Chapter 1

A Resource-aware Program
Logic for a JVM-like
Language

David Aspinall, Lennart Beringér, Martin Hofmani and Hans-
Wolfgang LoidP

Abstract: We present a resource-aware program logic for a JVM-like language
and prove its soundness and completeness. We first define Grail, an abstraction
over a subset of the JVM bytecode language to facilitate formalisation while re-
taining a close correspondence to JVM’s cost model. For Grail we then define an
operational semantics, and on top of that a VDM-style program logic that addi-
tionally tracks resource consumption such as execution time and heap allocation.
Finally, we prove soundness and completeness of this program logic, with respect
to the operational semantics. All formalisations and proofs have been done in the
Isabelle theorem prover.

1.1 INTRODUCTION

In the context of distributed systems, security issues are of great concern. For
example a provider of computation resources might only make these resources
available to programs that do not exceed certain limits on execution time or heap
consumption. With the emergence of Grid technology, that aims to connect such
providers on a global scale to provide transparent access to computational re-
sources, such guarantees are increasingly sought after.

In our project we aim to use proof-carrying-code (PCC) technology [Nec97]
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to endow mobile code with proofs of bounded resource consumption. Thus, a
service provider can easily check that a given resource policy is adhered to, and
based on this rigorous proof allow execution of the code. The feasibility of this
approach relies on the observation that, while it is difficult to produce a proof of
certain program properties, it is far less time consuming to check this property.
Furthermore, in our context we are interested in resource properties, rather than
more general correctness properties, which are harder to verify.

In this paper we focus on the design and implementation of a resource-aware
program logic for a slight abstraction of JVM bytecode. In Section 1.2 we define
Grail [BMSO03] as an abstraction over a subset of the JVM bytecode language. We
model objects and dynamic method call, but no class hierarchies at the moment.
In Section 1.3 we define a big-step, operational semantics for this first-order func-
tional language. Because of syntactic restrictions on Grail it can also be read as
an imperative language of assignments. The imperative reading of Grail is iso-
morphic to a subset of the Java Virtual Machine Language (JVML), which is why
we sometimes call the logic for Grail a “bytecode” logic. Moreover, the resource
usage notions which are formalised in our logic are related to a cost model for the
imperative execution of Grail on a typical Java Virtual Machine [Ber02].

The infrastructure built in our project, requires that the logic is implemented
and can be used to automatically check resource properties. Therefore we have
used the theorem prover Isabelle/HOL right from the start of designing the logic.
This enabled us to explore various design decisions for the program logic, and
we summarise the most important ones in Section 1.5. The use of an automated
theorem prover also helped to prove soundness and completeness for the pro-
gram logic. Discussions of these core technical results are given in Sections 1.4.5
and 1.4.6. Since the program logic and its implementation is part of the trusted
code base of the PCC infrastructure, it is essential for the overall security of the
systems to have such results available.

1.2 GVM: GRAIL VIRTUAL MACHINE

This section defines the syntax of the language as formalised, the basic compo-
nents of its semantics and the structure of cost components.

1.2.1 Syntax

We assume mutually disjoint sets of method names, class names, function names
(i.e. labels of basic blocks), field names and variables, ranged over, byf,

fld, andx, respectively. The categoly of values (ranged over by) comprises
integers, references and the special valu¢ (which stands for the absence of a
value). References are either null (writtem!) or of the formRef Iwherel is a
location (represented by a natural number).



Expressions
Conceptually, Grail expressions are partitioned into two sets.

e simple expressions are the basic unit of execution and directly compute val-
ues. They are built from operators, constants, and previously computed values
(names), and correspond to primitive sequences of bytecode instructions. An
expression may have a side effect, but there are no directly nested expressions.
We model untyped expressions.

e compound expressions are built using let expressions. A function body is a let
expression. A function ends with tail calls to other functions or methods.

Proofs in the theorem prover are somewhat simplified if we combine both types
of expressions in a single phrase class:

ecexpr = Null|Inti|VarX|Primopp X X|
New ¢ [(fldy,x1), ..., (fld,,Xn)] | GetF x fld | PutF x fld x|
x-m(x) | cm(x) | Let xe e| Letvee| If xee|Call f

Here p ranges over primitive operations of type= V = V such as arithmetic
operations and comparison operators. As a compromise between a completely
untyped formalisation and the formalisation of a full type system, we encode some
simple typing conditions in the syntax. For example, the bindiegx e & is

used if the evaluation of; returns an integer or reference value on top of the
JVM stack whileLetv e & represents purely sequential composition, used for
example ife; is aPutF expression. Object creation (instructiiaw) includes
initialisation of the object fields according to the argument lists: the content of
variablex; is stored in fieldfld;. Function calls €a11) follow the Grail calling
convention (i.e. correspond to immediate jumps) and do not carry arguments. The
instructionsx- m(x) andc.m(x) represent virtual and static method invocation.

