
Chapter 7

Testing Scheme Programming
Assignments Automatically
Manfred Widera1

Abstract In distance learning the lack of direct communication between teach-
ers and learners makes it difficult to provide direct assistance to students while
they are solving their homework tasks. We address this problem particularly
for programming tasks and describe a system for automatically analyzing stu-
dents’ homework tasks, and providing understandable feedback. Our approach
is adapted to the special situation in distance learning and is integrated into the
virtual university approach at the University of Hagen. It consists of a general
framework and instances for individual programming languages. For these in-
stances, one example is presented for the programming language Scheme.

7.1 INTRODUCTION

Both learning a programming language and giving a course in computer program-
ming can be tedious tasks. A full programming language is usually a complex
subject, so concentrating on some basic aspects first is necessary. One nice thing,
however, about learning to program is that the student may get quick rewards,
namely by seeing his own program actually being executed by a machine and
(hopefully) getting the desired effects upon its execution. However, even writing
a simple program and running it is often not so simple for beginners: many dif-
ferent aspects e.g. of the runtime system have to be taken into account, compiler
outputs are usually not very well suited for beginners, and user manuals unfortu-
nately often aim at the more experienced user.

In distance learning and education, direct interaction between students and
tutors is particularly difficult. While communication via phone, e-mail, or news-

1Praktische Informatik VIII - Wissensbasierte Systeme, Fachbereich Informatik,
FernUniversiẗat in Hagen, 58084 Hagen, Germany; Email:
manfred.widera@fernuni-hagen.de

95



groups helps, there is still need for more direct help in problem-solving situations
like programming. In this context, intelligent tutoring systems have been pro-
posed to support learning situations as they occur in distance education. A related
area is tool support for homework assignments. In this paper, we will present
an approach to the automatic revision of homework assignments in programming
language courses. In particular, we describe a framework for analyzing program-
ming homework tasks called AT(x) (analyze-and-test for a languagex) and show
how exercises in Scheme [7] can be analyzed and tested automatically by an in-
stance AT(S) of it. The goal of AT(x) is to provide detailed generated feedback
for the student. For the moment, automatic assessment of assignments is not pro-
vided by the system and is also only of minor importance for further extensions,
compared to refined assistance for the students: while automatic assessment is a
goal of interest in every area of teaching, the automatic assistance to the student
is a special aim of distance learning and this system.

The destination platform for our AT(x) system is WebAssign [2, 6] which
was developed at the University of Hagen for distance learning and is accessi-
ble for every teacher. WebAssign is a general system for support, evaluation,
and management of homework assignments. Experiences with WebAssign, in-
volving thousands of students over the last few years, show that especially for
programming language courses (up to now mostly Pascal), the students using the
system scored significantly higher in programming exercises than those not using
the system. WebAssign is now widely used by many different universities and
institutions [12].

Whereas WebAssign provides a general framework, customized components
for different types of exercises are needed. For such components AT(x) pro-
vides an abstract frame which analyzes programs written by a student and – via
WebAssign – sends back comments. In this way, AT(x) supports the learning pro-
cess of our students by interaction that otherwise would not be possible. Apart
from the general design of AT(x) and the benefits of such a generalized approach,
in this paper we especially focus on the AT(x) instance AT(S) analyzing Scheme
programs as an example for the analysis process on functional programming lan-
guages.

While WebAssign is the most important platform for the use of AT(x) in the
near future, the system has also been coupled to VILAB, a virtual electronic lab-
oratory for applied computer science [9]. VILAB is a system that guides students
through a number of (potentially larger) exercises and experiments. The inter-
face between AT(x) and VILAB is also generic over the different programming
languages covered by the AT(x)-instances.

The rest of the paper is organized as follows: Sec. 7.2 gives an overview of
WebAssign, the AT(x) system, and their interaction. A sample session of AT(S)
analyzing a Scheme program is given in Sec. 7.3. Sec. 7.4 describes the general
structure of AT(x) which consists of several components. The general require-
ments on an analysis component and their realization in the analysis component
for Scheme programs are described in Sec. 7.5. Sec. 7.6 briefly states the current
implementation and use of the system. In Sec. 7.7 related work is discussed, and
conclusions and some further work are described in Sec. 7.8.

