
Chapter 3

Camelot and Grail:
Resource-Aware Functional
Programming for the JVM
K. MacKenzie1 and N.Wolverson1

Abstract We describe the functional language Camelot, which is a language of
the ML family with extensions for explicit management of heap storage, and the
intermediate language Grail, which is a functional form of JVM bytecode. A
scheme for transforming Camelot into Grail is described. We also give some fig-
ures for execution times which show that Camelot programs perform reasonably
well when compared with Java equivalents.

3.1 INTRODUCTION

The Mobile Resource Guarantees (MRG) project [15] aims to develop a Proof
Carrying Code (PCC) [16] framework to endow mobile computer programs with
guarantees of resource bounds. Typical resources are time, heap space, system
calls, and stack size. Our goal is to provide a resource-safe programming language
to be used for writing mobile code. This language, which is called Camelot, is a
high-level functional language which is compiled into JVM bytecode. The class
files produced by the compiler will be equipped with a proof that the programs
obey specified resource constraints and can then be transmitted across a network
in the usual way. The consumer of the mobile code can then independently verify
the resource constraints by checking the proof attached to the code; if verification
is successful then execution can proceed as normal. This technique provides an
unforgeable guarantee that the claimed resource limits will not be exceeded.

1Laboratory for the Foundations of Computer Science, School of Informatics, The
University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, Scotland, UK; Email:
kwxm@inf.ed.ac.uk , N.Wolverson@sms.ed.ac.uk

29

In this paper we will describe Camelot and its translation to JVM bytecode.
Camelot is similar to a subset of O’Caml, the main novelty lying in extensions
for performing in-place modifications to heap-allocated data-structures. These
features are similar to those described in by Hofmann in [6] but include some
extra extensions for freelist management. To retain a purely functional semantics
for the language in the presence of these extensions a linear type system can be
employed: in the present implementation, linearity can be enforced via a compiler
switch. We are in the process of enhancing the compiler by the addition of other,
less restrictive type systems which still allow safe in-place modifications. More
details will be given below.

Crucial design choices for the compilation are transparency and an exact spec-
ification of the compilation process. The former ensures that the compilation does
not modify the resource consumption in an unpredictable way. The latter provides
a formal basis for using resource information inferred for the high-level language
in proofs on the intermediate language.

3.2 CAMELOT

Camelot is a strongly typed language of the ML family with features added to
enable close control of heap usage. The syntax of Camelot (which is similar to a
subset of the syntax of the O’Caml language [17]) is given below. The termsty-
con, cname, fnameandvar refer totype constructors, constructor names, function
namesandvariable namesrespectively: all of these are names in SML style. Con-
structor names must begin with an upper-case letter, whereas all other identifiers
begin with a lower-case letter. The termtyvar refers to atype variable, which is
a name beginning with a single quote. Literal constants (constbelow) are similar
to those in O’Caml. Optional items are enclosed in angular parentheses.

program ::= 〈typedecseq〉 〈valdecseq〉 〈funimpseq〉
typedecseq ::= typedec〈typedecseq〉

typedec ::= type 〈(tyvar1 . . . tyvarn)〉 tycon= conbind

conbind ::= cname〈of ty1 ∗ . . .∗ tyn〉 〈 | conbind〉
| !cname〈 | conbind〉

ty ::= unit | bool | int | float | string | tyvar

| ty array | tyseq tycon| tyn -> . . . -> ty1 -> ty

valdecseq ::= valdec〈valdecseq〉
valdec ::= val var: ty | val fname: ty

funimpseq ::= funimp〈 funimpseq〉
funimp ::= let 〈rec〉 fundecseq

fundecseq ::= fundec〈and fundecseq〉
fundec ::= fname varseq= expr

30

expr ::= const| var | uop expr| expr op expr| fname expr1 . . .exprn
| cname(expr1, . . . ,exprn) | cname(expr1, . . . ,exprn)@var

| let pat= exprin expr| if exprthen exprelse expr

| match exprwith match| free var | (expr) | begin exprend

match ::= mrule〈 | match〉
mrule ::= con〈(pat1, . . . ,patn)〉 -> expr

| con〈(pat1, . . . ,patn)〉@pat -> expr

pat ::= var |
uop ::= - | -. | not
op ::= arithop | cmp| ˆ | && | ||

arithop ::= + | - | * | / | mod | +. | -. | *. | /.
cmp ::= = | < | <= | >= | > | =. | <. | <=. | >=. | >.

There are a number of built-in operators: the operators+,-, . . .> apply to inte-
ger values, whereas+.,-., . . . apply to floating-point values. The boolean expres-
sione1 && e2 is an abbreviation forif e1 then e2 else false; similarly e1 || e2

representsif e1 then true else e2. The remaining binary operator iŝ, which
performs string concatenation. There are also three unary negation operators.

In addition there are a number of predefined functions such asprint int,
print int newline, andint of float, whose names should explain them-
selves. Thesame string function is used to compare strings for equality. There
are functions for handling arrays, but we will not use these here. Camelot also
includes a built-in polymorphiclist type. In order to execute a program the user
must include a functionstart: string list -> unit ; when the class file is
executed thestart function will be executed with an argument consisting of a
list containing the command-line arguments to the program.

Note that in some contexts the symbolcan be used instead of a variable
name. This feature can be used to discard unwanted values such as unit values
returned by print statements.

