
Chapter 8

Testing Reactive Systems with
GAST
Pieter Koopman and Rinus Plasmeijer1

Abstract G∀ST is a fully automatic test system. Given a logical property, stated
as a function, it is able to generate appropriate test values, to execute tests with
these values, and to evaluate the results of these tests. Many reactive systems,
like automata and protocols, however, are specified by a model rather than in
logic. There exist tools that are able to test software described by such a model-
based specification, but these tools have limited capabilities to generate test data
involving data types. Moreover, in these tools it is hard or even impossible to state
properties of these values in logic. In this paper we introduce some extensions of
G∀ST to combine the best of logic and model based testing. The integration of
model based testing and testing based on logical properties in a single automated
system is the contribution of this paper. The system consists only of a small library
rather than a huge stand-alone system.

8.1 INTRODUCTION

Within the fully automatic test system G∀ST [15], properties over functions and
data types are expressed in first order logic. These properties are written as func-
tions in the functional programming language CLEAN [18]. Based on the types
used in these functions, G∀ST automatically and systematically generates test val-
ues. It evaluates the property for these values and analyses the test results. This
avoids the burden to design and evaluate a test suite by hand and makes it easy to
repeat the test after changing the program (regression tests). This automatic and
systematic generation of test data is a distinguishing feature of G∀ST that even
allows proofs for finite types by exhaustive testing. In [15] we focused mainly on
the concepts and implementation of G∀ST.

1Nijmegen Institute for Computer and Information Science, Nijmegen University, The
Netherlands. Email:{pieter,rinus }@cs.kun.nl

111

It is possible to specify the behaviour of reactive systems, like the famous
coffee-vending machines and protocols [5], in logic, as demonstrated byZ [20].
However, these reactive systems are usually specified by a model, instead of by a
property in logic. Many formalisms are used in the literature to specify reactive
systems. We use labelled transition systems (LTS), since they have shown to be
very general and effective for testing [13, 10].

G∀ST was originally designed for logic-based testing, not for model-based
tesing. In this paper we introduce some extensions that make G∀ST suitable for
model based testing. We introduce a general format to specify labelled transition
systems as a data structure in CLEAN. The specification of an LTS by a function
is shown to be more concise and can handle an unbounded number of labels and
states.

To test conformance effectively these specifications are used as a basis for
test case generation. These test cases are much more effective for this purpose
than the systematic generation of all possible inputs, which in its turn is more
effective than random generation of inputs. For each deterministic and finite LTS
it becomes possible to prove that the implementation behaves as specified, or to
spot an error under the assumption that the implementation is an LTS that does
not contain more states than the specification [25].

An advantage of extending G∀ST to enable testing of products specified by an
LTS is that the original ability to test data types is preserved and can be combined
with the new possibilities. The generation of data to test properties involving data
types is a weak point of the existing automatic model-based test systems.

Unlike model checkers like SPIN [12], we assume that the given specification
is correct. In practice, however, differences between the specification and the
actual implementation appear also to be caused by incorrect specifications. So,
testing also increases the quality and confidence in the specification.

8.2 OVERVIEW OF G∀ST

To make this paper self-contained we give an overview of G∀ST. It is an automatic
test system embedded in the functional programming language CLEAN. The idea
behind G∀ST is similar to the test system Quickcheck for Haskell [7, 8]. Distin-
guishing features of G∀ST are the systematic test data generation and the ability
to prove properties. Quickcheck generates test data randomly.

Ordinary CLEAN functions are used to specify properties. As an example,
we consider therotate 13algorithm, a simple way to encrypt texts. It is used
to hide text from casual reading and rotates the alphabet by half its length, i.e.
13 characters. Characters not in the alphabet are not effected. For example, the
encryption ofThe answer = 42 yieldsGur nafjre = 42 [1].

A nice property of this encryption method is that it is its own decryption:
applying the algorithm twice yields the original character. In logic this is∀c ∈
Char.rot13(rot13(c)) = c. In G∀ST this is expressed as:

112

propRot13 :: Char -> Bool
propRot13 c = rot13 (rot13 c) == c

Notice that the arguments of the functions that specify the desired property are
treated as universally quantified variables.

8.2.1 Testing and Results

Given an implementation ofrot13 , the propertypropRot13 is tested by applying it
for a number of characters and checking whether it yieldsTrue for all arguments.
This is exactly what the functiontest does: generate arguments of the desired
type in a systematic way, evaluate the specified property for these arguments,
and investigate whether the test cases are successful. This test is initiated by
executingStart = test propRot13 . We use the following implementation ofrot13

in the tests:

rot13 :: Char -> Char
rot13 c | isUpper c = toChar ((toInt(c-’A’)+13) rem 26) + ’A’

| isLower c = toChar ((toInt(c-’a’)+13) rem 26) + ’a’
= c

Testing this property yields:Proof: success for all arguments after

98 tests . Owing to the systematic generation of test data, G∀ST can, in this
situation, detect that this property holds for all possible well–defined arguments.
Hence the result qualifies as a proof rather than just a successful test result. For
the typeChar G∀ST only generates the printable characters; which explains why
there are only 98 successful test performed. Below we show how this property is
tested for all 256 possible characters, if that is desired.

8.2.2 Evaluating Test Results

The functiontest has typep -> [String]|Testable p . Given a member of the class
Testable , this function yields a list of strings containing the test report. There exist
instances of the classTestable for Bool and functions of type(a->b) | Testable b &

TestArg a . A type belongs to the classTestArg if G∀ST knows how to generate and
show values of this type.