96



7.2 WebAssign AND AT(x)

The AT(x) system described in this paper is specialized to the situation at the Fer-
nUniversiẗat in Hagen. For presenting and solving homework assignments online,
the WebAssign system is available for use by customized assignment systems.
Since WebAssign as the target platform had some influence on several design de-
cisions for AT(x), we offer a brief overview of WebAssign and the way AT(x) is
seen from WebAssign’s point of view.

WebAssign is a web-based system that provides support for assignments and
assessment of homework tasks. As stated in [2], it provides support with web-
based interfaces for all activities occurring in the assignment process, e.g. for the
activities of the author of a task, a student solving it, and a corrector correcting and
grading the submitted solution. In particular, it enables tasks with automatic test
facilities and manual assessment, scoring and annotation. WebAssign is integrated
in the Virtual University system of the FernUniversität Hagen [10].

From the students’ point of view, WebAssign provides access to the tasks to be
solved by them. A student can work out his solution and submit it to WebAssign.
Here, two different submission modes are distinguished. In the so-calledpre-test
mode, the submission is only preliminary. In pre-test mode, automatic analyses or
tests are carried out to give feedback to the student. The student can then modify
and correct his solution, and he can use the pre-test mode again until he is satisfied
with his solution. Eventually, he submits his solution infinal assessment mode
after which the assessment of the submitted solution is done, either manually or
automatically, or by a combination of both.

Several standard tasks are achieved by WebAssign and need not be addressed
by customized analysis components using it.

• WebAssign providesonlyauthenticated access for students and teachers. This
can be based on a common authentication database for the whole university or
on a database locally administered by WebAssign.

• Persistence of results between sessions and after final submission. In pre-test
mode WebAssign stores the last submission for every task and every student in
a database and provides it as a starting point to the student in further sessions.
For final assessment, the teacher can access the solutions in this database (to-
gether with automatically generated comments if available). Comments and
assessments from a human corrector or an automatic tool are also stored in
this database and are made available to the student via WebAssign.

While WebAssign has built-in components for automatic handling of easy-to-
correct tasks like multiple-choice questions, this is not the case for more complex
tasks like programming exercises. Here, specific correction modules are needed.
The AT(x) system (and especially the AT(S) instance described here in more de-
tail) aims at analyzing solutions to programming exercises and is a system that
can be used as an automatic correction module for WebAssign. Its main purpose
is to serve as an automatic test and analysis facility in pre-test mode. (As a side-

97



effect we can make the output of the system available for the corrector in order to
simplify the detection of errors.)

Instances of the AT(x) framework have a task database that contains an en-
try for each task. When a student submits a solution, AT(x) gets an assignment
number identifying the task to be solved and a submitted program written to solve
the task via WebAssign’s communication components. Further information iden-
tifying the submitting student is also available, but its use is not discussed here.
Taking the above data as input, AT(x) analyzes the submitted program. Again
via WebAssign, the results of its analysis are sent as feedback to the student (cf.
Fig. 7.1). The division of WebAssign and AT(x) is not only a logical one. While
WebAssign is meant to reside on a global university server, the AT(x) components
run on local servers that provide full control to individual teachers.

Supervisor

core component
(in target language)

user interface
user adminiatrationWebAssign

Student Student Student Student

background

(test queries,

reference solution)
test results

data analysis system

Java interface

FIGURE 7.1 Structure of AT(x)

Owing to the learning situation in which we want to apply the analysis of
Scheme programs, we did not make any restrictions with respect to the language
constructs allowed in the students’ solutions. AT(S) is able to handle the full stan-
dards of the Scheme programming language as it is implemented by MzScheme
[4].

7.3 A SAMPLE SESSION

Before we go into the description of the individual components of the AT(x) sys-
tem, we give an example of the execution of a homework task.

Solving a homework task includes the following subtasks: after logging into
the WebAssign system the student chooses a task to solve in a web interface. The

98



task is presented as a web page containing forms for the solution. After filling in a
solution (or correcting a previously supplied solution which is preserved between
sessions), the student clicks asubmitbutton. A few seconds later the system
answers his submission with a new web page containing the analysis results. The
submitted version replaces the previously preserved version of a solution.