3.2.1 Basic Features of Camelot

The core of Camelot is a standard polymorphic ML-type functional language.
One can define datatypes in the normal way:

type intlist = Nil | Cons of int * intlist

type ’a polylist = NIL | CONS of ’a * ’a polylist

type (’a, ’b) pair = Pair of ’a *’b

To simplify the compilation process we prohibit theunit type in datatype
definitions. This does not cause any loss of generality since the excluded datatypes
are isomorphic to types of the kind which we do allow. Values belonging to user-
defined types are created by applying constructors and are deconstructed using
thematch statement:

31

let rec length l = match l with

Nil -> 0

| Cons (h,t) -> 1+length t

let test () = let l = Cons(2, Cons(7,Nil))

in length l

The form of the match statement is much more restricted than in SML or
O’Caml. There must be exactly one rule for each constructor in the associated
datatype, and each rule binds the values contained in the constructor to variables
(or discards them by using the pseudo-variable). Complex patterns are not avail-
able, and must be simulated with furthermatch andif statements.

As can be seen from the example above, constructor arguments are enclosed
in parentheses and are separated by commas. In contrast, function definitions and
applications which require multiple arguments are written in a “curried” style:

let add a b = a+b

let f x y z = add x (add y z)

Despite this notation, the present version of Camelot doesnot support higher-
order functions; any application of a function must involve exactly the same num-
ber of arguments as are specified in the definition of the function.

3.2.2 Diamonds and Resource Control

Our current implementation of Camelot targets the Java Virtual Machine, and
values from user-defined datatypes are represented by heap-allocated objects from
a certain JVM class. Details of this representation will be given in Sec. 3.4.1.

Consider the following function which uses an accumulator to reverse a list of
integers (as defined by theintlist type above).

let rec rev l acc = match l with

Nil -> acc

| Cons (h,t) -> rev t (Cons (h,acc))

let reverse l = rev l Nil

This function allocates an amount of memory equal to the amount occupied by
the input list. If no further reference is made to the input list then the heap space
which it occupies may eventually be reclaimed by the JVM garbage collector.

In order to allow more precise control of heap usage, Camelot includes con-
structs allowing re-use of heap cells. There is a special type known as thediamond
type (denoted by<>) whose values represent blocks of heap-allocated memory,
and Camelot allows explicit manipulation of diamond objects. This is achieved
by equipping constructors and match rules with special annotations referring to
diamond values. Here is thereverse function rewritten using diamonds so that
it performs in-place reversal:

let rec rev l acc = match l with

Nil -> acc

| Cons (h,t)@d -> rev t (Cons (h,acc)@d)

let reverse l = rev l Nil

32

The annotation “@d” on the first occurrence ofCons tells the compiler that
the diamond valued is to be bound to a reference to the space used by the list
cell. The annotation on the second occurrence ofCons specifies that the list cell
Cons(h,acc) should be constructed in the diamond object referred to byd, and
no new space should be allocated on the heap.

One might not always wish to re-use a diamond value immediately. This can
sometimes cause difficulty since such diamonds might then have to be returned as
part of a function result so that they can be recycled by other parts of the program.
For example, the alert reader may have noticed that the list reversal function above
does not in fact reverse lists entirely in place. When the user callsreverse, the
invocation of theNil constructor in the call torev will cause a new list cell to
be allocated. Also, theNil value at the end of the input list occupies a diamond,
and this is simply discarded in the second line of therev function (and will be
subject to garbage collection if there are no other references to it). The overall
effect is that we create a new diamond before calling therev function and are left
with an extra diamond after the call has completed. We could recover the extra
diamond by making thereverse function return a pair consisting of the reversed
list and the spare diamond, but this is rather clumsy and programs quickly become
very complex when using this sort of technique. To avoid this kind of problem,
unwanted diamonds can be stored on afreelist for later use. This is done by using
the annotation “@ ” as in the following example which returns the sum of the
entries in an integer list, destroying the list in the process:

let rec sum l acc = match l with

Nil@_ -> acc

| Cons (h,t)@_ -> sum t (acc+h)

The question now is how the user retrieves a diamond from the freelist. In
fact, this happens automatically during constructor invocation. If a program uses
an undecorated constructor such asNil or Cons(4,Nil) then if the freelist is
empty the JVMnew instruction is used to allocate memory for a new diamond
object on the heap; otherwise, a diamond is removed from the head of the freelist
and is used to construct the value. It may occasionally be useful to explicitly
return a diamond to the freelist and an operatorfree: <> -> unit is provided
for this purpose.

There is one final notational refinement. The in-place list reversal function
above is still not entirely satisfactory since theNil value carries no data but
is nonetheless allocated on the heap. We can overcome this by redefining the
intlist type as

type intlist = !Nil | Cons of int * intlist

The exclamation mark directs the compiler to represent theNil constructor by
the JVMnull reference. With the new definition ofintlist the original list-
reversal function performs true in-place reversal: no heap space is consumed or
destroyed when thereverse function is applied. The! annotation can be used
for a single zero-argument constructor in any datatype definition. In addition, if
every constructor for a particular datatype is nullary then they may all be preceded
by!, in which case they will be represented by integer values at runtime. We have

33

deliberately chosen to expose this choice to the programmer (rather than allowing
the compiler to automatically choose the most efficient representation) in keeping
with our policy of not allowing the compiler to perform optimisations which have
unexpected results on resource consumption.

