
Chapter 1

Is It Time for Real-Time
Functional Programming?
Kevin Hammond1

Abstract This paper explores the suitability of functional languages for pro-
gramming real-time systems. We study the requirements of real-time systems
in general, outline typical language approaches for this domain, consider issues
relating to memory and time usage and explore how all existing functional lan-
guages, including our own language Hume, match these requirements. We con-
clude by posing some research challenges that functional language designs and
implementations must meet if they are to be regarded as suitable vehicles for real-
time systems implementation.

1.1 INTRODUCTION

Functional programs use large amounts of memory. Functional programs are slow.
It is impossible to predict memory and other resource usage for functional lan-
guages. Clearly, functional languages are therefore unsuitable for use in restricted
memory settings with strong time requirements. Or are they? This paper explores
the suitability of functional language designs for use in settings with strong limita-
tions on resource usage such as real-time systems. It compares current functional
approaches, including our own Hume notation (Sec. 1.6), with those used by other
language paradigms and outlines some challenges for functional language designs
and implementations that must be met if functional programming is to be used for
serious real-time programming.
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1.2 WHAT IS REAL-TIME PROGRAMMING?

The key characteristic of a real-time system is that its correctness depends not only
on its functional behaviour, but also on the (real-)time or times at which it pro-
duces those results [15]. Such systems can be classified as having either soft real-
time or hard real-time properties. Soft real-time has been defined as a situation
where “nothing really serious happens if a time constraint is not met” [3]. Exam-
ples of soft real-time systems might include computer games, telephone switches,
digital set-top boxes or digital sound cards. In contrast, hard real-time involves
guaranteed system response and is often associated with safety-critical systems or
ones with high penalty cost for failure. Examples include avionics control soft-
ware, autonomous vehicles, or software used by stock market traders. In many
situations, such as embedded systems, such real-time constraints are combined
with other resource restrictions including memory limitations and even power
consumption requirements. Despite the focus on real-time, such systems need not
necessarily be ultra high-performance. The problem is to design systems that are
sufficiently reliable and have minimal cost and acceptable performance. Doing so
in a cost-effective manner is a major bonus.

1.2.1 The Importance of Real-Time Systems

Real-time systems have been growing in importance in recent years. Numerically,
a very high percentage of all computer systems produced today have real-time
characteristics. Many of these are embedded systems. Real-time embedded sys-
tems are a fundamental part of modern everyday society in the shape of vehicle
control systems, mobile telephones, GPS and consumer appliances such as DVD
players or digital set-top boxes. These commonplace devices are additional to
those used in telecommunications, to promote automation in factories, to ensure
security and safety in the home and workplace, to increase the safety and effi-
ciency of transport and service industries and for military uses, etc. In fact, today
more than 98 per cent of all new processors are used in such systems [59].

1.2.2 Essential Properties of Real-Time Languages

McDermid identifies a number of essential or desirable properties for a language
that is aimed at hard real-time systems [44].

� determinacy – the language should allow the construction of determinate sys-
tems, by which we mean that under identical environmental constraints, all
executions of the system should be observationally equivalent;

� bounded time/space – the language must allow the construction of systems
whose resource costs are statically bounded – so ensuring that hard real-time
and real-space constraints can be met;

� asynchronicity – the language must allow the construction of systems that are
capable of responding to inputs as they are received without imposing total
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ordering on environmental or internal interactions;
� concurrency – the language must allow the construction of systems as com-

municating units of independent computation;
� correctness – the language must allow a high degree of confidence that con-

structed systems meet their formal requirements [1].

These requirements may be relaxed to acceptable engineering tolerances for soft
real-time systems. Moreover, the language design must incorporate at least:

� periodic scheduling to ensure that real-time constraints are met;
� interrupts and polling to deal with connections to external devices.

1.3 LANGUAGES FOR PROGRAMMING REAL-TIME SYSTEMS

Programming languages for real-time systems may be either specially designed to
meet the requirements of the domain (domain-specific languages) or adapted from
commonly used designs. Since non-functional approaches have been described in
detail elsewhere (e.g. [21]), this paper provides only a brief overview of such
languages here. Berry [11] further considers the issue of whether to use general
purpose or domain-specific languages for real-time programming.