Usually, several individual tasks are combined into an exercise. When the
student is satisfied with all tasks in the exercise, he can close it, and the manual
correction and assessment can start.

The following example is based on the AT(x) instance AT(S) for Scheme pro-
grams. The task is described as follows:

Define a functionfac that expects an integern as input and returns the
factorial ofn if n≥ 0, and the atomnegative otherwise.

Let us assume that the following program is submitted. After authentication has
been performed by WebAssign, this is the only input the student has to pass to the
system in order to solve the task.

(define (fac i)
(if (= i 0) 1

(+ i (fac (- i 1)))))

In this program the test for negative numbers is missing, and the first operator in
the last line must be∗ instead of+.
The system’s output, identifying these two errors, is the following:

The following errors where detected in your program:
------------------------------------------------------
The following test was aborted to enforce termination:
(fac -1)
The function called when the abortion took place
was ‘‘fac’’.
A threshold of 10000 recursive calls was exceeded.
Please check whether your program contains an
infinite loop!
------------------------------------------------------
The following test was aborted to enforce termination:
(fac -42)
The function called when the abortion took place
was ‘‘fac’’.
A threshold of 10000 recursive calls was exceeded.
Please check whether your program contains an
infinite loop!
------------------------------------------------------
The following test generated a wrong result:
(fac 5)
The result generated was 16 instead of the

99



expected result 120.
------------------------------------------------------
The following test generated a wrong result:
(fac 6)
The result generated was 22 instead of the
expected result 720.
------------------------------------------------------
The following test generated a wrong result:
(fac 10)
The result generated was 56 instead of the
expected result 3628800.
------------------------------------------------------

One important aspect of the AT(S) system is the following: the system is
designed to perform a large number of tests. In the generated report, however,
it can filter some of the detected errors for presentation. Several different filters
generating reports of different precision and length are available. The example
above shows all detected errors (for a rather small test set) at once.

7.4 STRUCTURE OF THE AT(x) FRAMEWORK

The AT(x) framework combines different tools. Interfaces to different user groups
(especially students and supervisors) have to be provided via WebAssign. The
design decisions caused by this situation are described in this section.

7.4.1 Components of the AT(x) System

AT(x) is divided into two main components: the main work is done by the analysis
component (lower part of the analysis system in Fig. 7.1). Especially in functional
(and also in logic) programming, the used language is well suited for handling
programs as data. The analysis component of AT(S) is therefore implemented in
the target language Scheme.

A further component implemented in Java serves as an interface between this
analysis component and WebAssign (upper part of the analysis system in Fig.
7.1). As shown in the figure, this interface completely performs the interaction
between AT(x) and the WebAssign server. The reason for using such an interface
component is its reusability and its easy implementation in Java. The WebAssign
interface is based on Corba communication. A framework for WebAssign clients
implementing an analysis component is given by an abstract Java class. Instead
of implementing an appropriate Corba client independently for each of the AT(x)
instances in the individual target languages, the presented approach contains a
reusable interface component implemented in Java (that makes use of the existing
abstract class) and a very simple interface to the analysis component.

The background data in Fig. 7.1 consists of text templates for error messages
used by the interface and different static inputs to the core analysis component as
described in Sec. 7.5.1.

100



7.4.2 Communication Interface of the Analysis Component

The individual analysis component is the main part of an AT(x) instance. It per-
forms tests on the students’ programs and generates appropriate error messages.
The performed tests and the detectable error types of AT(S) are discussed in detail
in Sec. 7.5. Here, we concentrate on the interface of this component.

The analysis component of each AT(x) instance expects to read an exercise
identifier (used to access the corresponding information on the task to solve) and
a student’s program from the standard input stream. It returns its messages, each
as a line of text, at the component’s standard output stream. These lines of text
contain an error number and some data fields containing additional error descrip-
tions separated by a unique identifier. The number and the types of the additional
data fields are fixed for each error number.

An example of such an error line is the following:

###4###(fac 5)###16###120###

Such a line consists of a fixed number of entries (four in this case) which are
separated by### . This delimiter also starts and ends the line. The first entry
contains the error number (in this case 4 for a wrong result). The remaining
entries depend on the error number. In this case, the second entry contains the test
(fac 5) causing the error, the third one contains the wrong result 16, and the
fourth one the expected result 120.