The features described above are very powerful and can lead to many kinds
of program error. For example, if one applied thereverse function to a sublist
of some larger list then the small list would be reversed properly, but the larger
list could become partially reversed. Perhaps worse, a diamond object might be
used in several different data structures of different types simultaneously. Thus a
list cell might also be used as a tree node, and any modification of one structure
might lead to modifications of the other. The simplest way of preventing this kind
of problem is to require linear usage of heap-allocated objects, which means that
variables bound to such objects may be used at most once after they are bound.
Details of this approach can be found in Hofmann’s paper [6]. Strict linearity
would require one to write the list length function as something like

let rec length l = match l with

Nil -> Pair (0, Nil)

| Cons(h,t)@d ->

let p = length t

in match p with

Pair(n, t1)@d1 -> Pair(n+1, Cons(h,t1)@d)@d1

It is necessary to return a new copy of the list since it is illegal to refer tol after
callinglength l.

Our compiler has a switch to enforce linearity, but the example demonstrates
that the restrictive nature of linear typing can lead to unnecessary complications.
Aspinall and Hofmann [1] give a type system which relaxes the linearity condition
while still allowing safe in-place updates, and Michal Konečný generalises this
still further in [9, 10]. As part of the MRG project, Konečný has implemented a
typechecker for a variant of the type system of [9] adapted to Camelot.

A different approach to providing heap-usage guarantees is given by Hofmann
and Jost in [7], where an algorithm is presented which can be used to statically in-
fer heap-usage bounds for functional programs of a suitable form. In collaboration
with the MRG project, Steffen Jost has implemented a variant of this inference al-
gorithm for Camelot. The implementation is described in [8].

Both of these implementations are currently stand-alone programs, but we are
in the process of integrating them with the Camelot compiler.

One of our goals in the design of Camelot was to define a language which
could be used as a testbed for different heap-usage analysis methods. The inclu-
sion of explicit diamonds fits the type systems of [1, 9, 10], and the inclusion of
the freelist facilitates the Hofmann-Jost inference algorithm, which requires that
all memory management takes place via a freelist. We believe that the fact that
implementations of two radically different systems have been based on Camelot
indicates that our goal was achieved successfully.

34

3.3 GRAIL

Instead of translating directly to JVM bytecode, the Camelot compiler targets
the intermediate language Grail (Guaranteed resource allocation intermediate lan-
guage). This is a small typed language which allows us to represent (a subset of)
JVM bytecode in a functional form (see [13] or [23] for more information about
the Java Virtual Machine and JVM bytecode). The design of Grail was inspired
by theλJVM language of [11]. We will give a brief overview of Grail here. For
further details see [14] or [3].

A Grail program defines a single Java class, potentially containing static fields,
instance fields, static methods and instance methods. Field definitions are straight-
forward. The real interest of Grail lies in method definitions, which are repre-
sented in a functional form whose syntax is given below.

methoddef ::= method modifiers rty jname(〈ty1 var1, · · · , tyn varn〉) = methodbody

methodbody ::= let 〈valdec1 · · ·valdecm〉 〈 fundec1 · · · fundecn〉 in resultend

valdec ::= val var = primop| val () = primop

fundec ::= fun fname(〈ty1 var1, · · · , tyn varn〉) = funbody

funbody ::= result| let 〈valdec1 · · ·valdecn〉 in resultend

result ::= primres| if value test valuethen primreselse primres

primres ::= primop| () | fname(〈var1, · · · ,varn〉)
primop ::= value| binop value value| new <condesc> (〈value1, · · · ,valuen〉)

| invokevirtual var <methoddesc> (〈value1, · · · ,valuen〉)
| invokestatic <methoddesc> (〈value1, · · · ,valuen〉)
| invokespecial var <methoddesc> (〈value1, · · · ,valuen〉)
| getfield var <fielddesc> | putfield var <fielddesc> value

| getstatic <fielddesc> | putstatic <fielddesc> value

| checkcast longjname var| instanceof longjname var

| itof value| ftoi value| arrayop

arrayop ::= empty value ty| length var | get var value| set var value value

condesc ::= longjname(〈ty1, · · · , tyn〉)
methoddesc ::= rty longjname(〈ty1, · · · , tyn〉)

fielddesc ::= ty longjname

test ::= = | <> | < | <= | > | >=
binop ::= add | sub | mul | div | mod
value ::= var | intvalue| floatvalue| stringvalue| null[longjname]

ty ::= int | float | string | longjname| ty[]

rty ::= ty | void
modifiers ::= 〈public | protected | private〉 〈static〉 〈final〉

The termslongjnameandjnamerefer to Java-style class, field and method names;
items of typelongjnamemay contain dots, whereas those of typejnamemay

35

not. In addition, Java method names for initialisers may end with.<init> or
.<clinit>. The termsvar andfnamedenote local variable names and function
names respectively. Expressions of the formval () = . . . are used to invoke
operations such asputfield which do not return a result, and also to callvoid
methods.