1.3.1 Using General Purpose Languages for Real-Time Programming

Historically, much embedded systems software/firmware was written for specific
hardware using native assembler. Rapid increases in software and the need for
productivity improvements mean that there has been a transition to the use of
C/C++ and in some cases Java.Two extreme approaches to enforcing real-time
properties in a language that is derived from a general-purpose design are exem-
plified by SPARK Ada [8] and the real-time specification for Java (RTSJ) [17].
SPARK Ada epitomises the idea of language design by elimination of unwanted
behaviour from a general-purpose language, including concurrency. The remain-
ing behaviour is guaranteed by strong formal models. In contrast, RTSJ provides
specialised runtime and library support for real-time systems work, but makes no
absolute performance guarantees. Thus, SPARK Ada provides a minimal, highly
controlled environment for real-time programming emphasising correctness by
construction,whilst Real-Time Java provides a much more expressible but less
controlled environment, without formal guarantees.

A major issue for programming real-time embedded systems is memory man-
agement: it is essential both to bound memory usage and to control memory ac-
cess time. When using general purpose languages, it is thus common to avoid re-
cursive programming constructs (which may grow the stack in an “unrestricted”
fashion) and also to avoid automatic dynamic memory allocation/collection. In
Sec. 1.4 we describe some modern approaches that may allow the safe use of such
constructs in a real-time embedded system.
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1.3.2 Domain-Specific Languages for Real-Time Programming

Process Algebra Derived Notations

Process algebras such as CSP, CCS, LOTOS and the π-calculus are formal no-
tations designed to permit reasoning about complex systems of concurrent pro-
cesses. They provide an elegant set of operators for developing concurrent sys-
tems, so allowing succinct expression of concurrent programs. Typical process
algebras use synchronous communication, support non-determinism, and allow
choice, restriction of names and relabelling at the process level. Concurrency is
usually modelled through interleaving processes. Process algebras provide a rich,
tractable semantics, using observation equivalence to hide internal behaviours.
This extensionalist approach contrasts with the intensionalist approach taken by
Petri nets, where internal behaviour is important and must consequently be ex-
posed. Explicit notions of time have been incorporated into a number of process
algebras, e.g. TCCS or Timed CSP. While process algebras are generally intended
as formal notations to allow reasoning about concurrent specifications, there have
also been some attempts to derive concrete programming notations from such
bases. For example, LOTOS (Language of Temporally Ordered Specifications)
is often used as a programming notation and several timed extensions have been
designed with the intention of dealing with real-time systems.

Finite-State Languages

Finite-state approaches are attractive when dealing with certain kinds of real-time
system, since they allow a system to be defined by composing small, easily costed
components. Such approaches often, however, prove problematic when one is
constructing complex programs: typically the finite-state machines derived for
such systems will have a large number of states, which can be difficult for the pro-
grammer to manage; moreover, relatively small extensions can cause exponential
growth in the number of states. A number of extended finite-state languages have
been proposed incorporating composition, communication and data structures to
give Turing-complete notations. Many also incorporate quantitative notions of
time. Three common examples are Estelle [20], an imperative language devel-
oped for OSI communications protocols; SDL [63], a language similar to Estelle,
which has a graphical dialect used as a design tool; and TTM [49], a graphical
notation, similar to Petri nets, used to describe real-time discrete event processes.

