
Chapter 2

FSM-Hume is Finite State
Greg Michaelson,1 Kevin Hammond2 and Jocelyn Serot3

Abstract Hume is a domain-specific programming language targeting resource-
bounded computations. It is based on generalised concurrent bounded automata,
controlled by transitions characterised by pattern matching on inputs and recursive
function generation of outputs. Here we discuss the design of FSM-Hume, a strict
finite state subset of Hume, and suggest that it is indeed classically finite state.

2.1 INTRODUCTION

We would like to be able to prove automatically the correctness, equivalence, ter-
mination, space use and complexity of arbitrary programs but these properties
are all undecidable for Turing-complete (TC) languages [1]. Some decidability
may be achieved by restricting the types and constructs in a language. Languages
based on primitive recursion, such as Turner’s elementary strong functional pro-
gramming [6] or Burstall’s inductively defined functions [2], seem unwieldy and
to lack clear programming methodologies. Languages based on finite state au-
tomata (FSA), such as Promela with the related Spin model checker [4], have
proved much more successful, but of relatively limited application and with vast
state spaces, constraining verification of substantial programs.

Hume [3] is based on a generalisation of standard FSA transition notation to
encompass a full TC language. Concurrent processing is based on explicit mul-
tiple communicating FSA, called boxes. Within Hume, an explicit distinction
is made between the coordination language, which describes external properties
and configurations of boxes, and the expression language, which describes in-
put/output transitions within boxes. Finally, in full Hume, both sub-languages
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FIGURE 2.1. Mealy machine for alternating 1s and 0s

share a rich, polymorphic type system. These design decisions enable us to iden-
tify layers of language in Hume, with different decidable properties, which may
be supported by high-level cost models [5].

A FSA with output (Mealy machine) is usually characterised by transition
quadruplets of the form: (old state,input) � (new state,out put)
where old state, input, new state and output are finite sets, for example, the Mealy
machine which checks that a binary sequence has alternating 1s and 0s, shown in
Fig. 2.1, has transitions:

(ZERO,0) -> (ZERO,ERROR)
(ZERO,1) -> (ONE,OK)
(ONE,0) -> (ZERO,OK)
(ONE,1) -> (ONE,ERROR)

However, both the diagrammatic and state transition characterisations are mis-
leading. First of all, it is implicit that a FSA cycles indefinitely, communicating
with an external environment to consume single input symbols and generating sin-
gle output symbols. Secondly, it is implicit that a FSA retains its state in between
cycles. The external input/output links and state retention are made explicit for
the above example in Fig. 2.2.

In general, for one FSA it need not be specified where the input comes from
or where the output goes to: both could be linked to arbitrary sources and sinks,
including to other FSA. Similarly, in principle, the old and new state need not
be a direct feedback link but could again come via arbitrary sources and sinks,
including other FSA.

The state and I/O symbol sets for a FSA must be finite but they may also
be very big. Given a large enough set that maps to integers, then complex data
structures may be encoded using either Gödel numbers within the set, or, more
familiarly, structured ASCII sequences whose concatenated bit values are integers
within the set.

Noting that the left and right hand sides of traditional transitions are like two-
element tuples, we generalise them to: pattern � expression. Here the left hand
side pattern is composed of variables, constants and structures. Note the wildcard
pattern *which ignores the corresponding inputs without consuming it. Similarly,
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FIGURE 2.2. Mealy machine with explicit I/O and state

the right hand side expression may involve the components of the pattern, in
particular the variables it introduces.

Thus, we generalise a FSA to a box with multiple input and output wires,
where the state is no longer necessarily distinguishable from the input or output.
Operationally, a box cycles repeatedly, trying to match transition patterns against
the current values on the input wires, treated as a single top-level tuple value. For
a match to succeed, constants and constructors must appear in the same positions
in the pattern and input value. Variables in the pattern are then instantiated to
corresponding components of the input value. After a successful match, the output
wires are instantiated from the tuple of values generated by the transition’s right
hand side.