The basic rules for evaluating a series of test results are rather simple:

1. As soon as a single counterexample is encountered the property does not hold.
The testing process terminates with an appropriate error message.

2. If no counterexamples are found and all possible test values are used, the prop-
erty is proven. Such a proof is only possible for finite types and feasible for
rather small types.

3. If no counterexamples are found within a certain upper bound of tests, the
property passes the test successfully. We gained confidence in its correctness.

113

8.2.3 Logical Operators in G∀ST

As an additional property we might require that applyingrot13 to any character
yields a different character:

propRot13b :: Char -> Bool
propRot13b c = rot13 c <> c

Testing this property yields the message:Counterexample found after 5

tests: ’;’ . As stated above, only alphabetic characters are changed. Other
characters are unaffected byrot13 . Hencerot13 ’;’ is equal to’;’ and this prop-
erty does not hold for’;’ .

For a more precise formulation of this property we might require that applying
rot13 to a letter yields a different character:

propRot13c :: Char -> Property
propRot13c c = isAlpha c ==> rot13 c <> c

The operator==> mimics the implication operator,⇒, from logic. It has the usual
semantics: if the left operand holds, the right-hand operand should be obeyed.
For implementation reasons this function yields an element of typeProperty rather
than a Boolean. Any Boolean result is transformed to such aProperty by applying
the functionprop . Semantically the typeProperty is the union of Booleans and
functions yielding a Boolean (which are just logical expressions containing a uni-
versal quantifier). Evaluating this property by G∀ST yields: Proof: Success

for all not rejected arguments, 52 tests, 46 rejections .
If the left-hand argument of the operator==> yields False , the test-value is

rejected instead of counted as success. This operator is used to select test values:
if the test value is rejected, nothing is known about the property on the right-hand
side. It would be misleading to count this as a successful test.

There are several ways for the tester to control the generation of test values.
Using the infix operatorFor the property is tested for all values in the list on the
right-hand side of the operator. TheFor operator is used to testpropRot13 for
all 256 characters in the standard ASCII in:

Start = test (propRot13 For map toChar [0..255])

Here G∀ST reportsPassed after 100 tests . In this situation it is easy to
turn this result to a proof. We only have to increase the number of tests allowed.

Start = testn 500 (propRot13 For map toChar [0..255])

G∀ST reportsProof: success for all arguments after 256 tests .

8.2.4 Automatic Generation of Test Values

Test data generation for predefined types likeChar is rather easy. G∀ST generates
all possible elements of finite and relatively small types likeBool and Char as
test value. For large types likeInt andReal this is of course not feasible. G∀ST

generates by default common border types (like−1, 0 and 1), followed by random
values for these types.

114

The generation of test values for user-defined (recursive) types is interesting.
Using CLEAN ’s generic programming facilities [11, 3], G∀ST generates instances
of these types fully automatically. Test data are generated such that small in-
stances come first and larger values afterwards. Owing to the use of systematic
generation duplicates are also avoided in this situation. This implies that G∀ST is
able to detect that all instances of a finite type are generated. If a property holds
for all these values, it is proven correct.

8.3 SPECIFYING REACTIVE SYSTEMS IN G ∀ST

A reactive system is an automaton that posseses an internal state and interacts with
its environment. In this paper we restrict ourselves to software systems with a sin-
gle input and output channel. For instance, a communication channel is modelled
as a function of type[Message] -> [Message] .

For some simple reactive systems we can specify aspects of their behaviour in
first order logic. For instance, a system consisting of an unreliable communication
channel supervised by an alternating bit protocol is required to yield the same list
of messages as is to be sent. In G∀ST this is:
propAltBit :: (Int->Bool) (Int->Bool) [Int] -> Bool
propAltBit sError rError input = input == abpSystem sError rError input

The functionabpSystem::(Int->Bool) (Int->Bool) [c] -> [c] mimics the commu-
nication channel. The first two function arguments are used for the introduction
of communication errors in the sending and receiving direction of the channel re-
spectively. The last argument, the list[c] , is the input of the channel and the result
is the output of the alternating bit protocol to the user.

The implementation of the alternating bit protocol used in the tests is:
:: Message c = M c Bit | A Bit | Error
:: SenderState c = Send Bit | Wait Bit c

sender :: (SenderState c) [c] [Message c] -> [Message c]
sender (Send b) [] as = []
sender (Send b) [c:cs] as = [M c b: sender (Wait b c) cs as]
sender state=:(Wait b c) cs [a:as]

= case a of
A d | b==d = sender (Send (˜b)) cs as
_ = [M c b: sender state cs as]

receiver :: Bit [Message c] -> ([Message c],[c])
receiver rState [] = ([],[])
receiver b [m:ms]

= case m of
M c d|b==d = ([A b :as],[c:cs]) where (as,cs) = receiver (˜b) ms
_ = ([A (˜b):as], cs) where (as,cs) = receiver b ms

channel :: (Int->Bool) [Message c] -> [Message c]
channel error ms = [if (error n) Error m \\ m <- ms & n <- [1..]]

abpSystem sError rError list = received
where (acks,received) = receiver firstBit (channel sError messages)

messages = sender (Send firstBit) list (channel rError acks)
firstBit = O

This implementation passes any test of the propertypropAltBit in G∀ST.

115

Although this works fine, the properties that can be specified in this way are
limited. For instance, it is troublesome to specify the behaviour of the sender of
the alternating bit protocol in this formalism. Often, labelled transition systems
are used to specify this kind of behaviour of systems.

8.3.1 Labelled Transition Systems

A very popular way to specify a reactive systems is by means of a labelled transi-
tion system (LTS). In this section we introduce labelled transition systems, show
how they can be represented in CLEAN and show how they can be used as a basis
for testing in our predicate based test system.

