
Chapter 4

O’Camelot: Adding Objects
to a Resource-Aware
Functional Language
Nicholas Wolverson and Kenneth MacKenzie1

Abstract We outline an object-oriented extension to Camelot, a functional lan-
guage in the ML family designed for resource aware computation. Camelot is
compiled for the Java Virtual Machine, and our extension allows Camelot pro-
grams to interact easily with the Java object system, harnessing the power of Java
libraries and allowing Java programs to incorporate resource-bounded Camelot
code.2

4.1 INTRODUCTION

The Mobile Resource Guarantees (MRG) project aims to equip mobile bytecode
programs with guarantees that their usage of certain computational resources
(such as time, heap space or stack space) does not exceed some agreed limit,
using a Proof Carrying Code framework. Programs written in the functional lan-
guage Camelot will be compiled into bytecode for the Java Virtual Machine. The
resulting class files will be packaged with a proof of the desired property and
transmitted across the network to a code consumer—perhaps a mobile phone, or
PDA. The recipient can then use the proof to verify the given property of the pro-
gram before execution. There is thus an unforgeable guarantee that the program
will not exceed the stated bounds.

The core Camelot language, as described in [8], enables the programmer to

1Laboratory for Foundations of Computer Science, The University of Edinburgh.
Email: N.Wolverson@ed.ac.uk , kwxm@inf.ed.ac.uk

2This research was supported by the MRG project (IST-2001-33149) which is funded
by the EC under the FET proactive initiative on Global Computing.

47

write a program with a predictable resource usage; future work will provide each
program with a proof that it does not exceed a stated resource bound. A com-
piler exists for this language, compiling polymorphic resource-aware Camelot
programs to the JVM. However, only primitive interaction with the outside world
is possible, through command line arguments, file input and printed output. To be
able to write a full interface for a game or utility to be run on a mobile device,
Camelot programs must be able to interface with external Java libraries. Similarly,
the programmer may wish to utilise device-specific libraries or Java’s extensive
class library.

Here we describe an Object-Oriented extension to Camelot primarily intended
to allow Camelot programs to access Java libraries. It would also be possible
to write resource-certified libraries in Camelot for consumption by standard Java
programs or indeed use the object system for OO programming for its own sake,
but giving Camelot programs access to the outside world is the main objective.

4.2 CAMELOT

Camelot is an ML-like language with additional features to enable close control of
heap usage. Certain restrictions are made in order to enable a compilation process
which is transparent in terms of resource usage and to allow analysis of resource
usage by various novel type systems.

The concrete syntax of Camelot is very close to O’Caml, as described in [1].
The following program defines a polymorphic list datatype and functionssort
andinsert performing an insertion sort on such lists.

type ’a lst = !Nil | Cons of ’a * ’a lst
let rec insert n l d =

match l with Nil -> Cons(n, Nil)@d
| Cons(h,t)@d’ ->

if n <= h then Cons(n, Cons(h,t)@d’)@d
else Cons(h, insert n t d)@d’

let rec sort l =
match l with Nil -> Nil

| Cons(h,t)@d -> insert h (sort t) d

Ignoring annotations such as@dand occurrences of the associated variabled,
and the! in front of Nil , this program is valid O’Caml and indeed defines an
insertion sort. Here we are more concerned about space rather than time issues;
notice that the datatype constructorCons is appliedO(n2) times on average, but
this much storage is not necessary. While a sensible garbage collector means we
will not really lose the use of this space, this is not guaranteed, and we cannot
predict when the space will be reclaimed. This is unacceptable when considering
proof carrying code, and indeed on some mobile devices we will not have the
luxury of a garbage collector at all.

In order to allow better control of heap usage, Camelot adds features allowing
control of heap allocated storage. Camelot includes adiamond type(denoted by

48

<>) representing regions of heap-allocated memory and allows explicit manip-
ulation of diamond objects. The representation of Camelot datatypes is critical
here—values from user-defined datatypes are represented by heap-allocated ob-
jects from a certain Java class and a diamond value corresponds directly to an
object of this class.