In synchronous dataflow languages, every action (whether computation or
communication) has a zero-time duration. In practice this means that actions
must complete before the arrival of the next event to be processed. Communi-
cation with the outside world occurs by reaction to external stimuli and by in-
stantaneous emission of responses. Because of their origin in the combination of
control theory and computer science, synchronous notations have long been pop-
ular in the area of automatic control. Since they are equivalent to the zero-delay
model of circuits, they have also more recently found employment in hardware
design [12, 61].
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Several languages have applied the synchronous model to real-time systems
control. For example, Signal [28] and Lustre [50] are similar declarative notations,
built around the notion of timed sequences of values. Esterel [18, 13, 14] is an
imperative notation that can be translated into finite-state machines or hardware
circuits, and Statecharts [31, 64] is a quasi-synchronous notation with a visual
notation, which is primarily used for design, and which has been subsumed into
UML [58]. One obvious deficiency of pure synchronous notations is the lack of
expressive power, notably the absence of recursion and of higher-order combina-
tors. Synchronous Kahn networks [39, 23] incorporate higher-order functions and
recursion, but lose strong guarantees of resource boundedness. It is thus generally
accepted [11] that pure synchronous languages are not powerful enough for com-
plex systems programming and must interact with other languages and communi-
cation styles, in particular with asynchronous ones. There have consequently been
some attempts to combine the two styles of programming, for example CRP [54]
combines Esterel and CSP, and the Polis [7] hardware/software codesign system
also employs Esterel in a mixed synchronous and asychronous setting.

1.3.3 Functional Language Approaches

The main advantages of functional language approaches are compositionality,
ease of reasoning and program structuring. Typical modern language designs,
such as Standard ML or Haskell, incorporate automatic memory management
which eliminates errors arising from poor manual memory management; strong
typing which eliminates a large number of programming errors; higher-order
functions which abstract over common patterns of computation; polymorphism
which abstracts internal details of data structures; and recursion allows a num-
ber of algorithms, especially involving data structures, to be expressed in a more
natural and thus less error-prone fashion.

These language features improve productivity through raising the level of ex-
pressivity and program abstraction. However, they divorce the programmer from
the ability to directly control program execution, and thus from a simple intuitive
model of the program’s time and space behaviour. Moreover, functional language
implementations must bridge a larger gap between source language and concrete
machine than is present with lower-level languages. This has historically led to
a significant performance difference between functional languages and their im-
perative counterparts, and consequent doubt over the suitability of functional no-
tations for real-time settings, where it is necessary to program within strong time
and space bounds.

Compared with McDermid’s criteria, the primary functional language designs
thus meet the requirements for determinacy and correctness, but fail to deal effec-
tively with asynchronicity, concurrency and bounded time and space. Concurrent
extensions such as Concurrent ML [57] or Concurrent Haskell [51] add mecha-
nisms for asynchronicity and concurrency, but likewise provide no bounded time
or space guarantees. None of these notations provide mechanisms for periodic
scheduling or interrupt handling, and all use a relatively low-level notion of thread
and communication, with explicit message handling.
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Soft Real-Time Functional Languages

The most widely used soft real-time functional language is the impure, strict lan-
guage Erlang [4], a concurrent language with a similar design to Concurrent ML.
Erlang has been used by Ericsson to construct a number of successful telecommu-
nications applications in the telephony sector [16], including a real-time database,
Mnesia [68]. Erlang is concurrent, with a lightweight notion of a process. Such
processes are constructed using explicit spawn operations, with communication
occurring through explicit send and receive operations to nominated processes.
Finally, rather than exploiting static analysis order to ensure that hard dynamic
resource bounds are achieved, the weakly typed Erlang relies exclusively on dy-
namic timeouts to meet soft real-time targets.

In contrast, Embedded Gofer is a strongly-typed purely functional program-
ming language with a two-level structure, separating process and functional lay-
ers. It uses a monadic notation with explicit register access, processes and com-
munication, similar in kind to other explicitly concurrent programming notations.
Unlike Erlang, Embedded Gofer is non-strict, raising questions about accurate
static costing of programs (as opposed to dynamic measurement of typical run-
time behaviour, which is not adequate to guarantee real-time behaviour). A simi-
lar approach has been taken by Fijma and Udink, who introduced special language
constructs into Twentel to control a robot arm [27].