For example, we can write the above Mealy machine in Hume as:

type BIT = int 1;
data STATE = ZERO | ONE;
stream Input from "std_in";
stream Output to "std_out";

box Bits
in (oldstate::STATE,input::BIT)
out (newstate::STATE,output::string)
match
(ZERO,0) -> (ZERO,"ERROR\n") |
(ZERO,1) -> (ONE,"OK\n") |
(ONE,0) -> (ZERO,"OK\n") |
(ONE,1) -> (ONE,"ERROR\n");

21



wire Bits (Bits.newstate initially ZERO,Input)
(Bits.oldstate,Output);

Full Hume has constructs found in a contemporary polymorphic functional
language, including recursive, unbounded, user-defined types. Finite State Ma-
chine Hume (FSM-Hume) is the Hume layer with finite types on wires and only
simple operations, such as boolean and arithmetic, in transition expressions.

It might be thought that allowing operations whose state space is larger than
the input space, such as multiplication, would transcend finite state-ness. How-
ever, for fixed precision numbers, it is possible to build a FSA that will carry out
multiplication for values whose multiples do not exceed the largest allowed value,
for example by encoding the appropriate look up table.

It might also be thought that Hume suffers from the same problems as other
FSA-based languages, in particular state space explosion for practical verification
of realistic programs. However, given appropriate transformation techniques, it
should be possible to convert multiple boxes employing an impoverished expres-
sion language to fewer boxes using a richer expression language. Gross properties
of box internals would still have to be established, using, say, automated theorem
proving, but the state space of the overall box system would have been reduced.
The balance between model checking and theorem proving in establishing proper-
ties of Hume programs is an interesting avenue of research which is not discussed
further here.

A more serious concern is to clarify in what sense a multi-box Hume program
is actually still a FSA, given the presence of multiple inputs and outputs, and the
withering away of the state. We first discuss the status of a single box program
and then explore multi-box programs.

Note that the following sections provide an informal framework for possible
formalisation and are intended to convey conviction rather than establish correct-
ness.

2.2 SINGLE BOX FSM-HUME PROGRAMS ARE FINITE STATE

Consider a Hume box with multiple inputs and outputs, and no distinguished state.
As noted above, multiple values from finite domains, represented as a fixed width
tuple, can be encoded as a single symbol, given a large enough space of symbols.
Thus a box with multiple inputs or outputs may be treated as if it had just one
input and output, each bearing a tuple value.

A multi-state FSA may be converted to a single state FSA as follows. The state
symbol in each transition is combined with the input/output symbols in tuples.
Each transition is then extended with a new single state value, in the state position
on the left and right hand sides. In general:

(old state,input) � (new state,out put) �
�

(single state, (old state,input)) � (single state, (new state,out put))
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FIGURE 2.3. Single state Mealy machine for alternating 1s and 0s

For example, the Mealy machine above might be changed as shown in Fig. 2.3,
with transitions:

(ONESTATE,(ZERO,0)) -> (ONESTATE,(ZERO,ERROR))
(ONESTATE,(ZERO,1)) -> (ONESTATE,(ONE,OK))
(ONESTATE,(ONE,0)) -> (ONESTATE,(ZERO,OK))
(ONESTATE,(ONE,1)) -> (ONESTATE,(ONE,ERROR))

Using this technique, a Hume box with multiple inputs and outputs, and no
distinguished state, may be converted directly to a single state FSA with sin-
gle composite input and output tuples, provided it has no variables in transition
patterns. A variable in a pattern corresponds to successfully matching any value
in the domain for the variable’s type. Thus, to fully convert a Hume transition
with variables to pure FSA form, it must be replaced by multiple copies, with one
copy for each combination of variable type domain values.

2.3 MULTI-BOX FSM-HUME PROGRAMS ARE FINITE STATE

We also need to convince ourselves that a multi-box FSM-Hume program is still
finite state. If such a program may be converted into a single box FSM-Hume
program then that program is finite state by the preceding argument.