The presentation of the messages in a readable form is done by the Java inter-
face component. An example of such a presentation is given in Sec. 7.3.

7.4.3 Function and Implementation of the Interface Component

WebAssign provides a communication interface based on Corba to the analysis
components. In contrast, the analysis components of AT(x) use a simple interface
with textual communication via the stdin and stdout streams of the analysis pro-
cess, which avoids the need to re-implement a Corba client in the language used
for the analysis component. We therefore use an interface process connecting an
analysis component of AT(x) to WebAssign which performs the following tasks:

• Starting the analysis system and providing an exercise identifier and the stu-
dent’s program.

• Reading the error messages from the analysis component.

• Selecting some of the messages for presentation.

• Preparing the selected messages for presentation.

The interface component starts the analysis system (via the Java classRuntime)
and writes the needed information into its standard input stream (which is avail-
able by the Java process via standard classes). Afterwards, it reads the message
lines from the standard output stream of the analysis system, parses the individual
messages and stores them into an internal representation.

101



During the implementation of the system it turned out that some language in-
terpreters (especially SICStus Prolog used for the AT(P)-instance [1]) generate
a number of messages at the stderr stream, e.g. when loading modules. These
messages can block the analysis process when the stderr stream buffer is not
cleared. Our Java interface component is therefore able to consume the data from
the stderr stream of the controlled process without actually using them. With a
minor change to the Java interface component the messages from stderr can, of
course, be accessed. From our experience (using SICStus Prolog and MzScheme)
it is, however, preferable to catch errors by custom error handlers inside the anal-
ysis components, providing appropriate messages via the standard interface of the
analysis component. This keeps the interface between the two components uni-
form and avoids the need for parsing messages from the compiler that are usually
not designed with automatic parsing in mind.

For presenting errors to the student, each error number is connected to a text
template that gives a description of this kind of error. An error message is gener-
ated by instantiating the template of an error with the data fields provided by the
analysis component together with the error number. The resulting text parts for
the individual errors are concatenated and transferred to WebAssign as one piece
of HTML text. An example of a message generated by the analysis component
can be found in Subsec. 7.4.2. The sample session in Sec. 7.3 shows how this
message is presented to the student.

When using this system in education it turns out that presenting all detected
errors at once is not the best action in every case.

Example 7.1.Consider the example session described in Sec. 7.3. Having error
messages for all detected errors available, a student could write the following
program that only consists of a case distinction and easily outfoxes the system.

(define (fac n)
(cond

((= n -1) ’negative)
((= n -42) ’negative)
((= n 5) 120)
((= n 6) 720)
((= n 10) 3628800)))

To avoid the kind of programs that are fine tuned to the set of tests performed by
the analysis component, the interface component has the capability of selecting
certain messages for output according to one of the following strategies:

• Only one error is presented. This is especially useful in beginners courses,
since a beginner in programming should not get confused and demotivated by
a large number of error messages. He can instead concentrate on one mes-
sage and may receive further messages when restarting the analysis with the
corrected program.

• For every type of error occurring in the list of errors only one example is
selected for output. This strategy provides more information at once to ex-

102



perienced users. A better overview of the pathological program behaviour is
given, because all different error types are described, each with one represen-
tative. This may result in fewer iterations of the cycle consisting of program
correction and analysis. The strategy, however, still hides the full set of all test
cases from the student and therefore prevents fine tuning a program accord-
ing to the performed tests. Compared to returning just one message, this filter
becomes more useful the more different errors can be distinguished.

• All detected errors are presented at once. This provides the complete overview
over the program errors and is especially useful when the program correction
is done offline. In order to prevent fine tuning of a program according to
the performed tests, students should be aware that in final assessment mode
additional tests not present in the pre-test mode will be applied.

Hiding some of the error messages and test cases from the student is, however,
not a safe way to avoid fine tuned programs. Iterated testing with programs tuned
towards all tests which are known so far eventually yields the whole set of test
cases. Since the system is designed to support the students (and since e.g. a ran-
domized test case generation needs special care to cover all special cases and is
therefore quite complex), this weakness can be accepted for the purpose of AT(S).

