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Abstract: Special purpose High Performance Computers (HPCs) are expensive
and rare resources, but workstation clusters are cheap and becoming common.
Emerging GRID technology offers the opportunity to integrate Grid-enabled HPCs
into a single HPC. Applications developed in these environments should be based
on a language with high-level parallel coordination that hides the complexities of
both the Grid infrastructure and the underlying hierarchical, heterogeneous and
shared architecture. In this paper we propose the use of GpH (Glasgow parallel
Haskell) to be used as a programming language in Grid-enabled systems. The
high level coordination in GpH is supported by a sophisticated runtime environ-
ment called GUM. GUM is an ideal platform to adapt to the heterogeneous, high
latency GRID environment as it supports architecture independence, is readily
ported, and is currently supported on both high-latency and low-latency systems.
GUM currently uses PVM for program communication infrastructure. Porting
GUM to the GRID requires the use of a Globus communication library such as
MPICH-G2. This study examines the performance and the behaviour of GUM
after it has been ported to Globus.
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1.1 INTRODUCTION

Although computers have become faster and gained more storage, the need is for
resources has grown even faster. A first solution is to couple several inexpensive
systems to form a more rapid one, as in Beowulf clusters [RBMS97]. However,
demand may grow for even more computational power and storage size, where
acquiring a new cluster system would be too expensive or an extension of the
existing cluster system might be inefficient or introduce a heterogeneous envi-
ronment. A promising alternative is to couple existing cluster systems. Building
clusters out of clusters thus leads to the idea of the computational Grid [FK98].

Computational Grids often involve heterogeneous collections of computers
that may reside in different administrative domains, run different software, be
subject to different access control policies, and be connected by networks with
widely varying performance characteristics [Fos01]. In addition, these hetero-
geneous collections require varying interconnection speeds to be to be taken into
account. Moreover the interconnection, and possibly the computational Grids, are
shared, resulting in varying load during the execution of the program.

To characterise a Grid, Foster provides a three point checklist[Fos02]

� A grid system manages resources that are not maintained by centralised con-
trol.

� A grid system uses standard, open, general-purpose protocols and interfaces
to avoid dealing with an application-specific system.

� A grid system delivers nontrivial qualities of service to its users. Examples
are response time, throughput, availability and security.

Grid concepts are realised by software packages like Globus [FK99a] and OGSA [FKNT02].
It is essential that application development in these environments be based on a

language with high-level parallel coordination that hides the complexities of both
the Grid infrastructure and the underlying hierarchical, heterogeneous and shared
architecture. Glasgow parallel Haskell (GpH) [Loi01] currently used on classical
high performance computation and abstracts from low level coordination issue
such as work and data distribution, and both thread communication and synchro-
nisation [TML02]. The high level coordination in GpH is supported by a sophis-
ticated runtime environment (RTE), GUM [THM

�

96], see Figure 1.1. GUM, as
described by Trinder et al [TML02, TLB

�

00], is an ideal platform to adapt to the
heterogeneous, high latency GRID environment as it supports architecture inde-
pendence, is readily ported, and is currently supported on both high-latency and
low-latency system.

Application support layers that have been deveoped for the Grid system, like
LSF (Load Sharing Facility) [ZZWD93, Cor01], are primarily designed for high
performance distributed execution, with multiple programs cooperating from lo-
cations with appropriate resources. In contrast, we focus on the parallel execution
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of a single program which is transparently distributed across a network of high
performance processors.

GUM currently uses PVM [PVM93] for program communication infrastruc-
ture. Porting GUM to the GRID requires the use of a Globus communication
library such as MPICH-G2 [Lab03]. This study examines the performance and
the behaviour of GUM after it has been ported to Globus, comparing:

� GUM with PVM, Figure 1.2.a

� GUM with MPI, Figure 1.2.b

� GUM with MPICH-G2/Globus, Figure 1.3.

to identify the impact of both MPI and the Globus infrastructure on GpH pro-
grams.

In the following sections, the basic functionality and principles of Globus,
GUM, PVM and MPI are discussed. Performance measures for GUM with PVM,
MPI, and MPICH-G under Globus are presented for two benchmark GpH pro-
grams and their implications for porting GUM are discussed.