Hume box scheduling is well defined as sequential, round robin where each
box takes in it turns to execute once, in fixed sequence. For a multi-box program,
we combine the box transitions and introduce an explicit state value to ensure
sequentiality. Essentially, each transition for the combined box will correspond
to a transition of one of the separate boxes, augmented with additional left hand
side patterns and right hand side expressions to circulate the wire values for all
the other boxes without changing them.
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In general, a successful transition for any one box must be able to transmit all
possible wire values for the other boxes: any one box must be able to succeed if its
inputs are matched successfully, regardless of the values on the wires for the other
boxes. We employ Hume variables to generalise arbitrary input values, noting that
they may in turn be replaced by all possible values of the corresponding types for
pure FSAness, at the cost of a huge explosion in code size.

Suppose there are N boxes and box i has Ii inputs (ini1...inIi) and Oi outputs
(outi1...outOi).

For each box, we construct a top level pattern template:

Pi: vari1,vari2...variIi

with a unique variable for each input. We also construct a top level expression
template:

E i: var
�

i1,var
�

i2...var
�

iOi

where var
�

i j is the new variable corresponding to the box input to which output
outi j is connected.

We then form a top level template for the transitions of the composite box
by concatenating together the box pattern templates on the left and expression
templates on the right:

(P1,P2...PN) � (E1,E2...EN)

This template accepts arbitrary inputs and sends them to the appropriate outputs
unchanged.

Suppose box i has Ti transitions, where the kth is: tik: pattik
� expik

Then for each transition of box i, tik, we make a copy of the composite box’s top
level template, replace the pattern template Pi with the pattern pattik and replace
the expression template Ei with the expression expik:

(P1...pattik...PN) � (E1...expik...EN)

Where the expression is a condition, the right hand side of the template must
be pushed through to the condition options. Similarly, where the expression is a
definition, the right hand side of the template must be pushed through to the result
expression.

After this stage, where any remaining pattern template has a variable which
has been replaced by an expression on the right hand side, then that variable
should be replaced by the “ignore” pattern *: there should not be an input value
present for that variable because a new value has been output for it. Similarly,
where any expression template has a variable that was replaced in a pattern tem-
plate, then that variable must be replaced by the “no output” operator *: the input
has been consumed and cannot be re-circulated.

We are then left with common variables between left and right hand sides
which consume inputs and reproduce them as outputs, to act as the inputs again
on the next cycle. The effect is as if the corresponding wires had been ignored.
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Thus, all variables on the left/right of a transition which are not in that transition’s
replacement pattern may be replaced by the “ignore” pattern/“no output” *.

Next, we introduce an explicit state which changes on each transition. We
precede each composite pattern with the number of the corresponding box and
each composite expression with the number of the next box:

(i,*,...,*,pattik,*,...,*) � (i
�

1,*,...*,expik,*,...,*)

or, for the last box, with the number of the first box.
Finally, we combine the wiring for each box, again adding a new feedback

wire for the new explicit state.
The effect is two-fold. From a Hume perspective, we have constructed a single

box which emulates multi-box scheduling. From a FSA perspective, we can easily
convert the composite box into a FSA, with an explicit state, and composite input
and output, using the technique described above.

2.4 EXAMPLE: VEHICLE SIMULATION

We now illustrate this transformation with reference to the simulation of a simple
autonomous vehicle, which tries to follow a white line by repeatedly analysing
a camera image consisting of one row of bits from a two-dimensional bit-map
scene, effectively a map of the terrain the vehicle is traversing. The vehicle has
a location consisting of its Cartesian coordinates in terrain space and its angle of
orientation relative to the horizontal. The vehicle sends its current location to the
environment. If the vehicle has not “bumped” into the edge of the terrain then the
environment returns an image corresponding to the vehicle’s position. The vehicle
then sends the image to the control which calculates a new orientation to try to
bring the white line back into the centre of the image. Finally, the vehicle changes
its position and requests the next image from the environment. The vehicle also
sends monitoring information to standard output:

box env in (loc::location) out (v::image,b::bool)
match loc -> if within_scene loc

then (lookat loc, false)
else (null_image, true);

wire env (vehicle.loc initially init_loc)
(vehicle.v, vehicle.b);

box vehicle
in (v::image,b::bool,ploc::location,c::real)
out (loc::location,m::monitor,

loc’::location,v’::image)
match
(v, false, pl, c) ->
let nl = move pl c
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in (nl, (v,pl,false,c,’\n’), nl, v)
| (v, true, pl, c) ->

(init_loc, (v,pl,true,c,’\n’),
init_loc, lookat init_loc);

wire vehicle
(env.v,env.b,vehicle.loc’ initially init_loc,
control.da initially 0.0)

(env.loc,std_out,vehicle.ploc,control.v);

box control in (v::image) out (da::real)
match
<<_,_,_,_,_,_,_,1,_,_,_,_,_,_,_>> -> 0.0

...
| _ -> 0.0 ;

wire control (vehicle.v’) (vehicle.c);

The simulation runs in real time and the vehicle never deviates more than a few
bits to either side of the line.