The diamond annotations in the above program result in an in-place insertion
sort algorithm. During the execution ofsort on a list, no new block of heap
storage is allocated, but instead the existing storage is reused for the new list. The
annotation@don the occurrence ofCons in sort indicates that the space used
in that list cell should be made available for re-use via the diamond valued. This
diamond value is passed to a call ofinsert , where it is used in the expression
Cons(n, Nil)@d to specify that the cons cell should be constructed in the
heap space referred to byd. Lastly the use of! in the definition of theNil
constructor indicates thatNil does not take up a diamond (Nil is represented by
the null pointer).

With explicit management of heap-space comes the possibility of program er-
rors. The above sort function destroys the original list, so any subsequent attempt
to reuse that list may result in an error, and if the list is a sublist of a larger list,
the sublist will be correctly sorted but the larger list will become damaged. Vari-
ous type systems can be used to ensure that diamond annotations are safe. Most
simply, we can require all uses of heap-allocated storage to be linearly typed as
described in [5]; the above program is typable under this system. We can also
take a less restrictive approach as described in [7]. It is also possible to infer some
diamond annotations, as shown in [6], and indeed this process can also give an
upper bound on a program’s heap usage.

As well as adding resource-related extensions, we make some restrictions, the
first of which is to the form of patterns in thematch statement. Nested patterns
are not permitted, and instead each constructor of a datatype must be matched by
exactly one pattern. Patterns are also not permitted in the arguments of function
definitions. These features must be simulated by nestedmatch statements.

The second restriction is on function application. While function application is
written using a curried syntax as above, higher order functions are not permitted in
the current version of Camelot. Functions must always be fully applied, and there
is no lambda term. This is because closures would seem to introduce an additional
non-transparent memory usage, although hopefully this can be overcome at a later
date, and higher order functions added to the language.

4.3 EXTENSIONS

In designing an object system for Camelot, many choices are made for us, or are
at least tightly constrained. We wish to create a system allowing inter-operation
with Java, and we wish to compile an object system to JVML. So we are almost
forced into drawing the object system of the JVM up to the Camelot level and
cannot seriously consider a fundamentally different system.

On the other hand, the type system is strongly influenced by the existing

49

Camelot type system. There is more scope for choice, but implementation can
become complex, and an overly complex type system is undesirable from a pro-
grammer’s point of view. We also do not want to interfere with type systems for
resources as mentioned above.

We shall first attempt to make the essential features of Java objects visible in
Camelot in a simple form, with the view that a simple abbreviation or module
system can be added at a later date to make things more palatable if desired.

Basic Features

We shall view objects as records of possibly mutable fields together with related
methods, although Camelot has no existing record system. We define the usual
operations on these objects, namely object creation, method invocation, field ac-
cess and update, and casting and matching. As one might expect, we choose a
class-based system closely modelling the Java object system. Consequently we
must acknowledge Java’s uses of classes for encapsulation and associate static
methods and fields with classes also.

We now consider these features. The examples below illustrate the new classes
of expressions we add to Camelot.

Static method callsThere is no conceptual difference between static methods
and functions, ignoring the use of classes for encapsulation, so we can treat
static method calls just like function calls.

java.lang.Math.max a b

Static field accessSome libraries require the use of static fields. We should only
need to provide access to constant static fields, so they correspond to simple
values.

java.math.BigInteger.ONE

Object creation We clearly need a way to create objects, and there is no need to
deviate from thenew operator. By analogy with standard Camelot function
application syntax (i.e. curried form) we have:

new java.math.BigInteger "101010" 2

Instance field accessTo retrieve the value of an instance variable, we write

object#field

whereas to update that value we use the syntax

object#field <- value

assuming thatfield is declared to be amutablefield.

It could be argued that allowing unfettered external access to an object’s vari-
ables is against the spirit of OO and, more to the point, inappropriate for our
small language extension, but we wish to allow easy interoperability with any
external Java code.

50

Method invocation Drawing inspiration from the O’Caml syntax, and again us-
ing a curried form, we have instance method invocation:

myMap#put key value

Null values In Java, any method with object return type may return thenull
object. For this reason we add a construct

isnull e

which tests if the expressione is anull value.