As a simple example of Grail, the following code defines a class containing a
method for calculating the factorial of an integer.

class Fac {

method public static int fac (int n) =

let

val b = 1

fun f(int n, int b) = if n < 1 then b else f_else(n,b)

fun f_else(int n, int b) =

let val b = mul b n

val n = sub n 1

in f(n,b) end

in f(n,b) end

}

3.3.1 The Grail Type System

Grail implements a type system similar to a subset of the JVM type system. The
int andfloat types are the same as corresponding JVM types. There is also
a collection ofreference typeswhich represent Java class instances and arrays.
These can be used to access any Java class or method from Grail. The concrete
syntax also includes astring type which is the same asjava.lang.String.
One major difference between the Grail and JVM type systems is that there is no
subtyping in Grail. The JVM allows an objectx from a classC to be used in any
context where an object from a superclassS of C is expected, but Grail requires
object types to match exactly. The objectx must be explicitly upcast toSusing the
checkcast operation before the assignment takes place. This causes unnecessary
casting operations to occur in the corresponding bytecode, but enables consider-
able simplifications in typechecking for Grail; furthermore, the Camelot compiler
does not make any use of the Java inheritance features at present, so this point
does not cause any problems.

3.3.2 Compilation of Grail

We will describe some features of the Grail compilation process. Full details can
be found in [14].

In Grail, named variables are in one-to-one correspondence with JVM local
variables. The JVM operand stack is used in a very restricted way in that interme-
diate results may not be left on the stack for later use: they must immediately be
stored in a variable, leaving the stack empty. Thus to add three integers one must
add the first two and store the result in some intermediate variablex, say, and then
add the final variable tox.

36

The primitive operations (the classprimopabove) correspond directly to atomic
JVM operations and can be translated more or less verbatim (except for the Grail
new operation, which combines object creation and initialisation).

Each Grail method is compiled into a JVM method. The JVM is an imperative
machine with branches andgoto statements, but these instructions are not visible
in Grail. Instead, flow control within a Grail method is handled by calls to local
functions defined in the method. These function calls are very restricted: they
may only occur in tail position, and we require that whenever a function is called
the names of its actual parameters must exactly match those used in its declara-
tion. This convention allows a very simple translation to JVM bytecode. Function
bodies are translated into basic blocks of bytecode, and every function call may
assume that its arguments are already stored in the correct registers, so that the
call can be translated into a direct jump.

The structure of Grail (in particular the calling convention) means that there is
a very close correspondence between functional Grail and the imperative bytecode
obtained by compiling it. In fact, the resulting bytecode is so idiomatic that it is
easy to translate it back to the original Grail source, which is a useful feature
from the PCC viewpoint. In addition, the transparency of the correspondence is
important from the point of view of resource accounting. For example, the calling
convention means that no extra code which might affect execution time or stack
size has to be introduced to place arguments in the correct registers.

The restricted form of Grail bytecode also has interesting implications for the
JVM verification process. One example of this is that the structure of the lan-
guage in fact guarantees that valid Grail will compile to verifiable bytecode (we
do not have a formal proof of this, but we are confident that it is true); this means
that we have asyntacticguarantee of verifiability, whereas the verifiability of ar-
bitrary bytecode can only be establishedalgorithmically, by actually running the
verification algorithm.

It also turns out that bytecode obtained from Grail is much easier to verify
than arbitrary bytecode. For example, one of the conditions that bytecode must
satisfy during verification is that at any particular point in a program the number
and types of the elements on the operand stack are independent of the path taken
to reach that point. To establish this requires an iterative dataflow analysis to cal-
culate fixpoints for stack types (see [13, Sec. 4.9.2]), which can consume a lot
of time and space (see [12, Sec. 2.3] for some concrete figures). In [12] Leroy
examines JVM bytecode verification in detail and shows that if some simple re-
strictions are imposed on the form of the bytecode (notably that the stack be empty
at each jump destination) then checking this property is considerably simpler. In
fact, Leroy shows that the entire verification process can be carried out in con-
stant space (in practice, less than 100 bytes). The improvement is such that byte-
code verification can be performed even with the extremely limited resources of a
smartcard. This has hitherto been infeasible, and the standard approach has been
for a trusted agent to perform off-card verification of bytecode prior to download-
ing. It is easily seen that Grail satisfies Leroy’s conditions, which is encouraging
since we hope to use it with devices with limited resources.

37

Some other properties of Grail are studied in [3]: among other things it is
shown that the structure of Grail has connections with the well-known static
single-assignment form.

We have implemented programs calledgdf andgf which perform the trans-
lation from Grail to JVM and back. These can be downloaded from [15].

3.4 COMPILING CAMELOT TO GRAIL

We have implemented a Camelot compiler (available from [15]) which operates
by translating Camelot into Grail and then into JVM bytecode. The compiler is
a whole-program compiler whose back end is essentially thegdf program men-
tioned above. This section will describe the translation from Camelot to Grail.

3.4.1 Representing Data

Our compilation strategy istype-preservingin that well-typed Camelot programs
are translated into well-typed Grail programs. This increases the robustness of the
compiler since implementation errors often lead to type errors in the Grail code
which are then detected by the Grail typechecker in the back end of the compiler.

The basic typesbool, int, float andstring are represented by the obvious
Grail types. Theunit type causes difficulties since there is no corresponding type
in Grail. It is in fact possible to “compile away” occurrences of the unit type: this
is described in an extended version of this paper available from [15].

