
Chapter 6

Implementing Mobile Haskell
André Rauber Du Bois1, Phil Trinder1, Hans-Wolfgang Loidl2

Abstract Mobile computation enables computations to move between a dynamic
set of locations and is becoming an increasingly important paradigm. Mobile
Haskell (mHaskell) is an extension of Haskell that supports mobile computation
in open distributed systems i.e. dynamically changing systems where multiple ex-
ecuting programs can interact using a predefined protocol. This paper outlines the
mHaskell primitives, discusses the design and pragmatics of their implementation
and includes preliminary performance comparisons with Jocaml. The implemen-
tation addresses several challenges, including serialisation of programs in a lazy
language with sharing and using a combination of bytecode and machine code to
manage the common software base, i.e. to determine what to communicate be-
tween locations.

6.1 INTRODUCTION

Mobile Haskell [6] (mHaskell) is an extension of the purely functional Haskell
language designed to facilitate the construction of distributed mobile software.
As depicted in Fig. 6.1, mHaskell extends Concurrent Haskell [21], an extension
supporting concurrent programming, with higher order communication channels
called Mobile Channels (MChannels), that allow the communication of arbitrary
Haskell values including functions, IO actions and channels.

The main features of the mHaskell implementation are:

� mHaskell supports the construction of open systems, enabling programs to
connect and communicate with other programs and to discover new resources
in the network. The abstractions we use to provide this basic functionality are

1School of Mathematical and Computer Science, Heriot-Watt University, Edinburgh
EH14 4AS, Scotland, Email:

�
dubois,trinder � @macs.hw.ac.uk

2Ludwig-Maximilians-Universität München, Institut für Informatik, D 80538
München, Germany, Email: hwloidl@informatik.uni-muenchen.de

79

MChannels and remote evaluation and both have fast implementations in the
RTS (runtime system) using C and TCP/IP sockets.

� mHaskell is portable. It is implemented as an extension of the GHC (Glas-
gow Haskell Compiler) [10] compiler that has been ported to many different
architectures and operating systems. Our extensions are implemented using
standard C and TCP/IP sockets, maintaining a high degree of portability.

� mHaskell is designed to run on heterogeneous networks. Mobile languages
designed to work on global distributed systems, such as the Internet, must be
able to communicate code between machines of different architectures and op-
erating systems. The usual approach for communicating computations on het-
erogeneous networks is by compiling programs into architecture-independent
byte-code. GHC combines both an optimising compiler and an interactive en-
vironment called GHCi, which compiles user defined functions into byte-code,
and this technology could be used by mHaskell for communicating computa-
tions on heterogeneous networks.

� mHaskell takes a hybrid approach, combining byte-code and machine code.
GHCi is designed for fast compilation and linking. It generates machine inde-
pendent byte-code that is linked to the fast native-code available for the basic
primitives of the language. As the basic modules in GHC are compiled into
machine code and are present in every standard installation of the compiler,
the routines for communication have to send only the machine independent
part of the program and link it to the local definitions of the machine depen-
dent part when the code is received. This gives us the advantage of having
much faster code than using only byte-code.

Haskell 98

Haskell

mHaskell

Concurrent

FIGURE 6.1 mHaskell is an extension of Concurrent Haskell

This paper is organised as follows: In the next section we present the MChan-
nels communication primitives and the primitives for resource discovery and reg-
istration. In section 6.3 the implementation of mHaskell is described, first by giv-
ing a general overview of the platform and its challenges and then by describing

80

each of the design decisions. Finally, the low level issues of the implementation
are discussed in section 6.4.

6.2 MOBILE HASKELL

6.2.1 Communication Primitives

Fig. 6.2 shows the MChannel primitives. Haskell with Ports [12] has similar
primitives but restricts the type of values that can be communicated to basic values
and data types, no functions or IO computations can be communicated.

data MChannel a -- abstract
type HostName = String
type ChanName = String

newMChannel :: IO (MChannel a)
writeMChannel :: MChannel a -> a -> IO ()
readMChannel :: MChannel a -> IO a
registerMChannel :: MChannel a -> ChanName -> IO ()
unregisterMChannel:: MChannel a -> IO()
lookupMChannel :: HostName -> ChanName ->

IO (Maybe (MChannel a))