7.4.4 Global Security Issues

Security is an issue that is common to all instances of AT(x). It should therefore
be addressed by the framework rather than in every individual instance. Security
includes the following topics:

• Authentication: access to WebAssign (apart from some introductory web
pages) is only possible by authenticated users. User identificators are available
with every submission. Since AT(x) is only accessible via WebAssign (using
a Corba interface), and since WebAssign has proven its reliability during sev-
eral years with thousands of students, further authentication is not necessary
by AT(x).

• Denial of service: AT(x) is only accessed via WebAssign. The AT(x) sys-
tem can therefore be protected by a firewall that can only be passed by the
WebAssign server.

• Malicious code from students:without restricting the considered program-
ming language, students’ programs can access the machine running an AT(x)
instance directly. Mechanisms preventing problems for the service include:

– The analysis component can rule out malicious code. Here it is problem-
atic to detect every malicious program without rejecting correct programs.

– Several UNIX mechanisms can be employed to provide some relative form
of security. It is possible to protect the machine and AT(x) itself, but a ma-
licious program might still interfere with an analysis of another student’s

103



program. This approach is implemented at the moment in AT(x) and was
sufficient so far for programming exercises that do not need access to hard-
ware.

– For system programming or other areas with extended need for security,
a sandbox approach is necessary. In such an approach the interface com-
ponent could start each instance of the analysis component in a new sand-
box simulating the machines behaviour. Adapting or implementing such a
sandbox is an area of future work in our implementation.

7.5 THE CORE ANALYSIS COMPONENT

The heart of the AT(x) system is given by the individual analysis components for
the different programming languages. In this section we give an overview of the
general requirements for these analysis components and describe a component for
analyzing programs in Scheme instantiating AT(x) to AT(S) in more detail.

7.5.1 Requirements on the Analysis Components

The intended use in testing homework assignments rather than arbitrary programs
implies some important requirements and properties of the analysis component
discussed here: it can rely on the availability of a detailed specification of the
homework tasks, it must be robust against non-terminating input programs and
runtime errors, and it must generate reliable output understandable for beginners.

Though the requirements formulated here carry over to an extension towards
automaticassessment(comparable to e.g. [5]) we especially focus on the goal of
quick, reliable and understandable feedback given to the students.

The description for each homework task consists of the following parts:

• A textual description of the task. (This is not directly needed for analyzing
students’ programs. For the teacher it is, however, convenient in preparing the
tasks to have the task description available together with the other data items
described here.)

• A set of test cases for the task.

• A reference solution. (This is a program which is assumed to be a correct
solution to the homework task and which can be used to judge the correctness
of the students’ solutions.)

• Specifications of program properties and of the generated solutions. (This
is not a necessary part of the input. In our implementation we use abstract
specifications mainly for Prolog programs (cf. [1]). They are, however, also
available for AT(S).)

This part of input is called thestatic inputto the analysis component because it
usually remains unchanged between the individual test sessions. Each call to the
analysis system contains an additionaldynamic inputwhich consists of a unique

104



identifier for the homework task (used to access the appropriate set of static input)
and a program to be tested.

We now discuss the requirements on the behaviour of the analysis system in
more detail. Concretizing the requirement of reliable output, we want our analysis
component to return an error only if such an error really exists. Where this is not
possible (especially when non-termination is suspected), the restricted confidence
should clearly be communicated to the student, e.g. by marking the returned mes-
sage as awarninginstead of anerror. For warnings the system should describe an
additional task to be performed by the student in order to discriminate errors from
false messages. Especially in checking generated results for correctness, special
care has to be taken that all correct alternative solutions are considered correct.

Runtime errors of every kind must be caught without affecting the whole sys-
tem. If executing the student’s program causes a runtime error, this should not
corrupt the behaviour of the other components. Towards this end, our AT(S)
implementation exploits the hooks of user-defined error handlers provided by
MzScheme [4]. An occurring runtime error is reported to the student, and no
further testing is done, because the system’s state is no longer reliable.

