cell completely before another packet can occupy the same cell
- Simultaneous egress from buffers is possible (transparent)
- Switch fabric is a black box

Asynchronous Packet Switch (4)

Schematic

Steady-State Packet Loss

- Important performance measure for packet switch
- Depends on load and buffer depth,
- But also on traffic distribution and switch architecture.
- PEPA is useful to analyse the former, for the latter a DES is required.

Queue Model for Packet Switch

The switch can be modelled as a system of *c* interacting M/M/c/N queues:

The PEPA Model for the Switch

Organisation of the PEPA Model

G: traffic generator; Q: buffer queue; M: output multiplexer

//: components in parallel (empty interaction)

 \rightarrow : direction of active/passive interaction

Two-state traffic generator

- Models packet traffic for packets with variable length and interarrival time
- We use following definitions:

 τ_{on} , τ_{off} : time period during which the source is *on* resp. *off*. $\lambda_{on} = 1/\tau_{on}$, $\lambda_{off} = 1/\tau_{off}$: the corresponding rates

• Model: $G = (off, \lambda_{off}).(on, \lambda_{on}).G$

Buffer System Model: Definitions and Notations

- Define the base state Q_i as the set of states in which i out of N buffers are occupied
- Let j be the number of packets entering the buffer, k the number of packet leaving the buffer.
- We introduce following notation:

$$Q_{i}^{^{+j}}, i \in \{0,...,N\}; j \in \{0,1\}; k \in \{0,...,c\}$$

Read as: "The queue Q has i filled buffers, j packets are arriving and k are leaving"

Analysis of states and transitions

for a single M/M/c/N queue

Example for M/M/1/N queue

Actions and Rates

- State transitions are caused by the arrival of a packet or the arrival of a signal telling a packet to leave.
- Presence/absence of a packet at the ingress/egress port is modelled by the actions $\{on, off\}_{\{in, out\}}$ with corresponding rates $\lambda_{\{on, off\}, \{in, out\}}$
- Buffer filling rate $\lambda_{on,in}$: models the packet length, and therefore $\lambda_{on,in} \equiv \lambda_{on,out}$.
- Signalling rate $\lambda_{off,out}$: models the delay between the the egress port becoming free and the packet starting to leave the buffer.

Model for single egress (c = 1):

$$Q_{i}^{+0} = (off_{in}, \lambda_{off,in}) \cdot Q_{i}^{+1} + (off_{out}, \lambda_{off,out}) \cdot Q_{i}^{+1}$$

$$Q_{i}^{+0} = (on_{in}, \lambda_{on,in}) \cdot Q_{i+1}^{-0} + (off_{out}, \lambda_{off,out}) \cdot Q_{i}^{-1}$$

$$Q_{i}^{+0} = (off_{in}, \lambda_{off,in}) \cdot Q_{i}^{-1} + (on_{out}, \lambda_{on,out}) \cdot Q_{i-1}^{-0}$$

$$Q_{i}^{+1} = (on_{in}, \lambda_{on,in}) \cdot Q_{i+1}^{-1} + (on_{out}, \lambda_{on,out}) \cdot Q_{i-1}^{-0}$$

Introducing Drop States

- We are interested in the **packet loss in steady state**.
- We calculate this as sum of the probabilities of being in a state where the packet is being dropped.
- To do so, we must introduce "drop states".
- The full state (i = N) leads to a drop state on arrival of a packet:

$$Q_{N}^{+0} = (off_{in}, \lambda_{off,in}) \cdot Q_{N,d}^{-0} + (off_{out}, \lambda_{off,out}) \cdot Q_{N}^{-1}$$

$$Q_{N}^{+0} = (off_{in}, \lambda_{off,in}) \cdot Q_{N,d}^{-1} + (on_{out}, \lambda_{on,out}) \cdot Q_{N-1}^{-0}$$

■ All base states (0 < i ≤ N) gain 2 drop states: while the packet is being dropped, a packet can start/stop leaving the buffer, leading to a lower base state.

$$Q_{i,d}^{+1} = (on_{in}, \lambda_{on,in}) \cdot Q_{i}^{-0} + (off_{out}, \lambda_{off,out}) \cdot Q_{i,d}^{-1}$$

$$Q_{i,d}^{+1} = (on_{in}, \lambda_{on,in}) \cdot Q_{i}^{-1} + (on_{out}, \lambda_{on,out}) \cdot Q_{i-1,d}^{-0}$$

Multiple Egress Model:

• Let m = min(N, c) and $\lambda_{\{on, off\}, out, k} = k.\lambda_{\{on, off\}, out}$.