FIGURE 6.2 Mobile Channels

The newMChannel function is used to create a mobile channel and the func-
tions writeMChannel and readMChannel are used to write/read data from/to
a channel. MChannels are synchronous and have similar semantics to Concur-
rent Haskell channels: when a value is written to a channel the current thread
blocks until the value is received in the remote host. In the same way when
a readMChannel is performed in an empty MChannel it will block until a
value is received on that MChannel. The functions registerMChannel and
unregisterMChannel register/unregister channels in a name server. Once
registered, a channel can be found by other programs using lookupMChannel
which retrieves a mobile channel from the name server. A name server is always
running on every machine of the system and a channel is always registered in
the local name server with the registerMChannel function. MChannels are
single-reader channels, meaning that only the program that created the MChan-
nel can read values from it. Values are evaluated to normal form before being
communicated.

Fig. 6.3 depicts a pair of simple programs using MChannels. First a program
running on a machine called ushas registers a channel mv with the name "myC"
in its local name server. When registered the channel can be seen by other ma-

81

Name Server Name Server

Prog 1

1.
registerMchannel mv "myC"

Prog 2

ushas.hw.ac.uk

lookupMChannel "ushas.hw.ac.uk" "myC"
2.

lxtrinder.hw.ac.uk

3. Connection is established

FIGURE 6.3 Example using MChannels

chines using the lookupMChannel primitive. After the lookup, the connection
between the two machines is established and communication is performed with
the functions writeMChannel and readMChannel.

6.2.2 Discovering Resources

One of the objectives of mobile programming is to better exploit the resources
available in a network. Hence, if a program migrates from one node of the network
to another, this program must be able to discover the resources available at the
destination. By resource, we mean anything that the mobile computation would
like to access in a remote host, from simple files to databases.

type ResName = String

registerRes :: a -> ResName -> IO ()
unregisterRes :: ResName -> IO ()
lookupRes :: ResName -> IO (Maybe a)

FIGURE 6.4 Primitives for resource discovery

Fig. 6.4 presents the three mHaskell primitives for resource discovery and reg-
istration. All machines running mHaskell programs must also run a registration
service for resources. The registerRes function takes a name (ResName)
and a resource (of type a) and registers this resource with the name given. The
function unregisterRes unregisters a resource associated with a name and
lookupRes takes a ResName and returns a resource registered with that name
in the local registration service. To avoid a type clash, if the programmer wants to
register resources with different types, she has to define an abstract data type that
will hold the different values that can be registered.

A better way to treat type clashes would be to use dynamic types like Clean’s
Dynamics [22], but at the moment there is no complete implementation of it in
any of the Haskell compilers.

82

6.2.3 Remote Thread Creation

mHaskell also provides a construct for remote thread creation:

rforkIO :: IO () -> HostName -> IO ()

It is similar to Concurrent Haskell’s forkIO as it takes an IO action as an argu-
ment but instead of creating a local thread it sends the computation to be evaluated
on the remote host HostName. The rforkIO function is implemented using
MChannels as described in [6].

6.2.4 A Simple Example

Fig. 6.5 shows an mHaskell program that computes the load of a network. It visits
a listomachines and executes the computation called mobile on all the
machines of the list. First a channel mch is created and registered with the name
"mainmch". This channel is used by the remote locations to send the result of
the computation back to the main machine. Then, the function sendMobile
is mapped over the listofmachines. This computation looks for a specific
channel called clientmch on the remote host and sends mobile to be executed
remotely. The client receives the computation, executes it and sends the result
back to the main program through the mch channel.

The program in figure 6.5, although simple, uses all the facilities provided by
mHaskell (i.e. remote MChannels, registration of resources and mobile computa-
tion), and is used in the measurements given in Sec. 6.5.

6.3 IMPLEMENTATION DESIGN

6.3.1 Introduction

Mobile systems must abstract over the heterogeneity of large scale distributed
systems, allowing machines with different architectures and different operating
systems to communicate. This abstraction is usually achieved by compiling pro-
grams into architecture-independent byte-code. As a platform to build our system,
we have chosen the Glasgow Haskell Compiler (GHC) [10], a state-of-the-art im-
plementation of Haskell. The main reason for choosing GHC is that it supports
the execution of byte-code combined with machine code. GHC is both an opti-
mising compiler and an interactive environment called GHCi. GHCi is designed
for fast compilation and linking. It generates machine independent byte-code that
is linked to the fast native-code available for the basic primitives of the language.
Both GHC and GHCi share the same runtime-system, based on the Spineless Tag-
less G-machine (STG)-machine [20], that is a graph reduction machine.