For ensuring termination of the testing process, infinite loops in the tested
program must also be detected and aborted. As the question whether an arbitrary
program terminates is undecidable in general, we chose an approximation that is
easy to implement and guarantees every infinite loop can be detected: a threshold
for the maximal number of function calls (counted independently for each func-
tion) is introduced and the program execution is aborted whenever this threshold
is exceeded.1 As homework assignments are usually small tasks, it is possible to
estimate the maximal number of needed function calls and to choose the threshold
sufficiently. The report to the student must, however, clearly state the restricted
confidence on the detected non-termination.

Counting the number of function calls is only possible when executing the
program to be tested in a supervised manner. The different approaches for super-
vising recursion include the implementation of an own interpreter for the target
language; and the instrumentation of each function definition during a preprocess-
ing step such that it calls a counter function at the beginning of every execution
of the function. The second approach was chosen for AT(S) and is described in
more detail in the following subsection.

7.5.2 Analysis of Scheme Programs

The aim of the AT(S) analysis component is the evaluation of tests in a given stu-
dent’s program and to check the correctness of the results. A result is considered
correct if comparing it with the result of the reference solution does not indicate
an error.

A problem inherent to functional programs is the potentially complex structure

1In the context of the Scheme programs considered here, every iteration is
implemented by recursion and therefore supervising the number of function calls suffices.
In the presence of further looping constructs, a refined termination control is necessary.

105



of the results. Not only can several results to a question be composed into a
structure, but it is furthermore possible to generate functions (and thereby e.g.
infinite output structures) as results.

Example 7.2.Consider the following homework task:

Implement a functionwords that expects a positive integern and returns
a list of all words over the alphabetΣ = {0,1} with lengthl , 1≤ l ≤ n.

For the test expression(words 3) there are (among others) the valid solutions

(0 1 00 01 10 11 000 001 010 011 100 101 110 111)
(1 0 11 10 01 00 111 110 101 100 011 010 001 000)
(111 110 101 100 011 010 001 000 11 10 01 00 1 0)

which only differ in the order of the words. Since no order has been specified in
the task description, all these results must be considered correct.

For comparing such structures, a simple equality check is not appropriate. Instead,
we provide an interface for the teacher to implement an equality function that is
adapted to the expected output structures and that returns true if the properties of
the two compared structures are similar enough for assuming correctness in the
context of pre-testing. Using such an approximation of the full equality is safe
since in the usual final assessment the submission is corrected and graded by a
human tutor. In order not to confuse the student it is, however, critical not to
report correct results as erroneous, merely because they differ from the expected
result.

Example 7.3.For the task in Example 7.2 the equality check could be

(define (check l1 l2)
(equal? (sort l1) (sort l2)))

with an appropriate sort functionsort .
A more complex test can e.g. consist of comparing functions from numbers to

numbers. Such a test can return true after comparing the results of both functions
for n (for some appropriate numbern) well-chosen test inputs for equality. If an
assignment is expected to return more complex functions, it is even possible to
consider the returned function as new homework and to call the analysis compo-
nent recursively, provided that the specimen program is given as a result for a new
task.

Termination analysis of Scheme programs is done by applying a program trans-
formation to the student program. We have implemented a function that counts
the number of function calls for different lambda expressions independently and
that aborts the evaluation via an exception if the number of calls exceeds a thresh-
old for one of the lambda expressions. To perform the counting, each lambda
expression of the form

(lambda (args) body)

106



is transformed into

(lambda (args) (let ((tester::tmp tc)) body))

wheretc is an expression sending a message to the count function containing a
unique identifier of the lambda expression andtester::tmp is just a dummy
variable whose value is not used.

After performing the transformation on the student’s program, the individual
tests are evaluated in the transformed program and in the reference solution. The
results from both programs are compared, and messages are generated when er-
rors are detected. Runtime errors generated by the student’s program are caught,
and an explaining error message is sent to the interface component of AT(S).

In detail, the analysis component of AT(S) is able to distinguish several error
messages, which can stem from failed equality checks, the termination control
and the runtime system. These include wrong results generated by the student’s
program, aborted executions due to suspected infinite loops, syntax errors, unde-
fined identifiers, and several other kinds of runtime errors detected by the system.
A generic error code can be used by the system to give detailed descriptions on
failed tests for certain program properties, e.g. factorial can be checked always to
return a non-negative integer.