Objects belonging to user-defined datatypes are represented by members of
a single JVM class which we will refer to as thediamond class. Objects of the
diamond class contain enough fields to represent any member ofany datatype
defined in the program. Each instanceX of the diamond class contains an integer
tag field which identifies the constructor with whichX is associated. The diamond
class also contains a static field pointing to the freelist. The freelist is managed via
the static methodsalloc (which returns the diamond at the head of the freelist,
or creates a new diamond by callingnew if the freelist is empty), andfree which
places a diamond object on the freelist. The diamond class also has overloaded
static methods calledmake andfill, one instance of each for every sequence
of types appearing in a constructor. Themake methods are used to implement
ordinary constructor application; each takes an integer tag value and a sequence
of argument values and callsalloc to obtain an instance of the diamond class,
and then calls a correspondingfill method to fill in the appropriate fields with
the tag and the arguments. Thefill methods are also used when the programmer
reuses an existing diamond to construct a datatype value.

It can be argued that this representation is inefficient in that datatype values
are often represented by JVM objects which are larger than they need to be. This
is true, but is difficult to avoid owing to the type-safe nature of JVM memory
management which prevents one from re-using the heap space occupied by a value
of one type to store a value of a different type. We wish to be able to reuse heap
space, but this can be impossible if objects can contain only one type of data.

38

With the current scheme one can easily write a heapsort program which operates
entirely in-place. List cells are large enough to be reused as heap nodes and this
allows a heap to be built using cells obtained by destroying the input list. Once
the heap has been built it can in turn be destroyed and the space reused to build
the output list. In this case, the amount of memory occupied by a list cell is larger
than it needs to be, but the overall amount of store required is less than would be
the case if separate classes were used to contain list cells and heap nodes.

In the current context it can be claimed that it is better to have an inefficient
representation about which we can give concrete guarantees than an efficient one
which about we can say nothing. Most of the programs which we have written so
far use a limited number of datatypes so that the overhead introduced by the mono-
lithic representation for diamonds is not too severe. However, it is likely that for
very large programs this overhead would become unacceptably large. One possi-
bility which we have not yet explored is that it might be possible to achieve more
efficient heap usage by using dataflow techniques to follow the flow of diamonds
through the program and detect datatypes which are never used in an overlapping
way. One could then equip a program with several smaller diamond classes which
would represent such non-overlapping types.

These problems could be avoided by compiling to some platform other than
the JVM (for example to C or to a specialised virtual machine) where compaction
of heap regions would be possible. The Hofmann-Jost algorithm is still applica-
ble in this situation, so it would still be feasible to produce resource guarantees.
However, it was a fundamental decision of the MRG project to use the JVM,
based on the facts that the JVM is widely deployed and very well-known and
that resource usage is a genuine concern in many contexts where the JVM is used.
Our present approach allows us to produce concrete guarantees at the cost of some
overhead; we hope that at a later stage a more sophisticated approach (such as the
one suggested above) might allow us to reduce the overheads while still obtaining
guaranteed resource bounds.

3.4.2 Compilation of Programs

We compile a Camelot program to a single class with one static method for each
function in the program. This technique is somewhat problematic since recursive
function calls translate to recursive calls on JVM methods, which are expensive
and can potentially lead to overflow of the JVM stack.

Functions which call themselves in a tail-recursive manner can safely be com-
piled into recursive Grail function calls, and a compiler option is available which
enables this feature (see [24], which also includes a proof that the optimisation
has no effect on heap usage). However, mutually tail-recursive functions are diffi-
cult to program within a single stack frame because JVM methods can only have
one entry point and there is a limit on the size of method bodies.

Various techniques are known which can overcome this problem (for example,
thetrampoline[22, §6.2], Baker’s “Cheney on the MTA” technique [2]). Unfortu-
nately, all of these strategies tend to require extra heap usage and thus compromise
the transparency of the compilation process. Because of this, at present we sim-

39

ply compile each function as a separate method and implement (non-recursive)
tail calls as standard method calls, which carries a risk of stack overflow in pro-
grams which make a lot of use of mutual recursion. We will return to this problem
in our closing remarks.

3.4.3 Initial Transformations

Compilation begins with a phase in which several transformations are applied to
the abstract syntax tree.

Monomorphisation

Firstly, all polymorphism is removed from the program. For polymorphic types
(αn, . . . ,α1) t such asα list we examine the entire program to determine all in-
stantiations of the type variables and compile a separate datatype for each distinct
instantiation. Similarly, whenever a polymorphic function is defined the program
is examined to find all uses of the function and a monomorphic function of the
appropriate type is generated for each distinct instantiation of types.

Normalisation

After monomorphisation there is a phase referred to asnormalisationwhich trans-
forms the Camelot program into a form (Normalised Camelot) which closely re-
sembles Grail.

First, the compiler ensures that all variables have unique names. Any du-
plication is resolved by generating new names. This allows us to map Camelot
variable names directly onto Grail variable names (which in turn map onto JVM
local variable locations) with no danger of clashes arising.

We next have to simplify boolean expressions. Grail has no direct equivalent
for expressions such asm< n outsideif-expressions and we deal with this by re-
placing such expressions with ones of the formifm< nthen true else false.