An LTS description is defined in terms of a set of states and labelled transi-
tions between these states. To have a clear separation between input and output
labels we deviate from the usual definition of an LTS by using different types.
Moreover, we allow one input to generate a list of outputs. By introducing addi-
tional intermediate states, such an LTS can be transformed to a traditional LTS.
Our representation reduces the number of transitions needed to specify a system
and makes it easier to use an LTS as a basis for testing.

GivenQ a non-empty countable set of states,I a non-empty countable set of
input symbols, andO a non-empty countable set of output symbols, we have a
transition relationT ⊆Q× I ×〈O〉×Q. Given someq0 ∈Q a labelled transition
system is give by the tuple(Q, I ,O,T,q0).

For the moment we restrict ourselves to deterministic systems: the output
and new state are uniquely determined by the current state and the input. In
fact we have a Mealy finite state machine [17]. That is, if(q, i,o1,q1) ∈ T and
(q, i,o2,q2) ∈ T we haveq1 = q2∧o1 = o2. One often writes(q1, i,o,q2) ∈ T as:

q1
i/o→q2

Where model checkers and other test systems often use a tailor-made specifi-
cation language (like Promela used within SPIN [12] and TorX [22]) to describe
the labelled transition systems that serves as specification, we prefer a specifica-
tion in CLEAN. This has two advantages. First, we can use the full power of a
functional programming language to write the specification or to write functions
that generate the desired specification. Second, there is no need for an additional
language.

Instead of explicit sets of states,Q, and labels,I andO, we employ the type
system of CLEAN to enforce the correct use of states and labels. A straightforward
realisation of an LTS consists of a record containing a list of transitions and an
initial state.

:: Transition state input output :== (state,input,[output],state)
:: LTS state input output

= { trans :: [Transition state input output]
, initial :: state
}

The use of type-parameters for the sets of states and labels involved gives us

116

maximum flexibility. We can even use various different types of transition systems
in the same program if desired.

Usually the LTS is a partial function, so we have to decide what to do when
an input is received in a state that is not covered by the LTS. Like most model
checkers we choose to ignore the input: the state does not change and the output
is empty. This is known asimplicit completionof the model.

8.3.2 Example: Conference Protocol

The conference protocol described here is a well-known case study in many model
specifications and testers [24]. The conference protocol is used to describe the
behaviour of a conference protocol entity (CPE). The conference protocol allows
a fixed number of entities to chat in various conferences. In order to chat, the user
is able to issue the following commands to the CPE:

Join nickname conference The user joins the named conference under the given
nickname. A user participates in at most one conference at any time.

Datarequest messages All users in the conference receive this message.

Leave The user leaves the current conference.

There is a network through which the CPEs communicate. The interface from a
CPE to the network is via a User Datagram Protocol (UDP). The CPE sends Pro-
tocol Data Units (PDUs) to the network. The network delivers these PDUs to the
indicated CPE and adds the identification of the sender. There are no assumptions
on the order of the arrival of the messages, nor on the reliability of the connection.
A CPE can receive the following inputs from the network:

DataPDUin cpe message This CPE receives a messages fromcpe.

AnswerPDUin cpe nickname conference The indicatedcpe wants to join the
namedconference under the givennickname.

JoinPDUin cpe nickname conference Request to join the namedconference
from the indicatedcpe under the suppliednickname.

LeavePDUin cpe The indicatedcpe leaves the current conference.

To accomplish its task a CPE can send the following output messages. Only the
last message is sent to the user; all other messages are directed to the indicated
CPE via the network.

JoinPDUout cpe nickname conference Send a request to the namedcpe to
join the namedconference. The network transforms this message to anAn-
swerPDUin input where thecpe of destination is replaced by the sender.
Used to tell other CPEs that the user issues aJoin.

AnswerPDUout cpe nickname conference Confirmation thatcpe wants to par-
ticipate in theconference. This is used as an answer toJoinPDUin.

117

DataPDUout cpe message Send the givenmessage to the indicatedcpe.

LeavePDUout cpe indicates tocpe that this user leaves the conference.

Data nickname message Show a receivedmessage to the user.

After the definition of appropriate data types to hold CPE identifiers, mes-
sages, nicknames and conferences, these messages are transformed directly to the
corresponding algebraic data types. The state of a CPE is eitherIdle or it partici-
pates in aConference. The list of tuples consisting of aCPEid and aNickname
records which other CPEs participate in this conference and their nicknames. This
list is sorted and each CPE occurs at most once.

:: CPEstate = Idle | Conf ConferenceID Nickname [(CPEid,Nickname)]

The number of states is finite if the conference-ids, nicknames and CPEids are
finite.

The specification for a given CPE is generated by the function in Fig. 8.1. It
is sufficient to grasp the idea of the specification, so do not bother about all of the
details. The occurring nicknames, conference-ids, and messages are modelled by
simple algebraic datatypes. The lists of members of these types used (Nicknames ,
ConferenceIDs , CPEids and Messages) are generated by the systematic generation
functions of G∀ST. For instance:

:: ConferenceID = Conference1 | Conference2

ConferenceIDs :: [ConferenceID]
ConferenceIDs =: generateAll pseudoRandomInts

The list of pseudo random integers is used bygenerateAll to control the order of
values, see [15] for details.

All possible conferences occurring as state for a given CPE are generated by
the functionConferences::CPEid -> [CPEstate] . Owing to the restrictions imposed
on the list of participants (it should be ordered and each partner occurs at most
once) it is not possible to use generic generation for the conferences.