Casts and typecaseIt may occasionally be necessary to cast objects up to super-
classes, for example to force the intended choice between overloaded meth-
ods. We will also want to recover subclasses, such as when removing an object
from a collection. Here we propose a simple notation for up-casting:

obj :> Class

This notation is that of O’Caml, also borrowed by MLj (described in [2]). To
handle down-casting we shall extend patterns in the manner oftypecase
(again like MLj) as follows:

match obj with o :> C1 -> o.a()
| o :> C2 -> o.b()
| _ -> obj.c()

Hereo is bound in the appropriate subexpressions to the objectobj viewed
as an object of typeC1 or C2 respectively. As in datatype matches, we require
that every possible case is covered; here this means that the default case is
mandatory. We also require that each class is a subclass of the type ofobj , and
suggest that a compiler warning should be given for any redundant matches.

Unlike MLj we choose not to allow downcasting outside of the new form of
match statement, partly because at present Camelot has no exception support
to handle invalid down-casts.

As usual, the arguments of a (static or instance) method invocation may be sub-
classes of the method’s argument types, or classes implementing the specified
interfaces.

The following example demonstrates some of the above features and illustrates
the ease of interoperability. We will discuss the need for type constraints as on the
parameterl later.

let convert (l: string list) =
match l with [] -> new java.util.LinkedList ()

| h::t ->
let ll = convert t
in let _ = ll#addFirst h
in ll

51

Defining classes

Once we have the ability to write and compile programs using objects, we may
as well start writing classes in Camelot. We must be able to create classes to
implement callbacks, such as in the Swing GUI system which requires us to write
stateful adaptor classes. Otherwise, as mentioned previously, we may wish to
write Camelot code to be called from Java, for example to create a resource-
certified library for use in a Java program, and defining a class is a natural way
to do this. Implementation of these classes will obviously be tied to the JVM, but
the form these take in Camelot has more scope for variation.

We allow the programmer to define a class which may explicitly subclass an-
other class, and implement a number of interfaces. We also allow the programmer
to define (possibly mutable) fields and methods, as well as static methods and
fields for the purpose of creating a specific class for interfacing with Java. We
naturally allow reference tothis .

The form of a class declaration is given below. Items within angular brackets
〈. . .〉 are optional.

classdecl ::= class cname= 〈scnamewith 〉 bodyend

body ::= 〈inter f aces〉 〈 f ields〉 〈methods〉
inter f aces ::= implement iname〈inter f aces〉

f ields ::= f ield 〈 f ields〉
methods ::= method〈methods〉

This defines a class calledcname, implementing the specified interfaces. The op-
tionalscnamegives the name of the direct superclass; if it is not present, the super-
class is taken to be the root of the class hierarchy, namelyjava.lang.Object .
The classcnameinherits the methods and values present in its superclass, and
these may be referred to in its definition.

As well as a superclass, a class can declare that it implements one or more
interfaces. These correspond directly to the Java notion of an interface. Java li-
braries often require the creation of a class implementing a particular interface—
for example, to use a Swing GUI one must create classes implementing various
interfaces to be used as callbacks. Note that at the current time it is not possi-
ble to define interfaces in Camelot; they are provided purely for the purpose of
interoperability.

Now we describe field declarations.

f ield ::= field x : τ | field mutable x : τ | val x : τ

Instance fields are defined using the keywordfield , and can optionally be de-
clared to be mutable. Static fields are defined usingval , and are non-mutable. In
a sense these mutable fields are the first introduction of side-effects into Camelot.
While the Camelot language is defined to have an array type, this has largely
been ignored in our more formal treatments as it is not fundamental to the lan-
guage. Mutable fields, on the other hand, are fundamental to our notion of object

52

orientation, so we expect any extension of Camelot resource-control features to
O’Camelot to have to deal with this properly.

Methods are defined as follows, where 1≤ i1 . . . im≤ n.

method ::= maker(x1: τ1) . . . (xn: τn) 〈: super xi1 . . .xim〉 = exp

| method m(x1: τ1) . . . (xn: τn) : τ = exp

| method m() : τ = exp

| let m(x1: τ1) . . . (xn: τn) : τ = exp

| let m() : τ = exp

Again, we use the usuallet syntax to declare what Java would call static meth-
ods. Static methods are simplymonomorphicCamelot functions which happen
to be defined within a class, although they are invoked using the syntax described
earlier. Instance methods, on the other hand, are actually a fundamentally new ad-
dition to the language. We consider the instance methods of a class to be a set of
mutually recursive monomorphic functions, in which the special variablethis
is bound to the current object of that class.