Next, we give names to intermediate results in many contexts by replacing
complex expressions with variables. For example, the expressionf (a+ b+ c)
would be replaced by an expression of the formlet t1 = a+ b in let t2 =
t1 + c in f t2. The introduction of names for intermediate results can produce
a large number of Grail (and hence JVM) variables. After the source code has
been compiled to Grail the number of local variables is minimised by applying a
standard register allocation algorithm (see [24]).

A final transformation ensures thatlet-expressions are in a “straight-line”
form. After all of these transformations have been performed expressions have
been reduced to the following form:

expr ::= expr′ | let pat= expr′ in expr

expr′ ::= primexp| if atom cmp atomthen exprelse expr

| if atomthen exprelse expr| match var with matchend

40

primexp ::= atom| uop atom| atom arithop atom| free var

| fname atom1 . . .atomn | cname(atom1, . . . ,atomn)〈@var〉
atom ::= const| var

(undefined syntactic classes remain the same as those in the full syntax of Camelot
given earlier). The structure of normalised Camelot (which is in fact in a type of
A-normal form [5]) is sufficiently close to that of Grail to make it fairly easy to
translate from the former to the latter. Another benefit of normalisation is that it
is easier to write and implement type systems for normalised Camelot. The fact
that the components of many expressions are atoms rather than complex subex-
pressions means that typing rules can have very simple premisses.

3.4.4 Compilation of Expressions

The Camelot expressions labelled by the termprimexpin the normalised syntax
above will be referred to asprimitive expressions. They are significant because
they correspond directly to primitive operations in Grail and thus admit an easy
translation. This is the key to compilation of normalised Camelot into Grail.
A normalised Camelot expression consists of a nested sequence oflet expres-
sions. The translation procedure essentially translates an expression (in particu-
lar, a function body) into a collection of mutually recursive Grail local functions
by descending down the chain oflet-expressions, emitting a Grailvaldec for
each term of the formlet p = e with e primitive. This process terminates when
a non-primitive expressione is encountered; at this pointe must be a branch of
some kind, and the compiler recursively generates a new local function for each
of the subexpressions occurring in the branch, terminating the original function
with a Grailif-result (or, in the case of amatch statement, a block of code im-
plementing a sequence of such results). This a highly simplified description of the
translation to Grail; space constraints preclude a full description, but the extended
version of this paper (see [15]) contains an appendix giving a full and precise
specification of the translation.

3.5 PERFORMANCE

We have described a procedure for compiling Camelot into Grail, and thence to
JVM. This is a long process involving several different stages, and one might
suspect that it would introduce inefficiencies into the final bytecode programs. In
this section we will present figures comparing the run-time of various Camelot
programs with versions of the same programs written in Java and in Scheme,
which we hope will demonstrate that performance is not compromised unduly.

Java programs were compiled using the standard Sun Java compiler. To com-
pile Scheme programs for the JVM the Bigloo Scheme compiler [20, 19] was
used.

41

Timings were obtained using the JFluid JVM profiling tool [4]; this uses a
special version of the Sun JVM (version 1.4.2) which has been modified to allow
dynamic instrumentation of class files. The figures which are obtained appear to
be fairly accurate since one can focus on particular areas of the program without
incurring an overhead by profiling irrelevant code. By default the JVM performs
adaptive compilation to native code for frequently-executed code sequences. This
feature is not available in JFluid, so all execution was performed by interpretation.
However, we felt that this would still give a realistic (worst-case) estimate of
program times. Also, JVMs for limited-memory devices generally provide no
alternatives to interpretation. The timings were carried out on a 366MHz Pentium
2 processor under Linux. All timings are in milliseconds and represent an average
taken over five runs.

Firstly we consider several list-reversal programs. Each program generates
a list consisting of the integers between 1 and 1,000,000 and then proceeds as
follows:

• A reverses the list in place.

• B reverses the list in place, but replaces each elementx by x+x.

• C returns a reversed copy of the list, leaving the original intact.

• D returns a reversed copy with each element doubled as in B.

We timed the execution of the entire program (including construction of the input
list) and also of the reversal function in isolation. The results follow below.

A B
main reverse main reverse

Java 6289ms 507ms 6653ms 850ms
Camelot 11263ms 1684ms 11684ms 1785ms
Scheme 28884ms 3645ms 58595ms 30734ms

C D
main reverse main reverse

Java 10824ms 5009ms 10670ms 5215ms
Camelot 20285ms 10439ms 20580ms 10676ms
Scheme 31686ms 6829ms 54178ms 28822ms

We note that the Camelot versions are slower than the Java versions but are
generally faster than the Scheme versions. There are several reasons why Camelot
is slower than Java.

(1) The requirement that all intermediate results in Grail are explicitly named
means that the bytecode often contains pairs of instructions where a value is stored
in a local variable and then immediately recalled for further use (and the stored
copy is never used again). This certainly has the effect of slowing down the ex-
ecution of the bytecode, but the decision to use this form of code was made de-
liberately in the hope that the regularity of the bytecode would simplify formal
analyses.

42

(2) In Camelot it is not possible to modify individual fields within an object:
when a value is constructed in a recycled Camelot diamond, the fields in the cor-
responding object are filled in by a method call (to thefill method mentioned
in 3.4.1). All fields must be explicitly rewritten, even if some have not changed
(see the reversal example in 3.2.2, which is essentially the same as the one used in
program A). In contrast, in Java one can perform list-reversal simply by changing
pointers in list cells and leaving the other values stored in the cells intact. This
accounts for the fact that simple in-place reversal in Java is three times as fast as
in Camelot, but when the entries in the list are modified, as in program B, the
Java version is only twice as fast as the Camelot version. The fact that a method
call is used, rather than a sequence ofputfield operations, also adds some extra
overhead. Again, this was a conscious design decision: a constructor application
in Camelot corresponds directly to a single method application, and it was felt
that this correspondence would simplify analysis.