This and the next section explain the implementation of mHaskell using the
GHC compiler. In this section, we discuss some design options at the language
level and their influence on an implementation. In the next section we discuss the
low level issues of the implementation.

83

main = do
mch <- newMChannel
registerMChannel mch "mainmch"
list <- mapM (sendMobile mobile mch) listofmachines
let v = sum list
print ("Total Load of the network: " ++ (show v))
where
mobile = do

res <- lookupRes "getLoad"
case res of
Just getLoad -> do

load <- getLoad
return load

Nothing -> return 0
listofmachines = (...)

sendMobile:: IO() -> MChannel Int -> HostName -> IO Int
sendMobile comp mch host = do
mc <- lookupMChannel host "clientmch"
case mc of

Just nmc -> writeMChannel nmc comp
result <- readMChannel mch
return result

FIGURE 6.5 Program that computes the load of a network

6.3.2 Evaluating Expressions before Communication

When a value is sent through a channel, it is evaluated before communication
occurs. The reason for this design decision is that lazy evaluation makes it difficult
to reason about what is being communicated. Consider the following example:

let
(a,b,c) = f x
in if a then

writeMChannel ch b

Suppose that the first element (a) of the tuple returned by f x is a Boolean, the
second (b) an integer, and the third (c) is a large data structure. Based on the value
of a, the program selects to send the integer b (and only b) to a remote host. In
the example, it seems that the only value being sent is the integer, but because of
lazy evaluation that is not what happens. In the beginning of the evaluation, the
expression is represented by a graph similar to the one in figure 6.6.

At the point where writeMChannel is performed, the value b is repre-
sented in the heap as the selector that gets the second value of a tuple applied

84

 (f x)

getFirst

getSecond

getThird

a =

b =

c =

FIGURE 6.6 Graph for let (a,b,c) = f x

to the whole tuple. If writeMChannel does not evaluate its argument before
communication, the whole value is communicated and this is not apparent in the
Haskell code.

The evaluation of thunks (unevaluated expressions) affects only pure expres-
sions or expressions that can be evaluated using seq (a Haskell function that eval-
uates its argument to weak head normal form (WHNF)). IO computations will not
be executed during this evaluation step.

There are still ways of sending pure expressions to be evaluated on remote
hosts. A tuple with a function and its arguments can be sent, and the function is
applied to the values only on the remote end. Unevaluated expressions can also
be communicated if wrapped in an IO value, as in the apply function:

apply :: (a->b) -> a -> IO b
apply f x = return (f x)

6.3.3 Sharing Properties

Many non-strict functional languages are implemented using graph reduction,
where a program is represented as a graph and the evaluation of the program
is performed by rewriting the graph. The graph ensures that shared expressions
are evaluated at most once [19].

Maintaining sharing between nodes in a distributed system would result in a
large number of extra-messages and call-backs to the machines involved in the
computation (to request structures that were being evaluated somewhere else or
to update these structures). In a typical mobile application, the client will re-
ceive some code from a channel and then the machine can be disconnected from
the network while the computation is being executed (consider a handheld or a
laptop). If we preserve sharing, it is difficult to tell when a machine can be
disconnected, because even though the computation is not being executed any-
more, the result might be needed by some other application that shares the same
graph structure. The problem is already partially solved by making the primitives
strict: expressions will be evaluated just once and only the result is communi-
cated. In mHaskell, computations are copied between machines and no sharing is
preserved.

85

6.3.4 MChannels

MChannels are single-reader channels, for two main reasons. First, it is difficult
to decide where a message should be sent when we have more than one machine
reading values from the same channel. The main question is where this channel
is located. Channels with multiple readers need to maintain a distributed state,
keeping track of all the machines that have references to the channel, and these
references must be updated every time the channel is moved to another place.

A simple way to have multiple reader channels would be to keep the channel in
one place, the place where it was created, and all other references to the channel
read and write values into the channel by sending messages to this main loca-
tion. The problem with this approach is that if the main location crashes all the
other machines that have references to the channel cannot communicate anymore
(Fig. 6.7).

MChannel A

Machine 2 Machine 3

Machine 1

writeMChannel A readMChannel A

FIGURE 6.7 Machines 2 and 3 cannot communicate if Machine 1 crashes

The second reason is security: with multiple reader channels one process can
pretend to be a server and steal messages. This is a classic problem also found in
the untyped π-calculus [15].