We can consider the methods as mutually recursive without using any addi-
tional syntax (such asand blocks) since they are monomorphic. ML usesand
blocks to group mutually recursive functions because itslet-polymorphismpre-
vents any of these functions being used polymorphically in the body of the others,
but this is not an issue here. In any case, this implicit mutual recursion feels ap-
propriate when we are compiling to the Java Virtual Machine and have to come to
terms with open recursion.

In addition to static and instance methods, we also allow a special kind of
method called amaker. This is just what would be called a constructor in the Java
world, but as in [4] we use the term maker in order to avoid confusion between
object and datatype constructors. Themaker term above defines a maker of the
containing classC such that ifnew C is invoked with arguments of typeτ1 . . .τn,
an object of classC is created, the superclass maker is executed (this is the zero-
argument maker of the superclass if none is explicitly specified), expressionexp
(of unit type) is executed, and the object is returned as the result of thenew
expression. Every class has at least one maker; a class with no explicit maker
is taken to have the maker with no arguments which invokes the superclass zero-
argument maker and does nothing. This implicit maker is inserted by the compiler.

4.4 TYPING

Typing rules for some of the more important Object Oriented extensions are given
in Fig. 4.1. Rules for static method invocation and static field access are similar to
those given for instance versions, and rules for the base language are roughly as
one might expect, except that the rule for function application forces functions to
be fully applied. The requirement above to state the types of fields, methods and
makers at the point of definition means we can easily construct the sets of these
types as makers(C), methods(C) and fields(C) for each classC.

53

NEW
(τ1 → . . .→ τn) ∈ makers(C) Σ ` xi : τ′i τ′i 6 τi

Σ ` newC x1 . . .xn : C

INVOKE
Σ ` e : C (id : τ1 → . . .→ τn → τ) ∈ methods(C) Σ ` xi : τ′i τ′i 6 τi

Σ ` e#id x1 . . .xn : τ

FIELD
Σ ` e : C (id : τ) ∈ fields(C)

Σ ` e#id : τ

UPDATE
Σ ` e : C (id : τ) ∈ fields(C) Σ ` e′ : τ

Σ ` e#id <- e′ : unit

CAST
Σ ` e : τ τ 6 τ′

Σ ` e :> τ′ : τ′

FIGURE 4.1 Additional Camelot typing rules

Consider rules INVOKE, and FIELD. Firstly, types must match exactly for field
access, whereas methods can be called with subtypes of their argument types.
Otherwise these are fairly similar.

Secondly, note that we look up methods(C) (respectively fields(C)). This im-
plies that at the time this rule is applied the classC of the object in question must
be known, at least in the obvious implementation. This has real consequences
for the programmer—the programmer must ensure that the type of the object is
suitably constrained at the time of invocation. In practice, this will probably mean
that almost all function arguments of object type must be constrained before use
and coercions may also be necessary in some places.

Additionally, method (and maker) overloading introduces ambiguity. Differ-
ent instances of INVOKE or NEW may apply depending on the argument types,
and indeed for many argument types there is no unique applicable method. In
Java this is resolved by choosing the “most specific” method if it exists. In com-
bination with the standard type inference algorithm this forces us to know the type
of all arguments to a method at the point it is applied. Indeed in our current imple-
mentation this is exactly what happens; we assume argument types are available
at the point of application and compute the most specific of the applicable meth-
ods. Again this puts a burden on the programmer, although in practice this has
been proved in reasonable examples.

A more intelligent solution would only place constraints to be solved globally,
but unfortunately these cannot be equality constraints, and so we have to depart
from the simple unification algorithm. We are not alone in this problem; for
example, the MLj implementation described in [2] also suffers from this. In [10],
a new type inference algorithm is given for MLj which solves a system of more
complex constraints using branching search and backtracking. Branching search
is required because of the complexities of the type system, including implicit
coercions such asoption , and it may be that our more naive type system could
use a simpler algorithm.

54

One way of avoiding these issues could be to avoid considering method in-
vocations during type inference. Constraints could be inferred and solved by
unification as usual, but with no constraints present for these invocations. Af-
ter unification has taken place, we will be left with a typed program with some
free type variables, and we can then resolve overloading in a more simplistic
fashion (as the types of objects and method arguments should be known by this
point). The remaining type variables will thus be instantiated after unification.
Unfortunately this resolution requires another full typechecking, and indeed in
our present implementation it may be easier to implement a system in the style of
[10] if necessary.