We performed the Scheme comparisons as we thought it would be interesting
to compare Camelot’s performance with that of another functional language run-
ning on the JVM. It was somewhat surprising to discover that while Scheme took
six times as long as Java to perform simple in-place list reversal, it took more than
36 times as long to perform reversal with doubling. This appears to be due to the
fact that Scheme’s numeric+ operator is overloaded. Inspection of the bytecode
produced by the compiler reveals that Bigloo handles overloading by representing
numeric values in a boxed form as Java objects. When elements in the list are dou-
bled this requires the+ operator to examine the boxed values to determine their
numeric type, then to call an appropriate specialised addition operator, and finally
to re-box the result prior to insertion in the modified list. Since this happens for
each of the million elements in the list it is not surprising that there is a consid-
erable slowdown. By using the Scheme+fx operator in place of+ it is possible
to use Schemefixnum values, which Bigloo encodes as JVMint values. When
program B is modified in this way the execution time for the reversal function
reduces to about 14000ms. This figure is still about 16 times as long as the Java
version: we suspect that this is largely due to the fact that dynamic typechecking
is still required before the addition operator is actually called.

The following table gives timings for some other programs:

Fibonacci Quicksort Insertion Sort
Java 221229ms 21009ms 23963ms
Camelot 239039ms 34166ms 42415ms
Scheme 709598ms 42368ms 73412ms

The first column gives times for calculation of the 40th Fibonacci number by
a direct implementation of the recursive definition. Execution of the program
consists mostly of recursive method invocations, so the performance of Java and
Camelot is very similar. Again Scheme performs badly owing to dynamic type-
checking. The figures given represent a calculation usingfinxum values; when
these were replaced by the default boxed integer values, the execution time rose
to 6577734ms, or about 1 hour and 49 minutes.

43

The second column of the table gives times for execution of an in-place quick-
sort algorithm on a list of 25586 words (the text of [21]), and the third column
gives times for an in-place insertion sort of a list consisting of the first 5000 words
of the same list. Again Java performs best, with Camelot second and Scheme
third, but in these examples the differences are less marked than in some of the
previous examples.

Overall the figures show that Camelot programs compare favourably with Java
programs. Furthermore, it is fairly clear which features of Camelot are responsi-
ble for its poorer performance. As suggested above, the somewhat rigid structure
of the bytecode obtained from Camelot programs is due to deliberate design de-
cisions which were made in order to allow a precisely-defined and transparent
compilation procedure which would facilitate program analysis. It is possible that
some of these restrictions could eventually be relaxed (thereby improving perfor-
mance) without compromising the validity of our analyses.

We have only considered execution time here. Of course, our main interest is
in memory usage. JFluid also allows one to collect memory profiling information,
and this indicates that the heap usage of the Java and Camelot programs was
exactly as expected. Unfortunately we were unable to obtain any heap profiling
for the Scheme programs since they appeared to terminate in a nonstandard way
which the JFluid system was unable to deal with properly.

3.6 FINAL REMARKS

We have described a technique for compiling Camelot into JVM bytecode via
the functional intermediate language Grail; we believe that this technique satis-
fies the strict requirements of the PCC framework. We have also provided some
performance figures which indicate that the rigid specification of the compilation
procedure does not degrade execution speed unduly.

There are various ways in which Camelot could be extended. The lack of
higher-order functions is inconvenient, but the resource-aware type systems which
we use are presently unable to deal with higher-order functions, partly because of
the fact that these are normally implemented using heap-allocated closures whose
size may be difficult to predict. A possible strategy for dealing with this which
we are currently investigating is Reynolds’ technique ofdefunctionalization[18]
which transforms higher-order programs into first-order ones, essentially by per-
forming a transformation of the source code which replaces closures with mem-
bers of datatypes. This has the advantage that extra space required by closures is
exposed at the source level, where it is amenable to analysis by the heap-usage
inference techniques mentioned earlier.

A similar strategy can be used to eliminate mutual tail-recursion. Given a
set of mutually recursive functionsF whose results are of typet, we define a
datatypes which has for each of the functions inF a constructor with arguments
corresponding to the function’s arguments. The collection of functionsF is then
replaced by a single functionf: s -> t whose body is amatch statement which
carries out the computations required by the individual functions inF . In this

44

way the mutually recursive functions can be replaced by a single tail-recursive
function, and we already have an optimisation which eliminates recursion for such
functions. This technique is somewhat clumsy and care is required in recycling
the diamonds which are required to contain members of the datatypes required
by s. Another potential problem is that several small functions are effectively
combined into one large one, and there is thus a danger that that 64k limit for
JVM methods might be exceeded. Nevertheless, this technique does overcome
the problems related to mutual recursion without affecting the transparency of the
compilation process unduly, and it might be possible for the compiler to perform
the appropriate transformations automatically. We intend to investigate this in
more detail.