RT-FRP [66] builds on functional reactive programming embedded as a domain-
specific language in Haskell to construct time and space bounded programs. RT-
FRP is separated into a reactive part (comparable to a synchronous system) and a
base part that must be guaranteed terminating and resource-bounded. It exploits
tail-recursion across reactive components to encapsulate time and space resource
usage within a single reactive component, and also supports integration across a
series of reactive components. The work provides a formal operational semantics
for resource consumption, which can be used to construct an automatic analysis to
determine space and time bounds. Since RT-FRP is based on Haskell, of course,
the underlying language implementation technology may affect timings and space
usage through non-strict evaluation and non-real-time garbage collection. Conse-
quently, in the current system, these bounds cannot be guaranteed. A different
language substrate might, however, provide a better basis for these requirements.
Finally, RT-FRP does not yet consider issues of periodic scheduling, and events
are handled without regard to real-time concerns, such as dynamic memory allo-
cation, making them unsuitable for low-level interrupt handling.

Finally, a number of reactive applications have been written in more con-
ventional functional languages without recourse to even an incremental garbage
collector or attempting to formally bound time or space behaviour. Examples
include the impure Concurrent ML [57] and the purely functional Concurrent
Haskell [51], Concurrent Clean [48] and Eden [19]. An interesting example of
such work is the games engine and games written in Concurrent Clean [67].
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1.4 BOUNDING TIME AND SPACE USAGE

Garbage collection is both expensive and can introduce “embarrassing pauses”
into a program execution. When the application is either soft- or hard- real-time,
such pauses may be unacceptable. Three approaches have been taken to deal with
this problem: real-time garbage collection techniques attempt to bound the cost of
garbage collections to an acceptable level, thereby eliminating arbitrary pauses;
while static analysis or compile-time garbage collection attempts to bound mem-
ory usage statically or eliminate garbage collection through memory reuse; finally,
language designs may be restricted so as to automatically bound time and/or mem-
ory usage.

1.4.1 Real-Time Dynamic Memory Management

Effective management of dynamically allocated memory for a real-time system
involves controlling the costs of both allocation and collection, ensuring that
the system is non-disruptive in terms of meeting the application’s real-time con-
straints. In memory constrained settings, it is also necessary to avoid wastage
through fragmentation and other overheads. Developing an automatic memory
management system for real-time systems represents a serious technical chal-
lenge. The Real-Time Specification of Java states, for example: “ ����� the expert
group believes, that no garbage collector algorithm or implementation is known
����� which could be considered appropriate for all real-time systems” [17]. Many
non-disruptive memory management systems require additional hardware sup-
port, which is not generally available, while others allocate memory only in fixed-
size units, imposing potentially high memory overheads.

Most real-time memory management techniques use Incremental garbage col-
lectors. Incremental copying techniques (e.g. [43]) achieve fast allocation but
can have high memory overheads and incur time overheads in the form of write-
and/or read-barriers. Non-copying techniques such as those using incremental
reference-counting [26] do not incur the overheads of copying, but may have
poor memory utilisation owing to external fragmentation (requiring an incremen-
tal compactor) and reference counts.

A number of such collectors have been proposed for use in functional lan-
guage implementations. For example, Virding et al. have proposed an incremental
collector for Erlang [2]; Wallace and Runciman have implemented an incremen-
tal collector for Embedded Gofer that has been used for undergraduate teaching
at York University; and Cheadle et al. have implemented a similar incremental
collector for the Glasgow Haskell compiler [24], though this has not yet been
incorporated in the production release.

1.4.2 Static Analyses for Bounding Memory Usage

Compile-time garbage collection techniques attempt to eliminate some or all heap-
based memory allocation through strong static means. One approach [60] that has
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recently found favour is the use of region types. Such types allow memory cells
to be tagged with an allocation region, whose scope can be determined statically.
When the region is no longer required, all memory associated with that region
may be freed without invoking a garbage collector. In non-recursive contexts,
the memory may be allocated statically and freed following the last use of any
variable that is allocated in the region. In a recursive context, this heap-based
allocation can be replaced by (possibly unbounded) stack-based allocation.