6.4 THE IMPLEMENTATION

6.4.1 Packing Routines

The graph representing the computation being communicated is packed at the
source and unpacked at the destination. The mHaskell pack and unpack routines
are based on the GUM [26] system, but are extended to pack GHCi’s Byte-Code
Objects (BCOs).

Packing, or serialising, arbitrary graph structures is not a trivial task and care
must be taken to preserve sharing and cycles. As in GPH [26], GDH [23] and
Eden [1], packing is done breadth-first, closure by closure and when the closure
is packed its address is recorded in a temporary table that is checked for each new
closure to be packed to preserve sharing and cycles. We proceed packing until
every reachable graph has been serialised.

86

The main heap object to be packed in our implementation of mHaskell is the
BCO, that is GHC’s internal representation for its architecture-independent byte-
code. A BCO is composed of its info table (which contains information about
the closure’s fields and also its entry code), a list of instructions, a list of pointers
and a list of info tables. The BCO’s info table is the same for every BCO so it
does not need to be packed. Its list of instructions is just a list of bytes and is
packed easily. The list of pointers contains a list of other closures that are used
in the byte-code instructions, so all of them must also be packed. The list of info
tables contains pointers to info tables of data structures that are constructed during
the execution of the BCO’s instructions. Those info tables are machine dependent
hence are packed in a special way explained in section 6.4.2.

As the basic modules that come with GHC are compiled into machine code
and are present in every standard installation of the compiler, the packing routines
have to pack only the machine independent part of the program and link it to the
local definition of the machine dependent part when the code is received and un-
packed. This gives us the advantage of having much faster code than using only
byte-code. Once packed, the BCO can be communicated in the way described in
section 6.4.4. All machines running the mobile programs should have the same
version of the GHC/GHCi system with an implementation of the primitives for
mobility and also have the same binary libraries installed. Programs that com-
municate functions that are not in the standard libraries must be compiled into
byte-code using GHCi.

Our packing mechanism gives us a simple way of controlling the amount of
code communicated: since only functions that are compiled into byte code are
packed, if the programmer knows that one module used in the computation is
already in the remote host, this module must be compiled into machine code, so
it will not be communicated.

Programs that will only receive byte-code do not need to have GHCi installed
because the byte-code interpreter is part of GHC’s RTS. In fact, if only functions
from the standard libraries are used in the mobile programs, there is no need to
have GHCi at all in both ends of the communication.

6.4.2 Communicating User Defined Types

Currently, user defined data types (ADTs) are always compiled into machine code
in GHCi. There are two ways to overcome this problem. The first one would be
to compile the types into a different type of closure that uses BCOs internally.
This requires changing the compiler. The other solution is to ship the data type
including the values in its info table. The entry code for these objects is very
simple and has to be generated again in the destination.

In our current implementation, all data types used in the mobile programs
must be defined in all the machines that are going to receive the code. Thus we
only pack the name representing its info table in the linker and the content of
its fields. When unpacking, we look for the local definition of the info table by
searching for its name in the linker’s tables. We consider an implementation of

87

one of the two solutions described above, as a tuning step in the development
of the prototype implementation, aiming to reduce the common software base
needed on all machines.

6.4.3 Evaluating Expressions

Evaluating expressions before communication is not as trivial as it seems. A
simple way to evaluate thunks would be to use evaluation strategies [25], e.g.:

let list = [1..100]
in writeMChannel mch list

where in the definition of writeMChannelwe use the rnf strategy to evaluate
its argument to normal form.

But strategies will not work in all cases. Consider the following example:

f:: a -> b -> Int

let
a = (...)

in writeMchannel ch (f a)

In this case it is not possible, inside of the definition of writeMChannel, to
evaluate the expression a using strategies. One solution to this problem would be
to implement a function kids with type:

kids:: HValue -> Array# HValue

That takes a value from the heap (the expression to be evaluated) and returns an
array with all the thunks pointed to by this value. Using kids we can write
a deepSeq :: a -> () function that recursively applies seq to all the
thunks pointed by its argument.

Another way to evaluate thunks is to do it inside the RTS using a primitive
function that creates a new RTS thread to evaluate its argument to normal form by
forcing the evaluation of all the expressions pointed by the argument.

mHaskell uses a hybrid approach: a thunk in the top level of the graph rep-
resenting the computation is forced by a seq (as in Fig. 6.8). If there are other
thunks in the graph, these thunks are evaluated by an extra thread in the RTS. Care
must be taken to preserve the queue of closures yet to be packed if the new thread
induces garbage collection. The solution to this problem is to make the packing
queue visible to the Garbage Collector.