2.4.1 Single-box FSM-Hume

First we construct the pattern templates and then the expression templates using
the variable names from the pattern templates. We adopt the convention of naming
template variables by preceding each input wire’s name with a letter to denote its
box name:

control pattern: c v; env pattern: e loc;
vehicle pattern: v v,v b,v ploc,v c
control expression: v c; env expression: v v,v b;
vehicle expression: e loc,o,v ploc,c v

i.e. the control output is wired to the vehicle input c; the env output is
wired to the vehicle inputs v and b; etc.

The overall transition template is:

c_v,e_loc,v_v,v_b,v_ploc,v_c ->
v_c,v_v,v_b,e_loc,o,v_ploc,c_v

Consider the first transition for the control. In the template, we replace c v on
the left with the transition pattern, v c on the right with the transition expression
and all other variables with *.

Consider the transition for the env. In the template, we replace e loc on the
left with the pattern. The transition expression is a conditional expression so we
leave the condition in place, replace the option expressions with the template right
hand side and insert the components expressions in place of the corresponding
template variables v v and v b. Again, all other variables are replaced by *.
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Consider the first transition for the vehicle. In the template, we replace v v,
v b, v ploc and v c with the pattern components. There is a local definition on
the right so we leave the declaration part in place, replace the expression with
the template right hand side and insert the components of the expression in place
of the corresponding template variables e loc, o, v ploc and c v. Again, all
other variables are replaced by *.

Numbering the boxes control/1, env/2 and vehicle/3, we add state pat-
terns and expressions to each transition:

box vehicle
in (s::integer,c_v::image,e_loc::location,

v_v::image,v_b::bool,v_ploc::location,v_c::command)
out (s’::integer,c_da::real,e_v::image,e_b::bool,

v_loc::location, v_m::monitor,v_loc’::location,
v_v’::image)

match
(1,<<_,_,_,_,_,_,_,1,_,_,_,_,_,_,_>>,*,*,*,*,*) ->
(2,0.0,*,*,*,*,*,*) |
...

(2,*,loc,*,*,*,*) ->
if within_scene loc
then (3,*,lookat loc, false,*,*,*,*)
else (3,*,null_image, true,*,*,*,*) |

(3,*,*,v, false, pl, c) ->
let nl = move pl c
in (1,*,*,*,nl, (v,pl,false,c,’\n’), nl, v) |
...

Finally, we amalgamate the box wires and add appropriate wiring for the state, to
start with the env box in state 2:

wire vehicle
(vehicle.s’ initially 2,vehicle.v_v’,
vehicle.v_loc initially init_loc,
...
vehicle.c_da initially 0.0)
(vehicle.s,vehicle.v_c,vehicle.v_v,vehicle.v_b,
vehicle.e_loc, output,vehicle.v_ploc,vehicle.c_v);

The single box version of the vehicle simulation gives the same behaviour as
the multi-box version, on the full Hume interpreter and on the HAM. It is also
substantially faster and requires substantially less space.
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2.5 CONCLUSION

We have explored the specific properties of the Hume finite state subset FSM-
Hume to demonstrate informally that it is indeed finite state. In so doing, we
derived a transformation to convert multi-box FSM-Hume programs to a single
box and applied it to the simulation of a simple line following vehicle. We now
plan to formalise and prove the transformation.

The application of the transformation to the vehicle simulation was performed
by hand. We also plan to automate the transformation and to perform further
experimentation to determine whether this transformation is a useful optimisation
for general FSM-Hume programs.

This work has been partly supported by UK EPSRC grant GR/R 70545/01 and
by a French CNRS grant.
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