Hofmann’s linearly-typed functional programming language LFPL [33, 35]
uses linear types to determine resource usage patterns. A special resource type
called “diamond” is used to count constructors. First-order LFPL definitions can
be computed in linearly bounded space, even in the presence of general recursion.
More recently, Hofmann and Jost have introduced [35] an automatic inference of
these resource types and thus of heap-space consumption, using linear program-
ming; at the same time, the linear typing discipline is relaxed to allow analysis of
programs typable in a usage type system such as in [41, 6, 52].

Extensions of LFPL to higher-order functions have been studied in [34] where
it was shown that such programs can be evaluated using dynamic programming
in time O

�
2p � n ��� where n is the size of the input and p is a fixed polynomial. By

a result of Cook this is equivalent to polynomial space plus an unbounded stack.
With unrestricted use of higher-order functions, it remains an unsolved problem
to turn this theoretical result into an efficient compilation scheme. If higher-order
functions are used restrictively, as in the language C, then no closures are required
and they can be “compiled away” without penalty.

Building on earlier work on sized types [37, 56], we have developed an au-
tomatic analysis to infer the upper bounds on evaluation costs for a simple, but
representative, functional language with parametric polymorphism, higher-order
functions and recursion [65]. Our approach assigns finite costs to a non-trivial
subset of primitive recursive definitions. It is fully automatic in producing cost
equations without any user intervention, even in the form of type annotations,
though obtaining closed-form solutions to the costs of recursive definitions cur-
rently requires the use of an external solver. The first-order subset of this work
has been applied to our resource-bounded language Hume (Sec. 1.6.1).

1.4.3 Worst Case Execution Time Analysis

Static analysis of worst-case execution time (WCET) in real-time systems is an es-
sential part of the over-all response time and quality of service analysis [21, 53].
However, WCET analysis is a challenging issue, as the complexity of interac-
tion between the software and hardware system components often results in very
pessimistic WCET estimates. Recent work on WCET analysis for Java and C
programs [9, 10] has employed a combination of analytical (in particular, prob-
abilistic) and experimental (e.g. trace generation) techniques in order to reduce
the degree of pessimism in WCET. However, the disadvantage of this approach is
that it starts from a low-level code representation (Java byte-code or compiled ma-
chine code) which makes it difficult to capture and analyse the high-level program
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structure and therefore to make predictions based on the programmer’s intentions.
In an extension of work undertaken in EU project Daedalus, AbsInt have de-

veloped accurate cost models for hardware instruction and cache behaviour for
a number of architectures [40]. These models allow precise costing of execu-
tion times based on static analysis of machine code instructions. Compared with
the probabilistic models that are commonly employed by WCET analyses, this
approach allows vastly improved confidence in the quality of the analysis. Con-
sequently, the reliability of real-time estimates can be raised dramatically for real
architectures.

1.4.4 Syntactically Restricted Functional Languages

Other than our own work [56, 65], we are aware of three main studies of for-
mally bounded time and space behaviour in a functional setting [22, 36, 62]. All
three approaches are based on restricted language constructs to ensure that bounds
can be placed on time/space usage. In their recent proposal for Embedded ML,
Hughes and Pareto [36] have combined the earlier sized type system [37] with
the notion of region types [60] to give bounded space and termination for a first-
order strict functional language [36]. Their language is restricted in a number of
ways: most notably in not supporting higher-order functions and in requiring the
programmer to specify detailed memory usage through type specifications. The
practicality of such a system is correspondingly reduced. Burstall [22] proposed
the use of an extended ind case notation in a functional context, to define in-
ductive cases from inductively defined data types. While ind case enables static
confirmation of termination, Burstall’s examples suggest that considerable ingen-
uity is required to recast terminating functions based on a laxer syntax. Turner’s
elementary strong functional programming [62] has similarly explored issues of
guaranteed termination in a purely functional programming language. Turner’s
approach separates finite data structures such as tuples from potentially infinite
structures such as streams. This allows the definition of functions that are guaran-
teed to be primitive recursive, but at a cost in addtional programmer notation.