1.2 BACKGROUND

1.2.1 Globus Toolkit

The Globus Toolkit is open source software with an open architecture. It is being
developed mainly by the Mathematics and Computer Science Division at Argonne
National Laboratory with contributions from many developers world-wide. The
Globus Toolkit is a collection of software components designed to support the

3



GUM

PVM

Communication

PEPE PE

HPCs

GpH Program

GUM

MPI

Communication

PEPE PE

HPCs

GpH Program

Fig.2.a. GUM-PVM Fig.2.b. GUM-MPI

FIGURE 1.2. GUM-PVM & GUM-MPI

development of applications for high performance distributed computing environ-
ments or ”Grids” [FK99a, FK99b]. The toolkit is based on three main compo-
nents,

� Resource Management: allocation and management of grid resources.

� Information Services: providing information about grid resources.

� Data Management: accessing and managing data in a grid environment.

1.2.2 GpH & GUM

GpH:

GpH (Glasgow parallel Haskell) [THLP98] is a language with very high level
coordination, i.e. control of parallel execution. It is a modest and conservative
extension of Haskell 98, using the parallel combinator par to specify parallel
evaluation. The expression p `par` e, using Haskell’s infix operator notation,
has the same value as e. Its dynamic effect is to indicate that p could be evaluated
by a new parallel thread, with the parent thread continuing evaluation of e. Also
we say that p has been sparked, and a thread may subsequently be created to eval-
uate it if a processor becomes idle [Loi02]. Higher-level coordination is provided
using evaluation strategies: higher-order polymorphic functions that use par and
seq combinators to introduce and control parallelism [THLP98]

GUM:

GUM (Graph reduction for a Unified Machine model) is a highly portable paral-
lel runtime system for GpH, which uses an abstract message passing implemen-
tation, originally built around the PVM communication harness. GUM’s effec-
tiveness has been demonstrated by parallelising numerous large programs with
a relatively small programming effort [LTH

�

99], achieving wall-clock speedups

4



PEPE PE

HPCs

PEPE PE

HPCs

Communication
MPICH−G2

GUM

Globus 

GpH Program

FIGURE 1.3. GUM with Globus

over the equivalent optimised sequential programs. To support GUM on a shared
hierarchical heterogeneous architecture like a GRID a new configuration tool has
to be developed so GUM can control aspects as work distribution strategy and
distributed memory management strategy. Also a dynamic adaptive mechanisms
will be augmented to utilise the configuration information. Early version of GUM
have already been ported to MPI [PK00] and MPP [Dav96]. The implementa-
tion of GUM is based in four main components, we can view them as pillars
Figure 1.4:

� Thread1 Management: deciding when to generate a new thread and how to
schedule the threads.

� Memory Management: controlling access to remote data and in GUM it im-
plements a virtual shared heap.

� Communication: transferring data and work between PEs.

� Management controlling initialisation and termination for the PEs, and load
balancing between the PEs

The three GUM implementations which are presented in this paper share the same
philosophy of Thread Management and Memory Management. Communication
and Initialisation & Termination are based on different techniques depending on
the GUM’s implementation. The remainder of this section describes these differ-
ences for GUM’s implementation.

1A thread is a virtual process
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FIGURE 1.4. GUM implementation components

1.2.3 Communication Libraries

PVM

PVM (Parallel Virtual Machine) [GBD
�

94] emerged as one of the most popu-
lar cluster message-passing systems in 1992. Although PVM did not originally
work on nodes of multicomputers, more recently, multicomputer vendors have of-
fered both layered and native versions of PVM for multicomputer message pass-
ing [GKP96].

MPI

The MPI (Message Passing Interface) [GLS99] standard defines a library of rou-
tines that implement the message passing model. These routines include point-to-
point communication functions, where a send operation is used to initiate a data
transfer between two concurrently executing program components, and a match-
ing receive operation which is used to extract that data from system data struc-
tures into application memory space. It also provides collective operations such
as broadcast and reduction that explicitly involve multiple processors.

MPICH

MPICH [GLDS96] is a popular implementation of the MPI standard. It is a high-
performace, highly portable library originally developed as a collaborative effort
between Argonne National Laboratory and Mississippi State University. The first
version of MPICH was developed in parallel with the MPI-1 standard, to demon-
strate that the standard was not becoming too complex and could be implemented
quickly.

The portability of MPICH originates from its design. There are two layers.
The major part of the code is implemented device independently on top of the
Abstract Device Interface (ADI). This makes it possible to easily port MPICH
to new hardware architectures. The minor device dependant part implements the
ADI. It should preferably be implemented by the hardware vendor for a maximum
of efficiency. Each such implementation is called an MPICH device.
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MPICH-G: A Grid enabled MPI

The Globus Toolkit enables access to various computational resources, but it can-
not itself provide a convenient way to use several resources simultaneously. A
Globus-enabled version of MPICH can solve this by providing a Globus-device.
The first version, called MPICH-G is based on the Nexus Communication Li-
brary [FKT96].