Owing to the generic generation of lists of elements of a type, likeConferenceIDs ,
the generation function for the LTS,CPElts , remains correct if we add, change, or
remove members in any of the types involved. Hence, it is more powerful and
convenient to use than the definitions of the labelled transition systems used in
most existing model-based test systems. For instance, TorX uses a specification
of the LTS in Promela. In the Promela specification at [24] the number of partners
is hardwired into the specification. Moreover, our specification is very concise if
we compare it to all other specifications collected at [24]. The difference in size
between this specification and the others is at least a factor of two.

8.3.3 Executing a Deterministic LTS

To use a given LTS as the basis for testing, we must be able to execute it. That
is, given an LTS, a current state and an input we need to be able to determine the

118

CPElts :: CPEid -> LTS CPEstate CPEin CPEout
CPElts myId

= { initial = Idle
, trans

= [(Idle, Join nn confId
,[JoinPDUout cpe nn confId \\ cpe <- CPEids | cpe<>myId]
, Conf confId nn [])

\\ nn <- Nicknames
, confId <- ConferenceIDs
] ++
[(conf, JoinPDUin cpe nn2 id

,[AnswerPDUout cpe nn id],Conf id nn (mkset (cpe,nn2) mem))
\\ conf=:(Conf id nn mem) <- Conferences myId
, cpe <- CPEids
, nn2 <- Nicknames
| cpe <> myId && not (isMember cpe (map fst mem))
] ++
[(conf, AnswerPDUin cpe nn2 id

,[],Conf id nn (mkset (cpe,nn2) mem))
\\ conf=:(Conf id nn mem) <- Conferences myId
, cpe <- CPEids
, nn2 <- Nicknames
| cpe<>myId && not (isMember cpe (map fst mem))
] ++
[(conf, Leave, [LeavePDUout cpe \\ (cpe,_) <- mem], Idle)
\\ conf=:(Conf id nn mem) <- Conferences myId
] ++
[(conf, LeavePDUin cpe, [], Conf c nn [t\\t<-mem|fst t<>cpe])
\\ conf=:(Conf c nn mem) <- Conferences myId
, (cpe,_) <- mem
] ++
[(conf, DataPDUin cpe mes,[Data nn2 mes], conf)
\\ conf=:(Conf id nn mem) <- Conferences myId
, mes <- Messages
, (cpe,nn2) <- mem
] ++ // to compensate loss of AnswerPDU
[(conf, DataPDUin cpe mes,[JoinPDUout cpe nn id], conf)
\\ conf=:(Conf id nn mem) <- Conferences myId
, mes <- Messages
, cpe <- CPEids
| cpe <> myId && not (isMember cpe (map fst mem))
] ++
[(conf, Datareq mes,[DataPDUout cpe mes\\(cpe,_) <- mem],conf)
\\ conf=:(Conf id nn mem) <- Conferences myId
, mes <- Messages
| not (isEmpty mem)
]

}

FIGURE 8.1 The specification of a CPE by the data structure LTS

associated output and new state. The realisation is very straightforward. Since the
LTS is currently deterministic, we have in fact a finite state machine, FSM.

Often we prefer to give a sequence of inputs and obtain a list of associated out-
puts rather than giving a single input. This is achieved by the following function
to execute a deterministic LTS.
runFSM :: (LTS s i o) [i] -> [[o]] | == s & == i
runFSM {trans,initial} inputs = run initial inputs
where

run state [] = []
run state [i:r]

= case [(o,t) \\ (s,j,o,t) <- trans | s==state && i==j] of
[] = [[]:run state r] // undefined: ignore input
[(o,t)] = [o :run t r]
_ = abort "This LTS is not deterministic!"

119

8.3.4 The Implementation Under Test

We perform ablack box testof the Implementation Under Test (IUT): we can only
observe the output of the system given an input. To show clearly that a single input
produces a sequence of outputs and a new state, we use the type:

:: IUT input output = IUT (input -> ([output],IUT input output))

It is often convenient to transform this to a function that converts a sequence of
inputs to the associated outputs. This is done by:

runIUT :: (IUT i o) [i] -> [[o]]
runIUT iut [] = []
runIUT (IUT f) [a:r] = [o:runIUT iut r] where (o,iut) = f a

Here we define only the type of the IUT; it is all we need to know. In order to
execute the test an implementation should be available.

8.3.5 Testing the Conference Protocol

After the introduction of a representation for model-based specifications and the
tools to execute the specification and the IUT, we are ready to formulate properties
to be tested automatically by G∀ST. We assume that an implementation of the CPE
is available as a function of typecpeImpl::CPEid -> IUT CPEin CPEout .

A desirable property for any implementation of the conference protocol is that
its outputs are equal to the outputs obtained by execution of the specification:

propCPE :: CPEid [CPEin] -> Bool
propCPE id input = runFSM (CPElts id) input == runIUT (cpeImpl id) input

This is a standard property for G∀ST. Hence, it is tested like any other property in
G∀ST by executingStart = test propCPE .

This model-based property can be combined with an ordinary logical property.
If we have a logical predicateproperState::CPEstate -> Bool to check the sanity
of states (CPEs are ordered and not duplicated), we can combine these properties
to:

propCPEa :: CPEid [CPEin] -> Property
propCPEa id input = propCPE id input /\ (properState For (Conferences id))

When we are convinced that the protocol handles all CPEs equally, we can
also limit the test to a single CPE-id. ForCPE1 the last property becomes:

propCPEb :: ([CPEin] -> Bool)
propCPEb = propCPEa CPE1

Testing these properties reveals some discrepancies between the initial versions of
the specification and the implementation. The differences concern the handling
of unusual inputs, like receiving aDataPDUin from a CPE that is not a member of
the conference. This led us to improvements of the implementation as well as the
specification. Afterwards G∀ST reports that these properties pass the tests.