1.5 FUNCTIONAL LANGUAGES FOR RELATED PROBLEM AREAS

Functional Languages for Mobility

Mobile languages focus on issues of security and portability rather than on time
deadlines or absolute space usage. Mobile Haskell [55] is one functional notation
that has explored the design space of mobile systems through exploiting a portable
byte-code implementation that is capable of exporting and managing tasks across
a distributed system.

A primary concern of mobile systems is to ensure that code that is generated
at a remote site does not have unwanted local effects. These effects might be to
access or alter local system state, so violating privacy, compromising security or
damaging local data; or to either deliberately or accidentally overload local system
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resources. It follows that providing formally verifiable certificates of resource us-
age is important to mobile systems code. These certificates might include bounds
on time and space usage and use a proof-carrying code approach.

This issue has been explored by the EU Framework V Mobile Resource Guar-
antees project in the shape of the Camelot and Grail notations [42]. Camelot is a
resource-aware functional programming language that can be compiled to a sub-
set of JVM bytecodes; Grail is a functional abstraction over these bytecodes. This
abstraction possesses a formal operational semantics that allows the construction
of a program logic capable of capturing program behaviours such as time and
space usage [5]. The objective of the work is to synthesise proofs of resource
bounds in the Isabelle theorem prover and to attach these proofs to mobile code
in the form of more easily verifiable proof derivations. In this way the recipient
of a piece of mobile code can cheaply and easily verify its resource requirements.

Functional Hardware Description Languages

In a slightly different context, functional hardware description languages [25, 38]
also necessarily provide hard limits on time and space cost bounds. Like con-
ventional finite-state notations, computation in such languages is necessarily re-
stricted by the requirement to produce static hardware structures from the func-
tional descriptions. The use of higher-order functions and recursion is thus re-
stricted to forms that can be mapped to small finite structures. Examples of such
notations include the Lava hardware description language for specifying FPGA
circuits, which has been developed in association with XiLinx Corporation [25],
the functional derivation approach, for deriving FPGA circuits from Haskell spec-
ifications [32], the Hawk hardware verification language [38], the Hydra system
for logic circuit specification, and Mycroft and Sharp’s statically allocated lan-
guage for hardware description [47]. Like RT-FRP, most of these notations restrict
recursion, if present, either to tail-recursion or to specific packaged, unfoldable
recursive forms which can be used to generate repetitive circuits.

1.6 THE HUME LANGUAGE

The Hume language design attempts to maintain the essential properties and fea-
tures required by the embedded systems domain (especially for transparent time
and space costing) whilst incorporating as high a level of program abstraction as
possible. We have designed Hume as a three-layer language [30]: an outer (static)
declaration/metaprogramming layer, an intermediate coordination layer describ-
ing a static layout of dynamic processes (“boxes”) and the associated devices, and
an inner layer describing each process as a (dynamic) mapping from patterns to
expressions. The inner layer is stateless and purely functional. Since boxes map
bounded inputs to bounded outputs, real-time, bounded space responses to input
requests can be ensured provided the functional expression layer can be deter-
mined to use finite space and execute in bounded time.

Rather than attempting to apply cost modelling and correctness proving tech-
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Non−recursive data structures
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Non−recursive first−order functions
Non−recursive data structures

HW−Hume
No functions
Non−recursive data structures

FIGURE 1.1 Hume Design Space

application predicted actual excess predicted actual excess
heap heap stack stack

pump controller 483 425 14.5% 166 162 2.5%
railway layout 1065 946 11% 310 310 0%
vehicle simulator 99408 98446 0.98% 319 298 6.5%

FIGURE 1.2 Heap and stack usage in words for FSM-Hume applications

nology to an existing language framework either directly or by altering the lan-
guage to a greater or lesser extent (as with e.g. RTSj [17]), our approach is to
design Hume in such a way that we are certain that formal models, proofs and the
associated analyses can be constructed so as to ensure formally bounded time and
space behaviour. We envisage a series of overlapping Hume language levels as
shown in Fig. 1.1, where each level adds expressibility to the expression seman-
tics, but either loses some desirable property or increases the technical difficulty
of providing formal correctness/cost models.