As an extension in a different direction, the second author has recently ex-
tended the language (and the compiler) to include object-oriented features and
allow the use of pre-existing Java libraries: details can be found in [25].

As mentioned earlier, complex resource-aware type-systems and inference
methods have been implemented for Camelot and will soon be integrated with
the present compiler. Eventually, the MRG project aims to have a certifying com-
piler which will take a Camelot program and automatically provide a proof that it
abides by a given resource policy.

Acknowledgments

The authors would like to thank Hans-Wolfgang Loidl and Ian Stark for their
comments.

This research was supported by the MRG project (IST-2001-33149) which is
funded by the EC under the FET proactive initiative on Global Computing.

REFERENCES

[1] David Aspinall and Martin Hofmann. Another type system for in-place update. In
Proc. 11th European Symposium on Programming, Grenoble, volume 2305 ofLec-
ture Notes in Computer Science. Springer, 2002.

[2] Henry G. Baker. CONS should not CONS its arguments, part II: Cheney on the
M.T.A. ACM SIGPLAN Notices, 30(9):17–20, September 1995.

[3] Lennart Beringer, Kenneth MacKenzie, and Ian Stark. Grail: a functional form for
imperative mobile code. In Vladimiro Sassone, editor,Electronic Notes in Theoretical
Computer Science, volume 85. Elsevier, 2003.

[4] M. Dmitriev. Welcome to JFluid, October 2003. Documentation and download avail-
able at http://research.sun.com/projects/jfluid.

[5] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence
of compiling with continuations. InProceedings ACM SIGPLAN 1993 Conf. on Pro-
gramming Language Design and Implementation, PLDI’93, Albuquerque, NM, USA,
23–25 June 1993, volume 28(6), pages 237–247. ACM Press, New York, 1993.

[6] Martin Hofmann. A type system for bounded space and functional in-place update.
Nordic Journal of Computing, 7(4):258–289, 2000.

45

[7] Martin Hofmann and Steffen Jost. Static prediction of heap space usage for first-
order functional programs. InProc. 30th ACM Symp. on Principles of Programming
Languages, New Orleans, 2003.

[8] S. Jost.lfd_infer: an implementation of a static inference on heap-space usage. In
Proceedings of SPACE’04, Venice, 2004. To appear.

[9] Michal Koněcný. Functional in-place update with layered datatype sharing. InTLCA
2003, Valencia, Spain, Proceedings, pages 195–210. Springer-Verlag, 2003. Lecture
Notes in Computer Science 2701.

[10] Michal Koněcný. Typing with conditions and guarantees for functional in-place up-
date. InTYPES 2002 Workshop, Nijmegen, Proceedings, pages 182–199. Springer-
Verlag, 2003. Lecture Notes in Computer Science 2646.

[11] Christopher League, Valery Trifonov, and Zhong Shao. Functional Java bytecode. In
Proc. 5th World Conf. on Systemics, Cybernetics, and Informatics, July 2001. Work-
shop on Intermediate Representation Engineering for the Java Virtual Machine.

[12] Xavier Leroy. Bytecode verification for Java smart cards.Software Practice & Expe-
rience, 32:319–340, 2002.

[13] Tim Lindholm and Frank Yellin.The Java Virtual Machine Specification. Addison-
Wesley, second edition, 1999. Available at http://java.sun.com/docs/books/vmspec/.

[14] K. MacKenzie. Grail: a functional intermediate language for resource-
bounded computation. LFCS, University of Edinburgh, 2002. Available at
http://www.lfcs.inf.ed.ac.uk/mrg/publications/.

[15] The Mobile Resource Guarantees project. http://www.lfcs.inf.ed.ac.uk/mrg.

[16] George C. Necula. Proof-carrying code. InConference Record of POPL ’97: 24th
ACM Symposium on Principles of Programming Languages, pages 106–119. ACM
Press, 1997.

[17] O’Caml. Welcome to the O’Caml language, October 2003. See www.ocaml.org.

[18] John C. Reynolds. Definitional interpreters for higher-order programming languages.
Higher-Order and Symbolic Computation, 11(4):363–397, December 1998.

[19] M. Serrano. See http://www-sop.inria.fr/mimosa/fp/Bigloo.

[20] Manuel Serrano and Pierre Weis. Bigloo: A portable and optimizing compiler for
strict functional languages. InStatic Analysis Symposium, pages 366–381, 1995.

[21] Robert Louis Stevenson.Strange Case of Dr. Jekyll and Mr. Hyde. Longmans, Green,
London, 1886. Available online at http://www.gutenberg.org.

[22] David Tarditi, Peter Lee, and Anurag Acharya. No assembly required: compiling
standard ML to C.ACM Letters on Programming Languages and Systems, 1(2):161–
177, June 1992.

[23] Bill Venners. Inside the Java Virtual Machine. McGraw-Hill, second edition, 1999.
Also at http://www.artima.com/insidejvm/blurb.html.

[24] N. Wolverson. Optimisation and resource bounds in Camelot compila-
tion. Final-year project report, University of Edinburgh, 2003. Available at
http://www.lfcs.inf.ed.ac.uk/mrg/publications/wolverson.ps.

[25] N. Wolverson and K. MacKenzie. O’Camelot: adding objects to a resource-aware
functional language. InTrends in Functional Programming Volume 4: Proceedings
of TFP2003, pages 47–62. Intellect, 2004.

46