When the implementation passes some significant number of tests it is tempt-
ing to believe that the implementation conforms to the specification. However,

120

analysis of the generated inputs showed that only a few conferences were estab-
lished during the tests. Although the inputs are generated systematically, only
a small fraction of the generated inputs correspond to actually entering a con-
ference and sending messages. Typically, only one single data transfer within a
conference is established in the first 100 tests that are generated.

Tests with systematically generated inputs appear to be very valuable to verify
that the specification and the implementation ignore the same inputs, even if the
sequence of messages is completely meaningless. This only tests that the IUT
shows the specified behaviour:robustness testing.

8.3.6 Implementations with Other Types

The type of the IUT used above suits our tests very well. However, not every
implementation we want to test has such a type. An alternative custom type for the
implementation iscpeImpl2::CPEid [CPEin] -> [[CPEout]] . Even when the IUT
produces a single stream of output tokens,cpeImpl3::CPEid [CPEin] -> [CPEout] ,
rather than a sequence of output per event, we can still test these implementations
in G∀ST by adapting the property slightly:

propCPE‘ :: [CPEin] CPEid -> Bool
propCPE‘ input id = runFSM (CPElts id) input == cpeImpl2 id input

propCPE‘‘ :: [CPEin] CPEid -> Bool
propCPE‘‘ input id = flatten (runFSM (CPElts id) input) == cpeImpl3 id input

For propCPE‘‘ we only have lost the ability to check whether a particular output
element is generated in response to the correct input. A particular element of
the output might be generated too late or too early. Such a synchronization can
cause serious troubles in the communication with a reactive system. In order
to be able to detect these synchronization problems we prefer the somewhat more
complicated type of output,[[out]] , above the plain list of output elements,[out] .

8.4 BETTER TEST DATA GENERATION FROM THE LTS

To check the correct behaviour for meaningful sequences of messages,confor-
mance, we use the LTS as a source of information to produce meaningful input
sequences. For instance, each meaningful sequence of inputs starts with an input
corresponding to a transition from the initial state. We can use the existing know-
ledge of testing a FSM [25, 16]. An input sequence is usually called a path in the
world of FSM-testing. If one assumes that the IUT is also deterministic, we do
not learn anything new from executing a path which is a prefix of another tested
path. If we furthermore assume that the IUT does not have more states than the
specification, it is useless to test the same transition twice. Both assumptions are
standard in FSM testing. We use this knowledge to construct a finite amount of
longer and meaningful inputs. This implies that we are now able to prove things
by exhaustive testing, instead of just executing successful tests. We discuss some
test generation algorithms inspired by [21] and [25].

121

nick confer mes # trans paths generated
CPEs names ences sages states itions A1 A2 A3 A4

1 1 1 1 2 2 ∞ 1 1 1
2 1 1 1 3 9 ∞ 118 4 3
3 1 1 1 5 28 ∞ >10,000 11 6
2 2 1 1 7 30 ∞ >10,000 14 8
2 1 2 1 5 18 ∞ 27,848 7 6
2 1 1 2 3 12 ∞ 7,827 4 3
2 2 2 2 13 80 ∞ >10,000 26 16
3 3 3 3 145 2070 ∞ >10,000 567 282

TABLE 8.1 Number of paths generated for various size of types.

A1 From each state in the specification we only test the transitions from that state.
To terminate each input sequence we randomly choose to end the path here
or to use one of the possible transitions at each point. This is basically the
algorithm for test-data generation used by TorX.

A2 Since it is useless to test the same transition twice, we terminate a path when
there is no untested transition from the current state.

A3 The paths generated by the previous algorithm do not verify the final state at
the end of the path. Since the IUT is a black box we cannot check this final
state directly. The state can only be identified via the observed response to
inputs. This algorithm checks the final state by performing additional transi-
tions: we require that each transition occurs twice in the test suite.

A4 In this algorithm we use a function of typestate -> [input] , to determine
the inputs used to test the final state. Ideally, we use aunique input output
sequence, UIO, or adistinguishing sequence, DS, to identify the final state [2].
Using a UIO we can verify whether we are in a given state by observing the
output corresponding to the input sequence associated with that state. Using a
DS we can identify the state by observing the output corresponding to an input
sequence associated to the entire LTS. If the UIO and DS are unknown or do
not exist, we can use a short sequence of inputs as an approximation.

Finding the shortest set of paths that achieve the goals ofA3 andA4 is yet an-
other variant of the travelling salesman problem. We use a simple algorithm that
chooses the first transition available. An input sequence is terminated when we
cannot extend it without taking a transition too often. Until all transitions are used
enough we extend a prefix of one of the used inputs with transitions that still need
to be done.

In Table 8.1 we list the number of states, the number of transitions in the
LTS, and the generated number of input sequences according to algorithms above
for various numbers of CPE’s, nicknames, conferences and messages. By its
natureA1 always generate infinitely many paths. For a particular test we choose
some number of these paths. This table shows that the number of input sequences
generated byA2 is rather big, even for specifications of modest size. In practice,
it is too large for a quick and complete automatic test.

122

Algorithm A4 produces fewer paths and is more accurate, but requires known
paths to verify the final state. For testing the conference protocol we used:

CPEtestSeq :: CPEstate -> [CPEin]
CPEtestSeq state = [Datareq mess, Join nn confId]
where mess = hd Messages; nn = hd Nicknames; confId = hd ConferenceIDs

By using the generic definitions forMessages , Nicknames andConferenceIDs again,
this definition is completely independent of the actual contents of these types.