Polymorphism

We remarked earlier that static methods are basically monomorphic Camelot func-
tions together with a form of encapsulation, but it is worth considering polymor-
phism more explicitly. O’Camelot methods, whether static or instance methods,
are not polymorphic. That is, they have subtype polymorphism but not parametric
polymorphism (genericity), unlike Camelot functions which have parametric but
not subtype polymorphism. This is not generally a problem, as most polymorphic
functions will involve manipulation of polymorphic datatypes and can be placed
in the main program, whereas most methods will be interfacing with the Java
world and thus should conform to Java’s subtyping polymorphism.

4.5 TRANSLATION

As mentioned earlier, the target for the present Camelot compiler is Java byte-
code. However we make use of the intermediate language Grail (see [3]). Grail
is a low-level functional language and is basically a functional form for Java
bytecode. Grail’s functional nature makes the compilation from Camelot more
straightforward, but Grail is faithful enough to JVML that the compilation pro-
cess is reversible.

Here we use the notation of Grail to describe the compilation of new Camelot
features, but mostly the meanings of Grail phrases should be self-evident. How-
ever, it is worthwhile noting that the JVML basic blocks comprising a Camelot
method are represented in Grail by a collection of mutually tail-recursive funct-
ions—calling these functions corresponds to JVML goto instructions. There are
several different method invocation instructions, namelyinvokestatic for
static methods,invokevirtual for instance methods, andinvokespecial
for calling object constructors—standard Camelot functions are tranlsated to static
methods, and their application correpsonds to aninvokestatic instruction.
Grail differs from JVML by combining object creation and initialisation into the
new instruction, but we must still use theinvokespecial instruction to call
the superclass constructor.

Notational issues aside, translating the new features is relatively straightfor-
ward, as the JVM (and Grail) provide what we need. In particular, Grail is suf-

55

fun β1(. . .) =
let

val i = instance C1 ve

in
if i = 1 then γ1(. . .)

else β2(. . .)
end

fun γ1 (. . .) =
let

val o1 = checkcast C1 ve

in ρ1(. . .) end

. . .

. . .

fun βn−1(. . .) =
let

val i = instance Cn−1 ve

in
if i = 1 then γn−1(. . .)

else γn(. . .)
end

fun γn (. . .) =
let

val on = checkcast Cn ve

in ρn(. . .) end

FIGURE 4.2 Functions generated formatch expression

ficiently expressive that it was not necessary to extend the compiler backend sig-
nificantly.

Functionφ below informally specifies the translation of the new Camelot ex-
pressions to Grail code. We assume these expressions are normalised in the style
of the basic Camelot expressions, so that all subexpressions are atomic and have
a simple Grail expansion, rather than requiring the generation of extra Grail func-
tions and let statements.

φ(package.Class.method x1 . . .xn) =
invokestatic < τret package.Class.methodτarg> (φ(x1), . . . ,φ(xn))

φ(package.Class. f ield) = getstatic < τ package.Class. f ield>
φ(new package.Class x1 . . .xn) = new <package.Class(τarg)> (φ(x1) . . .φ(xn))
φ(ob j#mname x1 . . .xn) =

invokevirtual ob j <τret package.Class.mname(τarg)> (φ(x1) . . .φ(xn))
φ(ob j# f ield) = getfield ob j <τ package.Class. f ield>
φ(ob j# f ield<- exp) = putfield ob j <τ package.Class. f ield> exp
φ(ob j :> package.Class) = checkcast package.Class ob j
φ(isnull exp) = exp= null[τ]

Typesτ, τarg andτret are Grail types derived from the Camelot types inferred
for the appropriate fields and methods. To illustrate the above translation, we
show the translation of the multiplication of twoBigInteger objects using the
multiply instance method.

φ(n#multiply r) =
invokevirtual n <java.math.BigInteger
java.math.BigInteger.multiply
(java.math.BigInteger)> (r)

The new match expressions are more complex. An example of the new type

56

of match statement is

match ewith
o1 :> C1 -> e1
...
on :> Cn -> en

where eachCi is a class name. We generate functions as in Fig 4.2, whereβ1

will be the first function to be executed,i is a fresh variable, andve is a variable
holding the result of evaluating expressione. Additionally we generate functions
ρ1 . . .ρn which compute the expressionse1 . . .en then proceed with the current
computation.