6.4.4 Implementation of MChannels

The basic structure to support MChannels is implemented in a similar way to Ports
in Distributed Haskell [24].

Communication is implemented using the standard sockets library provided
by the operating system, thus avoiding the need for any extra libraries like PVM

88

‘seq‘

Cons

Thunk Thunk
Thunk

FIGURE 6.8 Evaluation of thunks using seq

or MPI. Haskell objects are serialised using the packing routines explained before
and converted into an array of bytes that can be easily communicated through a
socket.

Communication via sockets may use two different protocols: TCP and UDP.
UDP is a fast connectionless protocol that does not handle message loss. TCP on
the other hand is a connection-based protocol, making it easier to implement com-
munication with the cost of a little extra overhead. We have chosen to implement
the communication routines using TCP.

The channel data type is a simple Haskell data type that contains internally all
the information that will be needed for communication, i.e. the name of the chan-
nel, the name of the host where it belongs and a concurrent Haskell channel (CHC)
through which the communication between the program and the mobile runtime
system occurs. When a new MChannel is created also a CHC is created to serve
as a communication link between the program and the communication layer of the
RTS. When a value is written into a MChannel, it is in fact written into its CHC.
The RTS then reads this value from the CHC, serialises it and communicates it to
the appropriate host based on the information present in the MChannel data type.
When the RTS receives a value from a remote host this value is written into the
CHC that represents the MChannel that should receive the message. A thread that
reads a value from a MChannel is in fact reading a value from the internal CHC
and will stay blocked in this CHC until a value is written by the RTS there.

To make ports visible to other machines in the network we use the register-
MChannel and lookupMChannel primitives. These primitives communicate
with an external naming service that keeps listening for requests on a well-known
port. This service maintains a table with all the ports registered in the machine in
which it is running. It also communicates with lookups launched by other hosts
looking for channels. When a lookup is received, all the information about the
channel is sent back to the client, so the client can communicate directly with the
program that is waiting for requests on that channel.

89

TABLE 6.1 Comparative Jocaml and mHaskell Execution Times

Number of Machines Jocaml mHaskell
visited (sec) (sec)
1 0.05s 0.47s
2 0.06s 0.93s
4 0.10s 1.85s
8 0.16s 3.70s
16 0.28s 7.42s

6.5 INITIAL EVALUATION

Table 6.1 shows a comparison between Jocaml [4] and mHaskell using the mobile
program from section 6.2.4.

Jocaml [4] is an extension to Objective-Caml [17], a strict functional language
with extensions for object-oriented programming, used to develop systems with
mobile agents. Jocaml extends Objective-Caml with a small set of primitives
taken from the Join-Calculus [8]. Jocaml programs communicate and synchronise
through messages sent on channels, called names in the Join-Calculus terminol-
ogy.

Although mHaskell presents good scalability when the number of machines is
increased, it is still approximately 20 times slower than Jocaml. The main reason
for that is the routine that recursively traverses the graph, forcing the evaluation of
thunks before packing. Every time a computation is sent, the graph has to be tra-
versed twice: once to force the evaluation and once for packing. It is not an option
to force the evaluation while packing because the evaluation of the graph might
change what has been already packed. Because Jocaml is strict, the evaluation of
expressions to be communicated occurs naturally. Moreover, Jocaml is built as
an extension to the Objective Caml compiler [17], a compiler with primitives for
serialisation.

mHaskell is still in its early stages and a lot of optimisation could be applied.
For example, in the program used in the experiments, the same function is sent
to different hosts and is repacked every time it is communicated. Such packed
computations could be stored for reuse.

6.6 RELATED WORK

There are numerous parallel and distributed Haskell extensions [27], and only
those closely related to mHaskell are discussed here.

GPH and Eden are simple and powerful extensions to the Haskell language
for parallel computing. They both allow remote execution of computation, but
the placement of threads is implicit. The programmer uses the par combinator
in GPH, or process abstractions in Eden, but where and when the data will be
shipped is decided by the implementation of the language.