Algorithm A3 is used when an appropriate test sequence for final states is not
at hand. It usually gives good results.

It is important to realize that these tests only check if the IUT behaves as
specified by the LTS; this is known asconformance testing. Testing with the
generated input sequences does not show whether the IUT shows any unspecified
behaviour. For this purpose we need exhaustive tests of all inputs in all states.
The default generation algorithm of G∀ST for input sequences appears to test this
effectively.

The algorithmsA2..A4 are superior to a system where the test function decides
dynamically whether it is useful to apply a given input. We do not have to wait
until a suited input occurs. Moreover, we can decide easily when all states and
transitions are visited and the testing is finished. This allows proofs of confor-
mance instead of just successful tests.

8.5 FUNCTIONAL AND NONDETERMINISTIC SPECIFICATIONS

TheLTS type straightforwardly represents labelled transition systems. However, it
suffers from the following drawbacks:

1. It allows nondeterminism, but a thorough examination of the data structure is
necessary to see whether the specification is deterministic or not.

2. It is limited to a finite number of transitions. Each and every state and input
that can occur should be listed explicitly in the LTS. This makes it impossible
to specify a system that echoes a given integer or string. It is desirable to use
variables in states and functions.

3. It is impossible to use typical functional language features, like guards and
pattern matching, in the specification.

All these problems are solved by using functions of type

:: Spec state input output :== state -> input -> [(state,[output])]

as specification. Just like above, we use implicit completion when we use this
specification: inputs for states not specified do not change the state and produce
no output. Consider the following system that returns the absolute value of every
second negative integer. This small definition covers the transition for all integer
lists.

123

cpeSpec myId Idle (Join nn conf)
= [(Conf conf nn [],[JoinPDUout cpe nn conf \\ cpe<-CPEids| cpe<>myId])]

cpeSpec myId state=:(Conf conf nn mem) input
memberCPEs = map fst mem
= case input of

Datareq mes = [(state,[DataPDUout cpe mes \\ (cpe,_) <- mem])]
Leave = [(Idle,[LeavePDUout cpe \\ (cpe,_) <- mem])]
DataPDUin id mes

| isMember id memberCPEs
= [(state,[Data nn mes\\(cpe,nn) <- mem | cpe == id])]

| id<>myId
= [(state,[JoinPDUout id nn conf])] // handle lost join

AnswerPDUin id nn2 conf2
| conf == conf2 && not (isMember id [myId: memberCPEs])

= [(Conf conf nn (mkset (id,nn2) mem),[])]
JoinPDUin id nn2 conf2

| conf == conf2 && not (isMember id [myId: memberCPEs])
= [(Conf conf nn (mkset (id,nn2) mem),[AnswerPDUout id nn conf])]

LeavePDUin id = [(Conf conf nn [t \\ t=:(m,_) <- mem | m <> id],[])]
_ = [] // to make the specification total

cpeSpec _ _ _ = [] // to make the specification total

FIGURE 8.2 The specification of a CPE by a function

absoluteValue :: Spec Bool Int Int
absoluteValue b n

| n<0
| b = [(False, [˜n])]

= [(True , [])]
= [] // other transitions are not allowed

To compare the new specification with the specification by a data structure
in figure 8.1 we list the specification of the conference protocol by a function in
figure 8.2. The second version is clearly more compact than the previous version
using a data structure instead of a function. Since all lists yielded have at most
length one, it is obvious that this specification is deterministic. In contrast to the
specification by a data structure, listed in figure 8.1, this version also works if
we use large (or infinite) domains likeInt for cpe–ids andString for messages
and nicknames. Using an infinite domain for a specification as used in figure 8.1
would result in an infinite representation of the specification, an specification by
a function as in figure 8.2 can handle this without problems. This makes this kind
of specifications really more powerful.

The test sequence generation algorithms,A1..A4, in section 8.4 operate on
data structures. To uses these algorithms with functions as specifications we need
to generate transitions from the specification by a function. For ordinary testing
this is not needed. All transitions from a given state are produced by:

generateTrans :: (Spec s i o) s [i] -> [Transition s i o]
generateTrans spec s inputs = [(s,i,o,s2)\\i<-inputs, (s2,o)<-spec s i]

To obtain the entire transition relation, we just have to construct these transitions
for every reachable state. For finite types we can use generic generation for the
list of inputs to be tested. For infinite and extremely large types, likeInt , the tester
has to supply a list of inputs to be used.

124

8.6 TESTING NONDETERMINISTIC SYSTEMS

Until here we have assumed that each LTS is deterministic. Now we drop this
assumption. An LTS is nondeterministic if there can occur several transitions for
a given state and input. These transitions can differ in output and/or target state.
Many real life systems contain some form of nondeterminism.