Making Classes

Translating class definitions is fairly straightforward. Aval declaration corre-
sponds to a final static field, the type of which is the translation of the stated
Camelot type. Similarly afield definition corresponds to an instance field of
the appropriate type, which will befinal if the field is notmutable .

A maker corresponds to a method called<init> taking arguments of the
appropriate type (returningvoid), and calling the appropriate<init> method
in the superclass before executing the code corresponding to expression in the
body, which is compiled as above.

As remarked earlier, static methods are basically monomorphic Camelot func-
tions encapsulated in a class, and so their compilation is just as standard Camelot
functions. Instance methods are also compiled like monomorphic Camelot func-
tions, but references tothis are permitted.

4.6 OBJECTS AND RESOURCE TYPES

As described in Sec. 4.2, the use of diamond annotations on Camelot programs
in combination with certain resource-aware type systems allows the heap usage
of those programs to be inferred, as well as allowing some in-place update to
occur. Clearly the presence of mutable objects in O’Camelot also provides for
in-place update. However by allowing arbitrary object creation we also replicate
the unbounded heap-usage problem solved for datatypes. Perhaps more seriously,
we are allowing Camelot programs to invoke arbitrary Java code, which may use
an unlimited amount of heap space.

First consider the second problem. Even if we have some way to place a bound
on the heap space used by our new OO features within a Camelot program, exter-
nal Java code may use any amount of heap whatsoever. There seem to be a few
possible approaches to this problem, none of which are particularly satisfactory.
We could decide only to allow the use of external classes if they came with a
proof of bounded heap usage. Constructing a resource-bounded Java class library
or inferring resource bounds for an existing library would be a massive undertak-

57

ing, although perhaps less problematic with the smaller class libraries used with
mobile devices. This suggestion seems somewhat unrealistic.

Alternatively, we could simply allow the resource usage of external methods to
be stated by the programmer or library creator. This extends the trusted computing
base in the sense of resources, but seems a more reasonable solution. The other
alternative—considering resource-bound proofs only to refer to the resources di-
rectly consumed by the Camelot code—seems unrealistic, as one could easily (and
even accidentally) cheat by using Java libraries to do some memory-consuming
“dirty work”.

The issue of heap-usageinternal to O’Camelot programs seems more tract-
able, although we do not propose a solution here. A first attempt might mimic the
techniques used earlier for datatypes; perhaps we can adapt the use of diamonds
and linear type systems? The use of diamonds for in-place update is irrelevant
here and indeed relies on the uniform representation of datatypes by objects of a
particular Java class. Since we are hardly going to represent every Java object by
an object of one class we could not hope to have such a direct correlation between
diamonds and chunks of storage.

However, we could imagine an abstract diamond which represents the heap
storage used by an arbitrary object and require any instance ofnew to supply one
of these diamonds, in order that the total number of objects created is limited.
Unfortunately reclamation of such an abstract diamond would only correspond to
making an object available to garbage collection, rather than definitely being able
to re-use the storage. Even so, such a system might be able to give a measure
of the total number of objects created and the maximum number in active use
simultaneously.

4.7 RELATED WORK

We have made reference to MLj, the aspects of which related to Java interoper-
ability are described in [2]. MLj is a fully formed implementation of Standard ML
and as such is a much larger language than we consider here. In particular, MLj
can draw upon features from SML such as modules and functors, for example, al-
lowing the creation of classes parameterised on types. Such flexibility comes with
a price, and we hope that the restrictions of our system will make the certification
of the resource usage of O’Camelot programs more feasible.

By virtue of compiling an ML-like language to the JVM, we have made many
of the same choices that have been made with MLj. In many cases there is one
obvious translation from high level concept to implementation, and in others the
appropriate language construct is suggested by the Java object system. However,
we have also made different choices more appropriate to our purpose, in terms of
transparency of resource usage and wanting a smaller language. For example, we
represent objects as records of mutable fields whereas MLj uses immutable fields
holding references.