Hume thus meets McDermid’s criteria as follows: determinacy is enforced
at the language level, through a deterministic operational semantics; bounded
time/space is ensured by the formal models and analyses for each Hume level;
asynchronous concurrency is provided through concurrent boxes, with buffered
communication and asynchronous pattern-matching rules; and correctness is as-
sisted by the use of a purely functional expression layer and through the provision
of formal language semantics. The design also incorporates periodic scheduling,
interrupts and device polling.
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1.6.1 Real Time and Space Behaviour of FSM-Hume Programs

We have applied our stack and heap analysis to a number of programs written
using the FSM-Hume [46] language level1: a simple mine drainage pump con-
troller; a model railway layout system with safety conditions; and a simulation
of an autonomous vehicle controller [45]. Details of these applications can be
found at http://www.hume-lang.org. Fig. 1.2 shows results that are obtained from
our analysis and prototype implementation. Note that any analysis (including one
conducted by hand) must produce an over-estimate to account for cases that by
chance do not arise during the actual dynamic execution. With this caveat, we can
see that the analysis is a good predictor of both stack and heap usage. Typically,
we obtain better predictions of stack usage than heap. The memory used for the
stack is also less than the heap usage.

We have ported the Hume implementation to the RTLinux real-time operat-
ing system. Our measurements [29] show that the total memory requirements
of the pump application, including heap and stack overheads as calculated here,
RTLinux operating system code and data, Hume runtime system code and data,
and the abstract machine instructions amount to less than 62KB. RTLinux itself
accounts for 34.4KB of this total. The results can be extrapolated to the other
applications discussed here: the vehicle simulator would require much less than
512KB of dynamic memory, for example. Clearly, these results indicate both that
tight dynamic memory bounds can be determined and that these bounds are suffi-
ciently small to allow implementation on typical modern embedded hardware.

To verify that our system can also meet real-time requirements, we have run
the mine drainage control system continuously for a period of about 6 minutes
under RTLinux on the same 1GHz Pentium III processor (effectively locking out
all Linux processes during this period). At this point, the simulation has run
to completion. Clock timings have been taken using the RTLinux system clock,
which is accurate to the nanosecond level. The primary real-time constraint on the
mine drainage control system is that it must produce an alarm within 3ms if the
methane level rises above some threshold. In fact, we have measured this delay
to be approximately 150µs (20 times faster than required). Moreover, over the six
minute time period, the maximum delay in servicing any input is approximately
2.2ms.

In order to demonstrate the robustness of the implementation within strong
memory bounds, the vehicle simulation was run continuously under RT-Linux
as a real-time program for a period of 36 hours using our calculated memory
settings. The program ran without any memory accesses outside the allocated
area and without “growing” or “leaking” memory: essential requirements for real-
time control applications. Total dynamic memory usage (including code, runtime
stack, and runtime libraries) was 105340 words (412KB) of memory.

1which admits first-order non-recursive functions in the functional expression layer
and a form of tail recursion in the coordination layer, analogously to RT-FRP.
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1.7 THE CHALLENGES

To summarise, while several functional notations have been proposed for soft real-
time programming, Hume is the only language that we are aware of that has been
shown to deal with hard real-time systems in practice, providing strong verifiable
guarantees of space (and potentially) behaviour and running under a true real-time
operating system. To date this has been achieved only for the FSM-Hume level,
however, which roughly corresponds to RT-FRP or synchronous dataflow designs
plus first-order non-recursive functions. It is not clear whether formal analyses
can be developed to deal with richer levels of Hume, including generalised forms
of recursive definition and higher-order functions.