MPICH-G2, the current implementation of MPICH-G, no makes longer use
of the Nexus [FKT96] library. It is said to have re-implemented the ”good” parts
of Nexus and improved the others [AHS

�

02]. MPICH-G2 is supported by the
Globus Toolkit since version 1.1.4 and conforms to the MPI standard 1.1 with
some additional features of MPI 2.0.

1.3 MEASUREMENTS

We have evaluated the three GUM versions using the GpH benchmark programs
parFib and maze described below. All the measurements use up to 30 nodes
of a Beowulf cluster, consisting of Linux RedHat 8.0 workstations, each with a
533MHz Celeron processor, 128Kb cache, 128MB of DRAM and 5.7GB of IDE
disk. The workstations are connected with a 100Mb/s fast Ethernet switch.

1.3.1 parFib

parFib [Loi01] computes the number of calls to the Fibonacci function. It uses
arithmetic heavily with a double recursive structure. The granularity in parFib
can be controlled by specifying the threshold for parallel invocation which will
help manage the computation size. In this experiment we calculate parFib 40.

1.3.2 maze

maze ?? traverses a tree with exactly one path from the entrance to the exit (one
leaf), as shown in Figure 1.5. In this experiment, maze is a tree with a branching
factor of 11 for the root and 10 for all other levels. The depth of the root’s subtree
is 10, but the subtree containing the exit has a depth of 9.

1.3.3 Performance Results:

Tables 1.1 & 1.2, and Figure 1.6 show the runtime (Seconds) for the three
versions of GUM. Tables 1.3 and 1.4 show differences in times between PVM
and MPI, PVM and MPICH, and MPI and MPICH, as proportions of the time for
the first in each pair, for parfib and maze respectively,

Overall, the differences are small. However, for parFib, MPI offers better
times and MPICH under Globus worse times, than PVM. These trends become
more marked as the number of processors increases. In contrast, for maze, there
is little difference between the PVM and MPI times, with MPI better for small
numbers of processors. Up to 16 processors, MPICH under Globus is somewhat
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Comm. PEs No.
Libraries Measures 1 2 4 8 16 30

PVM Total 409.90 213.12 98.27 40.01 23.69 11.69
MPI Total 406.23 210.78 94.24 39.69 20.87 9.92

MPICH-G2 Total 414.66 220.31 104.56 58.63 27.03 16.01

TABLE 1.1. parFib Runtimes in Seconds

worse than both, but slightly better for 30 processors. However, the differences
here are less marked than for parFib.

The comparison of MPI and MPICH under Globus shows that MPI is consis-
tently faster for parFib and marginally faster, except at 30 processors, for maze.
Assuming considerable consistency betweem MPI and core MPICH, overall these
results suggest that the use of Globus has more impact than that of MPI on GUM
behaviour.

1.4 FUTURE WORK

We have shown that implementing GUM with MPICH has little impact on the
behaviour of GpH programs on a sole use Beowulf cluster. However there might
be more impact if multiple or shared clusters were used. The GUM load balancing
mechanism has been designed to work in a flat architecture where all the PEs share
one domain. In contrast, in the Grid architecture there is a complex infrastructure
imposed on a hierarchical, heterogeneous and shared architecture.

Comm. PEs No.
Libraries Measures 1 2 4 8 16 30

PVM Total 946.83 308.44 180.19 102.30 51.58 50.78
MPI Total 932.25 301.72 175.58 104.01 52.01 51.80

MPICH-G2 Total 950.81 313.60 184.18 106.78 55.10 48.98

TABLE 1.2. maze Runtimes in Seconds
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FIGURE 1.6. GUM runtimes

Comm. PEs No.
Libraries 1 2 4 8 16 30
PV M � MPI

PV M 0.00 0.01 0.04 0.00 0.12 0.15
PVM � MPICH

PV M -0.01 -0.03 -0.06 -0.46 -0.14 -0.36
MPI � MPICH

MPI -0.02 -0.04 -0.11 -0.48 -0.29 -0.61

TABLE 1.3. parFib

We next plan to explore how to run GUM effectively on Grid compliant clus-
ters using Globus with MPICH as the communications and load distribution frame-
work. We intend to augment GUM with mechanisms to monitor work distribution,
network behaviour and memory use, to enable adaptive dynamic thread placement
to optimise processing.
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