The previous equations change to (0 < i < N, 0 < k < m):

$$Q_{i}^{+0} = (off_{in}, \lambda_{off, in}) \cdot Q_{i}^{+1} + (on_{out}, \lambda_{on, out, k}) \cdot Q_{i-1}^{+0} + (off_{out}, \lambda_{off, out, m-k}) \cdot Q_{i}^{-(k-1)}$$

$$Q_{i}^{+1} = (off_{in}, \lambda_{off, in}) \cdot Q_{i+1}^{+0} + (on_{out}, \lambda_{on, out, k}) \cdot Q_{i-1}^{+1} + (off_{out}, \lambda_{off, out, m-k}) \cdot Q_{i}^{-(k-1)}$$

Multiple Egress Drop States

 \blacksquare For $0 < i \leq N, 0 < k < m$

$$Q_{i,d}^{+1} = (off_{in}, \lambda_{off,in}) \cdot Q_{i}^{+0} + (on_{out}, \lambda_{on,out,k}) \cdot Q_{i-1,d}^{+1} + (off_{out}, \lambda_{off,out,m-k}) \cdot Q_{i,d}^{-(k-1)}$$

• For
$$0 < i \le N, k = 0$$

 $Q_{i,d}^{+1} = (off_{in}, \lambda_{off,in}) \cdot Q_i^{+0} + (off_{out}, \lambda_{off,out,m-k}) \cdot Q_{i,d}^{+1}$
• For $0 < i \le N, k = m$

$$Q_{i,d}^{^{+1}} = (off_{in}, \lambda_{off,in}).Q_{i}^{^{+0}} + (on_{out}, \lambda_{on,out,k}).Q_{i-1,d}^{^{+1}}$$

Modelling Interacting Queues

• To combine *C* of the above queues Q_c with *c* outputs into a switch, we first introduce a multiplexer *M*:

$$M = (on_{out}, \top).(off_{out}, \lambda_{off,out}).M$$

The final switch consists of C cooperations of G and Q_c in parallel, cooperating with c multiplexers in parallel

$$S_{c} = G \bigotimes_{on_{in}, off_{in}} Q_{c}$$

Switch = $(S_{c} \parallel ... \parallel S_{c}) \bigotimes_{on_{out}, off_{out}} (M \parallel ... \parallel M)$

Toolchain for this work

- PEPA Workbench to calculate the TRM
- MatLab to calculate the steady-state solution
- A Perl script to drive the simulation:
 - generate the input file for the PEPA Workbench & run
 - generate a MatLab file & run
 - calculate the packet loss probability from the steady-state
- The Simulation::Automate Perl package to automate the DOE

Some Results (1)

Comparison with Discrete Event Simulator

Some Results (3)

Comparison with Rate-based Model

- A methodology for analytical modelling of steady-state packet loss in an asynchronous packet switch
- For asynchronous buffered switches, the state space is very large
- Building a PEPA model with explicit states is non-trivial

Rate-Based PEPA Model

• Define a traffic generator generating packets at rate λ :

 $G = (in, \lambda).G$

• And a multiplexer taking in packets at rate μ , defined as $\frac{\lambda}{\rho}$, with ρ the load:

$$M = (out, \mu).M$$

The queue model is:

$$Q_0 = (in, \lambda).Q_1$$

 $Q_i = (in, \top).Q_{i+1} + (out, \mu).Q_{i-1}$, $0 < i < N$
 $Q_N = (in, \top).Q_{Nd} + (out, \mu).Q_{N-1}$
 $Q_{Nd} = (in, \top).Q_{Nd} + (out, \mu).Q_{N-1}$