There have been various other attempts to add object-oriented features to ML
and ML-like languages. O’Caml provides a clean, flexible object system with

58

many features and impressive type inference—a formalised subset is described in
[12]. As in O’Camelot, objects are modelled as records of mutable fields plus
a collection of methods. Many of the additional features of O’Caml could be
added to O’Camelot if desired, but there are some complications caused when
we consider Java compatibility. For example, there are various ways to compile
parameterised classes and polymorphic methods for the JVM, but making these
features interact cleanly with the Java world is more subtle.

The power of the O’Caml object system seems to come more from the dis-
tinctive type system employed. O’Caml uses the notion of arow variable, a type
variable standing for the types of a number of methods. This makes it possible
to express “a class with these methods, and possibly more” as a type. Where
we would have a method parameter taking a particular object type and by sub-
sumption any subtype, in O’Caml the type of that parameter would include a row
variable, so that any object with the appropriate methods and fields could be used.
This allows O’Caml to preserve type inference, but this is less important for our
application and does not map cleanly to the JVM.

A class mechanism for Moby is defined in [4] with the principle that classes
and modules should be orthogonal concepts. Lacking a module system, Camelot
is unable to take such an approach, but both Moby and O’Caml have been a guide
to concrete representation. Many other relevant issues are discussed in [9], but
again lack of a module system—and our desire to avoid this to keep the language
small—gives us a different perspective on the issues.

4.8 CONCLUSION

We have described the language Camelot and its unique features enabling the
control of heap-allocated data and have outlined an object-oriented extension al-
lowing interoperability with Java programs and libraries. We have kept the lan-
guage extension fairly minimal in order to facilitate further research on resource
aware programming, yet it is fully-featured enough for the mobile applications we
envisage for Camelot.

The O’Camelot compiler implements all the features described here. The cur-
rent version of the compiler can be obtained from

http://www.lfcs.inf.ed.ac.uk/mrg/camelot/

A EXAMPLE

Here we give an example of the features defined above. The code below, together
with the two standard utility functionsrev andlen for list reversal and length,
defines a program for Sun’s MIDP platform (as described in [11]), which runs
on devices such as PalmOS PDAs. The program displays the list of primes in
an interval. Two numbers are entered into the first page of the GUI, and when a
button is pressed a second screen appears with the list of primes, calculated using
the sieve of Eratosthenes, along with a button leading back to the initial display.

59

This example has been compiled with our current compiler implementation,
and executed on a PalmOS device.

class primes = javax.microedition.midlet.MIDlet with
implement javax.microedition.lcdui.CommandListener

field exitCommand: javax.microedition.lcdui.Command
field goCommand: javax.microedition.lcdui.Command
field doneCommand: javax.microedition.lcdui.Command
field mainForm: javax.microedition.lcdui.Form
(* lower and upper limits: *)
field lltf: javax.microedition.lcdui.TextField
field ultf: javax.microedition.lcdui.TextField
field display: javax.microedition.lcdui.Display

maker () =
let _ = display <-

(javax.microedition.lcdui.Display.getDisplay
(this:> javax.microedition.midlet.MIDlet))

in let _ = goCommand <-
(new javax.microedition.lcdui.Command
"Go" javax.microedition.lcdui.Command.SCREEN 1)

in let _ = exitCommand <-
(new javax.microedition.lcdui.Command
"Exit" javax.microedition.lcdui.Command.SCREEN 2)

in let t = new javax.microedition.lcdui.Form "Primes"
in let ll = new javax.microedition.lcdui.TextField

"Lower limit:" "" 10
javax.microedition.lcdui.TextField.NUMERIC

in let _ = lltf <- ll
in let _ = t#append ll
in let ul = new javax.microedition.lcdui.TextField

"Upper limit:" "" 10
javax.microedition.lcdui.TextField.NUMERIC

in let _ = ultf <- ul
in let _ = t#append ul
in let _ = t#addCommand (this#goCommand)
in let _ = t#addCommand (this#exitCommand)
in let _ = mainForm <- t
in t#setCommandListener this

method startApp (): unit =
this#display#setCurrent (this#mainForm)

method pauseApp (): unit = ()
method destroyApp (b:bool): unit = ()
method commandAction

(cmd: javax.microedition.lcdui.Command)
(s: javax.microedition.lcdui.Displayable)
: unit =