90

GDH is closer to the language presented here. Communication can be imple-
mented using MVars and remote execution of computations is provided with the
revalIO (remote evaluation) primitive. The problem in using GDH for mobile
computation is that it is implemented to run on closed systems. After a GDH pro-
gram starts running, no other PE (processing element) can join the computation.
Moreover the GDH implementation relies on a virtual shared heap that is shared
by all the machines running the computation. The algorithms used to implement
this kind of structure will not scale well for very large distributed systems like the
Internet [6].

Haskell with ports is a very interesting model to implement distributed pro-
grams in Haskell because it was designed to work on open systems. The only
drawback is that the current implementation of the language restricts the values
that can be sent through a port to the basic types and types that can instantiate
the Show class. Furthermore, the types of the messages that can be received with
readPort must be an instance of the Read class. The reason for these restric-
tions is that the values of the messages are converted to strings in order to be sent
over the network [12].

There are other extensions to functional languages that allow the communica-
tion of higher-order values. Kali-Scheme [2] and Erlang [7] are examples of strict
weakly typed languages that allow the communication of functions. Haskell is
a statically typed language hence the communication between nodes can be de-
scribed as a data type and many mistakes can be caught during the compilation
of programs. Other strict typed languages such as Nomadic Pict [29], Facile [14]
and Jocaml [4] implement the communication primitives as side effects while we
integrate them to the IO monad, preserving referential transparency.

Curry [11] is a functional logic language that provides communication based
on Ports in a similar way to the extension presented in this paper. Goffin [3] is
a Haskell extension for concurrent constraint programming using ports but there
is no distributed implementation of the language available yet. Another language
that is closely related to our system is Famke [28]. Famke is an implementation
of threads for the lazy functional language Clean [16] (using monads and contin-
uations), together with an extension for distributed communication using ports.
Famke has only a restricted form of concurrency, providing interleaved execution
of atomic actions using a continuations monad.

6.7 CONCLUSIONS AND FUTURE WORK

We have presented the implementation of mHaskell, an extension of Haskell for
mobile computation in open distributed systems. Unlike related systems, mHaskell
can communicate arbitrary values, including functions and MChannels, between
processors. This enables the use of powerful abstraction mechanisms provided by
functional languages. Although the current implementation of mHaskell is still a
prototype, it demonstrates the use of such abstraction mechanisms.

There are a number of issues that could be investigated in the future:

91

� It may be possible to extend the compiler with a mobility analyses (maybe
based on a non-determinism analyses [18]) that would decide the parts of the
program that should be compiled into byte-code and the parts that could be
compiled into machine code, based on the occurrences of writeMChannel,
as in [13].

� The implementation could be optimised, e.g. maintain a cache of functions
already communicated to avoid repeated communication.

� Some languages that support mobility of code also support the migration of
running computations (usually referred as strong mobility [9]). We could also
extend Haskell with a primitive for transparent strong mobility that would be
a primitive to explicitly migrate threads:

moveTo :: HostName -> IO()

The primitive moveTo receives as its argument a HostName to where the
current thread should be moved.

Strong mobility could be implemented in two ways: RTS level and Code
Transformation.

– RTS level: The state of the current thread (its stack) is packed and sent to
be evaluated on a remote host. This work would extend our previous work
on thread migration for the parallel functional language GPH [5].

– Code Transformation: During compilation a program using moveTo is
transformed into a simpler program that uses only weak mobility. One way
to do that is to lift the IO monad into a continuation monad and then every
call to moveTo is translated into a remote evaluation of the continuation
of the current thread.

ACKNOWLEDGEMENTS

The authors would like to thank Simon Marlow and Simon Peyton Jones for their
helpful comments on the implementation design for mHaskell. Bernard Pope also
gave important suggestions about the evaluation of thunks. This work has been
partially supported by an ORS and James Watt Scholarship.

REFERENCES

[1] S. Breitinger, R. Loogen, Y. Ortega-Mallén, and R. Peña. The Eden Coordination
Model for Distributed Memory Systems. In High-Level Parallel Programming Mod-
els and Supportive Environments (HIPS), volume 1123. IEEE Press, 1997.

[2] H. Cejtin, S. Jagannathan, and R. Kelsey. Higher-order distributed objects. ACM
Transactions on Programming Languages and Systems (TOPLAS), 17(5):704–739,
1995.

92

[3] M. M. T. Chakravarty, Y. Guo, and M. Kohler. Distributed Haskell: Goffin on the
Internet. In Fuji International Symposium on Functional and Logic Programming,
pages 80–97, 1998.