Consider a simple vending machine spcified by the nondeterministic LTS:

FinalT
Coin/[Tea]� Stea

Button/[]� Idle
Button/[]- Scoffee

Coin/[Coffee]- FinalC

Initially the system is in the stateIdle. If the button is pressed the machine decides
to produce either tea or coffee, but nothing happens until a coin is inserted. A
better vending machine returns toIdle after producing coffee or tea. From the
input/ouput one cannot decide in which state the machine is after pressing the
button. It is also impossible to guarantee that this machine is in stateStea by
supplying inputs, it is always possible for the machine to take the other branch.
This machine is specified in G∀ST as:

vendingSpec Idle Button = [(Stea,[]),(Scoffee,[])]
vendingSpec Stea Coin = [(FinalT,[Tea])]
vendingSpec Scoffee Coin = [(FinalC,[Coffee])]
vendingSpec state input = []

To cope with this situation we use theioco–test [22, 23, 4]. The nameiocostands
for input/output conformance. The idea is that when an input belonging to the
specification is supplied to the IUT, the observed output must be allowed by the
specification. It is not required that all specified behaviour is implemented. When
the specification contains a nondeterministic choice at some state for a given input,
it is sufficient that at least one of these branches is implemented. This implies that
an implementation with behaviour

Idle
Button/[]- Scoffee

Coin/[Coffee]- FinalC

is ioco–correct with respect to the specification above: any behaviour shown by
this implementation is allowed by the specification.

The ioco–relation allows partial specifications: the implementation is allowed
to respond to inputs not occurring in the specification. Due to the restriction that
inputs should belong to the specification, this additional behaviour is not con-
sidered in theioco-correctness. For instance the vending machine that produces
drinking chocolate after being hit, the inputBang, and the insertion of a coin is an
ioco–correct implementation of the specification above.

FinalC
Coin/[Cacao]� Scacao

Bang/[]� Idle
Button/[]- Scoffee

Coin/[Coffee]- FinalC

An implementation that can offer cacao after pushing the button and inserting
a coin, however, is incorrect.

FinalC
Coin/[Cacao]� Scacao

Button/[]� Idle
Button/[]- Scoffee

Coin/[Coffee]- FinalC

125

The outputCacaoafter inputs belonging to the specification,ButtonandCoin, is
not allowed by the specification. This error is discovered during testing as soon
as the implementation produces cacao for the first time.

During the test we do not know always in which state of the specification we
are currently. For instance, after applying the inputbutton and observing that
there is no output, the implementation might be in a state corresponding toStea or
to Scoffee. To deal with this nondeterminism we maintain a list of possible current
states, instead of a single current state. After the inputButton in the stateIdle the
list of possible states is[Stea,Scoffee] .

This is implemented bytestIOCO . Similar to test this function yields a report
encoded in a list of strings. For clarity we use a separate functiontestIOCO rather
than a new operator fortest .

testIOCO :: (Spec s i o) [s] (IUT i o) [[i]] -> [String] | == o
testIOCO spec states iut paths = test 1 paths
where

test n [] = ["All tests successful"]
test n [p:paths] = [toString n: ioco iut states p (test (n+1) paths)]
ioco iut [] path cont = ["Error!"]
ioco iut states [] cont = ["OK\n":cont]
ioco (IUT iut) states [i:path] cont = ioco iut2 states2 path cont
where (iutout,iut2) = iut i

states2 = [t\\s<-states, (t,specout)<-spec s i| specout==iutout]

This test does not require that the system is really nondeterministic. It can, for
instance, be used to test the conference protocol where the input is generated by
one of the algorithms discussed above. Paths can be generated by the algorithms
A1..A4, introduced in section 8.4. The neededStart function is:Start = testIOCO

(cpeSpec CPE1) [Idle] (cpeImpl CPE1) (A4 (CPElts CPE1) CPEtestSeq) .
A more sophisticatedioco–test algorithm might generate the input on basis of

the observed behaviour. Thison the flytesting [9] remains future work.
Note that thisioco–test is done by a small function inside the G∀ST framework.

All other test systems for model based specifications (like TorX) are huge stand
alone systems. These systems lacks the abilities to generate data types G∀ST has
and have troubles with properties of these data types.

8.7 RELATED WORK

The closest related test system for logical properties (i.e. the original G∀ST) is
QuickCheck [7, 8]. The discriminating difference between QuickCheck and G∀ST

is the systematic test data generation in G∀ST. Test data generation in QuickCheck
is based on a class, the user has to supply an instance for each new type, and
random data generation. In G∀ST the test data generation for a new type comes
for free since it is based on generics [3, 11]. Moreover, the generation of test data
is systematic from small to large without duplicates. When a property holds for
all values in a type, it is proven.

With the extension of G∀ST introduced in this paper makes it a model based
test system [6] like TorX [22, 21], Autolink [19, 14], TGV [?], and UIO Test
[9]. Basically these systems generate inputs for the system to be tested based on

126

the LTS–specification. Currently these systems have difficulties with conditions
on values and the generation of these values. In G∀ST however, such conditions
can easily be expressed in first order logic. We are aware of a number of running
projects to extend model based test systems with capabilities to handle restrictions
on types. No results have been reported yet. The model based specifications in
CLEAN appear to be clearer, shorter and more general than the example specifi-
cations collected at [24].

In [8] it is shown how Quickcheck can handle systems with a state. These
systems are monad based, and specified in logic instead of an LTS. We expect
that those extensions can be incorporated into G∀ST, and that Quickcheck can be
extended with the capabilities of G∀ST.

8.8 CONCLUSION

In this paper we extended G∀ST with the ability to test software described by
model–based specifications. We used labelled transition systems for these specifi-
cations, and shown that such an LTS can be better specified by a function than data
type. The well–knowioco-relation for nondeterministic systems can be tested by
a small extension to the test library G∀ST, instead of a huge stand alone test sys-
tem.

By representing a labelled transition system as a data type and enabling the
execution of such an LTS, we are able to test systems specified by an LTS in G∀ST.
This is a significant improvement since many interesting systems are specified by
a model instead of a property in first order logic.

Moreover, such an LTS is used as a basis for test data generation. These
input sequences test that the system behaves correct for inputs that are part of
the specification. The default data generation of G∀ST is used to verify that the
system does not show undesired behaviour for other inputs.