60

if cmd#equals (this#exitCommand)
then let _ = this#destroyApp false

in this#notifyDestroyed ()
(* create & display list of primes *)
else if cmd#equals (this#goCommand)
then

let lower_limit = int_of_string
(this#lltf#getString())

in let upper_limit = int_of_string
(this#ultf#getString())

in let primes =
new javax.microedition.lcdui.Form "Primes"

in let _ = appendPrimes lower_limit upper_limit primes
in let done = new javax.microedition.lcdui.Command

"Done"
javax.microedition.lcdui.Command.SCREEN 1

in let _ = doneCommand <- done
in let _ = primes#addCommand done
in let _ = primes#setCommandListener this
in let _ =

javax.microedition.lcdui.AlertType.INFO#playSound
(this#display)

in this#display#setCurrent primes
(* back to main form *)

else if cmd#equals (this#doneCommand) then
this#display#setCurrent (this#mainForm)

else ()
end
(* Generate a list of prime numbers in an interval [a..b] *)
(* Integer square roots *)
let increase k n = if (k+1)*(k+1) > n then k else k+1
let rec intsqrt n = if n = 0 then 0

else increase (2*(intsqrt (n/4))) n

(* n is divisible by no member of l which is <= sqrt n *)
let isPrime n l lim =

match l with
[] -> true

| h::t -> h <= lim && n mod h <> 0 && isPrime n t lim

(* generate list of primes between n and top *)
let make1 n top acc =

if n > top then rev acc []
else if isPrime n acc n then make1 (n+2) top (n::acc)
else make1 (n+2) top acc

let makeSmallPrimes top = make1 3 top [2]
let makePrimes n top smallPrimes =

if n > top then []

61

else if isPrime n smallPrimes n then
n::(makePrimes (n+2) top smallPrimes)

else makePrimes (n+2) top smallPrimes

let appList l (f: javax.microedition.lcdui.Form) =
match l with [] -> ()
| (h::t)@_ -> let _ = f#append ((string_of_int h)ˆ"\n")

in appList t f

let appendPrimes bot top
(f: javax.microedition.lcdui.Form) =

let smallPrimes = makeSmallPrimes (intsqrt top)
in let primes = makePrimes (bot + 1 - bot mod 2)

top smallPrimes
in let s = (string_of_int (len primes)) ˆ " primes\n"
in let _ = f#append s
in appList primes f

REFERENCES

[1] O’Caml. Seehttp://www.ocaml.org .

[2] Nick Benton and Andrew Kennedy. Interlanguage working without tears: Blending
SML with Java. InProc. of ICFP, pages 126–137, 1999.

[3] Lennart Beringer, Kenneth MacKenzie, and Ian Stark. Grail: a functional form for
imperative mobile code. In Vladimiro Sassone, editor,Electronic Notes in Theoretical
Computer Science, volume 85. Elsevier, 2003.

[4] K. Fisher and J. Reppy. Moby objects and classes, 1998. Unpublished manuscript.

[5] Martin Hofmann. A type system for bounded space and functional in-place update.
Nordic Journal of Computing, 7(4):258–289, 2000.

[6] Martin Hofmann and Steffen Jost. Static prediction of heap space usage for first-order
functional programs. InPOPL’03, January 2003.

[7] Michal Koněcný. Typing with conditions and guarantees in LFPL. InTypes for Proofs
and Programs: Proceedings of the International Workshop TYPES 2002, volume
2646 ofLecture Notes in Computer Science, pages 182–199. Springer, 2002.

[8] K. MacKenzie and N. Wolverson. Camelot and Grail: Resource-aware functional
programming for the JVM. InTrends in Functional Programming Volume 4: Pro-
ceedings of TFP2003, pages 29–46. Intellect, 2004.

[9] David MacQueen. Should ML be object-oriented?Formal Aspects of Computing,
13(3-5), 2002.

[10] Bruce McAdam. Type inference for MLj. In Stephen Gilmore, editor,Trends in
Functional Programming, volume 2. Intellect, 2000.

[11] Sun Microsystems. Mobile Information Device Profile (MIDP). See
http://java.sun.com/products/midp/ .

[12] Didier Remy and Jerome Vouillon. Objective ML: An effective object-oriented ex-
tension to ML.Theory and Practice of Object Systems, 4(1):27–50, 1998.

62