[4] S. Conchon and F. L. Fessant. Jocaml: Mobile agents for Objective-Caml. In First
International Symposium on Agent Systems and Applications (ASA’99)/Third Inter-
national Symposium on Mobile Agents (MA’99), Palm Springs, CA, USA, 1999.

[5] A. R. Du Bois, H.-W. Loidl, and P. Trinder. Thread migration in a parallel graph
reducer. In IFL, LNCS, Volume 2670. Springer-Verlag, 2002.

[6] A. R. Du Bois, P. Trinder, and H.-W. Loidl. Towards a Mobile Haskell. In Proc. of
the 12th International Workshop on Functional and (Constraint) Logic Programming
(WFLP 2003), pages 113–116, Valencia (Spain), 2003.

[7] Erlang. http://www.erlang.org/, WWW page, 2004.

[8] C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the join-
calculus. In Conference on Lisp and Functional Programming (LFP’84), Austin,
Texas, 1996.

[9] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code Mobility. Transactions
on Software Engineering, 24(5):342–361, May 1998.

[10] The Glasgow Haskell Compiler. http://www.haskell.org/ghc/, WWW page, 2004.

[11] M. Hanus. Distributed programming in a multi-paradigm declarative language. In
Proc. of the International Conference on Principles and Practice of Declarative Pro-
gramming (PPDP’99), LNCS, Volume 1702, pages 376–395. Springer-Verlag, 1999.

[12] F. Huch and U. Norbisrath. Distributed programming in Haskell with ports. In IFL,
LNCS, Volume 2011. Springer-Verlag, 2000.

[13] Z. D. Kirli. Mobile Computation with Functions. PhD thesis, Laboratory for Foun-
dations of Computer Science, University of Edinburgh, 2001.

[14] F. C. Knabe. Language Support for Mobile Agents. PhD thesis, School of Computer
Science, Carnegie mellon University, 1995.

[15] R. Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge Uni-
versity Press, May 1999.

[16] E. Nocker, S. Smetsers, M. van Eekelen, and R. Plasmeijer. Concurrent Clean. In
L. Aarts and Rem, editors, Proc. of Parallel Architectures and Languages Europe
(PARLE ’91), pages 202–219. Springer-Verlag, 1991.

[17] OCaml. http://www.ocaml.org/, WWW page, June 2002.

[18] R. Peña and C. Segura. A polynomial cost non-determinism analysis. In IFL, LNCS,
Volume 2312, pages 121–137. Springer-Verlag, 2002.

[19] S. Peyton Jones. Implementation of Functional Programming Languages. A Tutorial.
Prentice Hall, 1992.

[20] S. Peyton Jones. Implementing lazy functional languages on stock hardware: The
spineless tagless G-machine. Journal of Functional Programming, 2(2):127–202,
1992.

[21] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Conference Record
of POPL ’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 295–308, St. Petersburg Beach, Florida, 21–24 1996.

93

[22] M. Pil. Dynamic types and type dependent functions. In Implementation of Func-
tional Languages, pages 169–185, 1998.

[23] R. Pointon, P. Trinder, and H.-W. Loidl. The design and implementation of Glasgow
Distributed Haskell. In IFL, LNCS, Volume 2011. Springer-Verlag, 2000.

[24] V. Stolz and F. Huch. Implementation of Port-based Distributed Haskell. In Draft.
Proc. of IFL, 2001.

[25] P. Trinder, K. Hammond, H.-W. Loidl, and S. L. Peyton Jones. Algorithm + Strategy
= Parallelism. Journal of Functional Programming, 8(1):23–60, Jan. 1998.

[26] P. Trinder, K. Hammond, J. S. Mattson Jr., A. S. Partridge, and S. L. Peyton Jones.
GUM: a portable implementation of Haskell. In Proceedings of Programming Lan-
guage Design and Implementation, Philadephia, USA, May 1996.

[27] P. Trinder, H.-W. Loidl, and R. Pointon. Parallel and distributed haskells. Journal of
Functional Programming, 12(4/5):469–510, 2002.

[28] A. van Weelden and R. Plasmeijer. Towards a strongly typed functional operating
system. In IFL 2002, 2002.

[29] P. T. Wojciechowski. Nomadic Pict: Language and Infrastructure Design for Mobile
Computation. PhD thesis, Wolfson College, University of Cambridge, 2000.

94