The primary issue facing functional languages as vehicles for programming
real-time systems is whether they can meet the necessary strong time and space
requirements, whilst simultaneously providing an effective means for program-
ming with such behavioural concepts. Languages for real-time programming must
incorporate notions of low-level behaviour including time, interrupts and schedul-
ing. They must also accurately support (formal and informal) reasoning about
time and space usage from the high-level source. This may be harder for func-
tional languages to achieve because of the high-level programming abstractions
such as higher-order functions and polymorphic typing that make them attractive
programming mechanisms. The challenge is to incorporate low level notions into
the high-level notation without compromising abstraction capability. This may
involve a first-class treatment of real time and space and/or special language con-
structs. Such treatments are generally lacking in the literature.

At the same time, it is necessary to develop compilers for real-time functional
languages that are both (adequately) high performance and highly verifiable. A
number of languages (such as OCAML and SAC) demonstrated that strict func-
tional languages can have extremely good time performance, and it is common
to provide formal descriptions of functional abstract machine implementations in
terms of formal or semi-formal transformation from the source level. The chal-
lenge is to combine the latter techniques with a mechanism such as Hofmann’s
verifiable resource certificates and to apply this to high-performance functional
language compilers. Moreover, optimising compilers must give proper attention
to space as well as time usage.

Cost analyses can help to provide information about time and space usage on
an expression or program level. However, the current state of such analyses is that
they require severe restrictions to the programming notations that can be used.
For example, LFPL guarantees strong space bounds in a first-order context for
programs that are linear [33]. Our own sized time analysis [65] will handle more
general recursive, polymorphic programs, but the forms of recursion are restricted
to simple inductions over natural numbers or linear data structures such as lists (in
the form of primitive recursive cost equations) and there can be loss of quality in
some important cases. Clearly more research is required if such analyses are to
be exploited by Joe Functional Programmer.

Advances in compile-time garbage collection technologies such as regions [60]
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are welcome, but it does not seem possible to eliminate all dynamic memory al-
location except in restricted settings such as FSM-Hume. Transforming heap al-
locations into stack allocations, as can happen with regions, increases memory
residency, and the solution of reusing space through tail recursion is only a partial
one. Thus, there is a need for good real-time garbage collectors. Unfortunately,
non-disruptive garbage collectors tend to be accompanied by high memory over-
heads. The challenge is to devise a (hybrid?) memory management system that
minimises memory overhead while providing real-time guarantees.

Finally, the majority of research into bounded time and space behaviour for
functional languages has focused on strict notations. It is both much easier to
provide strong formal cost models for strict languages and to provide implemen-
tations that accurately reflect intuitions of time and space behaviour. Because
evaluation is usually demand-based in a non-strict notation, it is an interesting
and open question whether such demand can be predicted in such a way that it is
possible to determine formal time or space bounds for the evaluation of a term.
Analytical techniques will thus require good cost models to be combined with
good resource usage models. Alternatively, it may be possible to produce a hy-
brid notation where real-time code is evaluated eagerly and can thus exploit tech-
nology for strict notations, while non-real-time code is evaluated lazily to provide
good compositional capability. The challenge is to produce such a notation whose
total space usage can be bounded in a sensible fashion.

1.8 CONCLUSION

Functional programming is potentially attractive for real-time systems because of
its property of strong determinacy and the promise of easily constructing formal
proofs of correctness. Moreover, higher-order functions and other mechanisms
allow rapid program construction and restructuring (refactoring), leading to po-
tential productivity advantages. However, issues relating to time and space man-
agement are key to the area, and until recently these have not been seriously con-
sidered by the community. Progress is being made on theoretical approaches that
are geared towards bounding time and space usage, and many of these are couched
in functional terms. There is, however, a gap between this and most existing prac-
tical work.

We have identified a number of challenges that are faced by functional lan-
guage designers and implementors if real-time functional systems are to become
truly feasible. Chief amongst these are serious consideration of time and space
behaviour. It is necessary to raise time into the programming language in such a
way that the real-time programmer can express real-time deadlines and constraints
and can guarantee that the program meets those constraints. It is also necessary to
provide strong verifiable models of dynamic memory allocation that can be used
to guarantee memory bounds and to ensure that costs associated with automatic
memory management do not adversely impact real-time deadlines.
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