For each of these errors the interface component of AT(S) contains a text tem-
plate that is instantiated with the details of the error, and is then presented to the
student. When implementing a new instance of AT(x) an appropriate set of codes
needs to be defined, and text templates for these codes have to be provided to the
interface component by instantiating an abstract Java class.

7.6 IMPLEMENTATION AND EXPERIENCES

The AT(x) framework with its instance AT(S) (and a further instance for Prolog)
is fully implemented and operational. The analysis component runs under the
Solaris 7 operating system and, via its Java interface component, serves as a client
for WebAssign.

Owing to the modular design of our system, the implementation of new analy-
sis components can concentrate on the analysis tasks. The implementation of the
analysis component of AT(S) took approximately three person months. For the
adaption of the starting procedure and the specific error codes inside the interface
component an additional two weeks were necessary.

At the moment the system with the instances AT(P) and AT(S) for Prolog
and Scheme goes through its first application in a programming course. It is
available only for selected homework tasks. Although using the system means
sending in homeworks in two different ways (WebAssign for the selected available
tasks, plain paper sent in by mail for the remaining tasks) two thirds of the active
students used the system. Feedback from the students was positive in general,
mentioning both a better motivation to solve the tasks and better insight in the
new programming paradigm.

107



7.7 RELATED WORK

In the context of teaching Scheme, the most popular system is DrScheme [11].
The system contains several tools for easily writing and debugging Scheme pro-
grams by students. For testing a program, test suites can be generated. Our AT(S)
system differs from that approach primarily in providing a test suite that is hidden
from the student and that is generated without a certain student’s program in mind,
but following the approach calledspecification based testingin testing literature
(cf. e.g. [13]).

A system very similar to our approach is presented in [5] for Ceilidh. While
our approach is focused on quick and understandable feedback to the students,
Ceilidh is used for automatic assessment of homework assignments. Since the
WebAssign system offers automatic assessment, it might be possible to extend
the scope of our system in this direction. Because of the undecidability of pro-
gram equivalence and program correctness, however, we decided to run some tests
with hand correction of assignments first, using the corresponding pre-correction
outputs to simplify the manual final correction.

Other testing approaches to functional programming (e.g. QuickCheck [3])
do not focus on testing programming assignments and are therefore not designed
to use a reference solution for judging the correctness of computation results.
The approach of abstractly describing properties of the intended results can be
found in our approach as well. The randomized generation of test cases used in
QuickCheck is a possible extension of our system. We must, however, make sure
that tests for special cases are contained in every test set.

A further topic related to our approach is the area of intelligent tutoring sys-
tems (ITS) (see e.g. an overview in [8]). Our approach does not aim at the goals of
an ITS, but is just a testing tool to be integrated in the distance learning context of
the FernUniversiẗat in Hagen. Even when thinking of an “intelligent” testing tool,
finding and understanding the errors in the student solutions is a first necessary
step, so that our tool can be of use in constructing an ITS in future.

An automatic tool for testing programming assignments in WebAssign already
exists for the programming language Pascal [12]. In contrast to our approach
here, several different programs have to be called in sequence, namely a compiler
for Pascal programs and the result of the compilation process. The same holds
for possible analysis tools aiming at other compiled programming languages like
e.g. C and Java. To keep a uniform interface, it is advisable to write an analysis
component that compiles a program, calls it for several inputs, and analyzes the
results. This component can then be coupled to our interface component instead
of rewriting the interface for every compiled language. For instantiating AT(x)
to another functional programming language it is, however, advisable to use the
read-evaluate-print-loop of the language, and to implement the analysis compo-
nent completely in the target language.

Putting the differences together, the AT(x) approach is novel in providing a
framework that is highly generic over both the chosen programming language
(with a focus on high-level languages providing a REP-loop) and the communi-

108



cation platform (up to now mostly WebAssign, but also VILAB). It is completely
focused on aiding the student in solving programming tasks in a distance learning
framework.

7.8 CONCLUSIONS AND FURTHER WORK

We addressed the situation of students in programming lessons during distance
learning studies. The problem here is the usually missing or insufficient direct
communication between learners and teachers and between learners. This makes
it more difficult to get around problems during self-tests and homework assign-
ments.