The use of functions instead of a data type to specify an LTS has two signif-
icant advantages. The specification becomes even more concise and it is able to
handle infinite data types for labels and states.

The model based testing is well integrated with the automatic testing of logical
properties. This makes G∀ST with this extension stronger than existing model
based testers. These systems are known to be weak at testing data types. There
are several projects running to extend model based test systems with the ability to
generate data values, no results have been reported yet.

Acknowledgement

We thank Peter Achten, Marko van Eekelen, Jan Tretmans, Rene de Vries, Arjen
van Weelden and Ronny Wichers Schreur for their contributions to this paper.

REFERENCES

[1] Douglas Adams.The Hitch Hiker’s Guide to the Galaxy, ISBN 345391802, 1979.

127

[2] A. Aho, A. Dahbura, D. Lee, and M. UyariAn optimization technique for protocol
conformance test generation based on UIO sequences and rural chinese postman
toursIn Protocol Specification, Testing and Verification VIII, volume 8, 1998.

[3] A. Alimarine, R. Plasmeijer.A Generic Programming Extension for Clean.IFL2001,
LNCS 2312, pp.168–185, 2001.

[4] M. van der Bijl, A. Rensink, and J. TretmansComponent Based Testing with IOCO,
CTIT Technical Report TRCTIT0334, University of Twente, 2003.

[5] A. Belinfante, J. Feenstra, R. Vries, J. Tretmans, N. Goga, L. Feijs, S. Mauw, L.
HeerinkFormal Test Automation: A Simple Experiment, in Int. Workshop on Testing
of Communicating Systems 12pp 179-196, 1999.

[6] E. Brinksma, J. TretmansTesting Transition Systems: An Annotated Bibliography”,
in Modeling and Verification of Parallel Processes–4th Summer School MOVEP 2000
LNCS 2067, pp 186-195, 2001.

[7] K. Claessen, J. Hughes.QuickCheck: A lightweight Tool for Random Testing of
Hasskell Programs. International Conference on Functional Programming, ACM, pp
268–279, 2000. See alsowww.cs.chalmers.se/ ∼rjmh/QuickCheck .

[8] K. Claessen, J. Hughes.Testing Monadic Code with QuickCheck, Proceedings of the
ACM SIGPLAN workshop on Haskell 2002, Pittsburgh, pp 65–77, 2002.

[9] J. Fernandez, C. Jard, T. Jéron, C. VihoUsing On-the-Fly Verification Techniques
for the generation of test suites, Conference on Computer Aided Verification, LNCS
1102, 1996.

[10] L. Heerink, J. Feenstra, and J. TretmansFormal Test Automation: The Conference
Protocol with PHACTIn H. Ural et alTesting of Communicating Systems - Procs. of
TestCom 2000, Kluwer, pp 211–220, 2000.

[11] R. Hinze,Polytypic values possess polykinded types, Fifth International Conference
on Mathematics of Program Construction, LNCS 1837, pp 2–27, 2000.

[12] Gerard J. HolzmannSPIN Model Checker, The: Primer and Reference ManualAddi-
son Wesley, isbn 0-321-22862-6, 2003.

[13] N. GogaComparing TorX, Autolink, TGV and UIO Test Algorithms, SDL 2001:
Meeting UML: 10th International SDL Forum Copenhagen, Denmark, June 27-29,
2001, Proceedings. LNCS 2078, pp 379–402, 2001.

[14] A. Kerbrat, T. J́eron, R. GrozAutomated Test Generation from SDL Specifications, in
The Next Millennium–Proceedings of the9th SDL Forum, pp 135–152, 1999.

[15] Pieter Koopman, Artem Alimarine, Jan Tretmans and Rinus Plasmeijer:Gast:
Generic Automated Software Testing, in Ricardo Pẽna: IFL 2002, Implementation
of Functional Programming Languages, LNCS 2670, pp 84–100, 2002.

[16] D. Lee, and M. Yannakakis, MPrinciples and Methods for Testing Finite State
Machines– A Survey, The Proceedings of the IEEE, 84(8), pp 1090-1123, 1996.

[17] George MealyA method for synthesizing sequential circuits, Bell System Technical
Journal, 34(5):1045–1079, 1955

[18] Rinus Plasmeijer and Marko van Eekelen:Concurrent Clean Language Report (ver-
sion 2.0), 2002.www.cs.kun.nl/ ∼clean .

128

[19] M. Schmitt, A. Ek, J. Grabowski, D. Hogrefe, and B. KockAutolink – putting SDL–
based test generation into practiseProceedings of the 11th International Workshop
on Testing Communication Systems, pp 227–243, Kluwer Academic, 1998.

[20] Mike SpiveyThe Z Notation: A Reference Manual,2nd ed, Prentice Hall, 1992.

[21] J. Tretmans, E. BrinksmaCôte de Resyste – Automated model–based Testing, in
Progress 2002 –3rd Workshop on Embedded Systems, pp 246–255, 2002.

[22] J. TretmansTest generation with inputs, outputs and repetive quiscence.Software–
Concepts and Tools, 17(3):103–120, 1996.

[23] J. TretmansTesting concurrent systems: A fromal approach.In J. Baeten and S. Mauw
Concur’99LNCS 1664, pp 46–65, 1999.

[24] Various formal specifications of the conference protocol.http://fmt

.cs.utwente.nl/ConfCase/v1.00/specifications/specs.html

[25] H. Ural, Formal methods for test sequence generation, Computer Communications
Journal,15(5), pp 311–325, 1992

129