In this paper we have presented the AT(x) approach, which is capable of au-
tomatically analyzing programs with respect to given tests and a reference solu-
tion. In the framework of small homework assignments with precisely describ-
able tasks, the AT(x) instances are able to find many of the errors usually made
by students and to communicate them in a manner understandable for beginners
in programming (in contrast to the error messages of most compilers.)

The AT(x) framework is designed to be used in combination with WebAssign,
which is available at the FernUniversität Hagen, and provides a general framework
for all activities occurring in the assignment process. This causes AT(x) to be
constructed from two main components, an analysis component (often written in
the target language) and a uniform interface component written in Java.

By implementing the necessary analysis components, instances of AT(x) for
different programming languages are generated. This was presented for the in-
stance AT(S), which performs the analysis task for Scheme programs. This anal-
ysis component is robust against programs causing infinite loops and runtime er-
rors, and is able to generate appropriate messages in these cases. The general
interface to WebAssign makes it easy to implement further instances of AT(x),
for which the required main properties are also given in this paper.

During the next semesters, AT(S) will be applied in courses at the FernUniver-
sität Hagen and its benefit for Scheme programming courses in distance learning
will be evaluated.

Future work on AT(S) can address the following topics. While the current
system aids the students in preparing their homework assignments, an automatic
assessment stage comparable to [5] can reduce the effort required by the teacher
to correct them. This, however, makes it necessary to understand errors not only
in terms of the I/O-behaviour, but in terms of the source code. The precise assess-
ment can be calculated as the similarity of the student’s solution to a specimen
program according to some appropriate distance function. Understanding errors
in terms of the source code is also necessary in order to extend AT(S) towards an
ITS. Furthermore, an ITS needs a model of the student’s programming skills and
possible misunderstandings, in order to find reasons for certain errors and to pro-
vide more specialized help. In all these extensions we believe that useful online
assistance to the students should always be one of the most important aims (or
even the most important aim) in distance learning.

109



REFERENCES

[1] C. Beierle, M. Kulǎs, and M. Widera. Automatic analysis of programming assign-
ments. InProceedings of the 1. Fachtagung ”e-Learning” der Gesellschaft für Infor-
matik (DeLFI 2003). Köllen Verlag, Bonn, 2003.

[2] J. Brunsmann, A. Homrighausen, H.-W. Six, and J. Voss. Assignments in a Vir-
tual University – The WebAssign-System. InProc. 19th World Conference on Open
Learning and Distance Education, Vienna, Austria, June 1999.

[3] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of
haskell programs. InProceedings of the ACM Sigplan International Conference on
Functional Programming (ICFP-00), volume 35.9 ofACM Sigplan Notices, pages
268–279, N.Y., Sept. 18–21 2000. ACM Press.

[4] M. Flatt. PLT MzScheme: Language Manual, Aug. 2003.

[5] S. Foubister, G. Michaelson, and N. Tomes. Automatic assessment of elementary
standard ml programs using ceilidh.Journal of Computer Assisted Learning, 1996.

[6] A. Homrighausen and H.-W. Six. Online assignments with automatic testing and
correction facilities (abstract). InProc. Online EDUCA, Berlin, Germany, October
1997.

[7] R. Kelsey, W. Clinger, and J. R. (Editors). Revised5 report on the algorithmic lan-
guage scheme.ACM SIGPLAN Notices, 33(9):26–76, Sept. 1998.

[8] R. Lelouche. Intelligent tutoring systems from birth to now.Künstliche Intelligenz,
13(4):5–11, Nov. 1999.

[9] R. Lütticke, C. Gn̈orlich, and H. Helbig. Vilab - a virtual electronic laboratory for
applied computer science. InProceedings of the Conference Networked Learning in
a Global Environment. ICSC Academic Press, Canada/The Netherlands, 2002.

[10] Homepage LVU, FernUniversität Hagen,http://www.fernuni-hagen.de/LVU/ .
2003.

[11] PLT DrScheme: Programming Environment Manual, May 2003. version204.

[12] H. WebAssign. http://www-pi3.fernuni-hagen.de/WebAssign/ .
2003.

[13] H. Zhu, P. Hall, and J. May. Software unit test coverage and adequacy.ACM Com-
puting Surveys, 29(4):366–427, Dec. 1997.

110