Methods and programs

For simplicity we restrict our attention to methods with a single formal argument,
which is always callegparam In virtual methods, the variable nanself rep-
resents the pointer to the parent object. We assume that all method declarations
employ distinct names for identifying inner basic blocks (Grail functions). A
program may thus be represented by a t&llemapping function identifiers to
expressions, and a tall&T associating the initial basic block of each method to

its parent class and method identifier.

1.2.2 Semantic components

The machine model which forms the basis of our semantics consists of a heap, a
store for local variables and a class file environment.



Heap

The heapis a map from locations to objects. Conceptually, objects consist of
a class name together with a mapping of field names to values. In our formali-
sation, we follow an approach originally due to Burstall which has recently been
employed by [Nip02], where each object is treated as a separate “mini”-heap. The
heap is splitinto two components: a total function from locations and field names
to values, and a partial function from locations to class names. This object lookup
heap (bheap) is used to determine the runtime class of objects during virtual
method invocation, but its domain also indicates the size of the heap, which we
wish to reason about in the program logics. The rules of the dynamic semantics
guarantee that field access operations involve only objects which are located in
the current domain of the heap.

Environments

Variables which are local to a method invocation are kept in an environehent
envwhich maps variables to values. We UB&) to denote the lookup operation
andE(x := v) to denote an update. Similar to the heap the store is represented
as a total function, with a silent assumption that well-defined method bodies only
access variables which have previously been assigned a value.

Class file environment

The class file environment is modelled in the context of our formalisation, by
abstract total function®IT andFT, which map class namesmethod names and
function names to expressions, respectively.

1.2.3 Resource components

Resource consumption is modelled in the operational semantics by resource tuples
p = (clock, callcp invke, invkd pthy).

The four components range oMdrand represent the following costs:

e theclockrepresents an abstract instruction counter. In the operational seman-
tics, each Grail instruction is associated the number of clock-ticks correspond-
ing to the number of JVM instructions to which it expands.

e as an example for how one might refine the abstract instruction coaatkr,
counts the number of function calls (i.e. jump instructions). In combination
with invkc it may also be used to formally verify properties of Grail-level
optimisations such as the replacement of method (tail) recursion by function
recursion for static methods.

e a second refinement of the instruction counvkc monitors the number of
method invocations. It would be easy to extend this to consider separate counts
for each method identifier, class identifier or method declaration.



e invkd pthmodels the maximal invocation depth, i.e. the maximal height of
the frame stack throughout an execution. From this, the maximal frame stack
height may be approximated by considering the maximal size of single frames.

The size of the heap is not monitored explicitly in the resource components, since
it can be deduced from the representation of the object heap.
The following two operators combine resource tuples:

p&q = ((clock+clocky) (callcy +callcg) (invke +invke) (invkd pthy, + invkd pthy))
q—q = ((clocky,+clocky) (callcp+ callcg) (invkg +invkg) (max(invkd pthy) (invkd pthy)))

1.3 OPERATIONAL SEMANTICS

This section describes the operational semantics to which the program logic refers.
The semantics is a big-step evaluation relation based on the functional interpre-
tation of Grail. Indeed, a big-step semantics suffices for a program logic which
(like ours) concentrates on partial correctness and is presented in VDM style.

1.3.1 Rules

The operational semantics is based on the functional view of Grail, with judge-
ments of the form
EFhel (W,vp).

Such a statement is to be read as “in variable environrBeahd starting with
a heaph, codee evaluates to the value yielding the heafy and consuming
resources.” The rules are as follows

E h,Nall  (hnull, (1000) (NULL)

EFhIntil (hi,(1000) (NT)

EFh,varx{ (,E(X),(1000) (VAR)

E hprinoppxyl (0p(EX) EX),(300G) 1 MOP
E(x) — Ref |

ET h,GetF x fid § (h,h(1).fid, (20 00) (GETR)

E(x) = Ref | BUTE

ET h,putF x fid yJ (n[lfid — E(y)], L,(3000) (PUTR)
freshlodl, h)

- (NEW)

E - h,New c fldvals|} (newObj h | E c fldvalsRef [ (100 0)
E(x) =true EFh,e; | (h1,v,p) (FTRUE)
EFhTIfxe el (h,v (2000 — p)
E(x) =false Erh,eyl (hy,v,p) (IFFALSE)

EFhIfxe e | (h,v(2000 — p)



EFhe | (h,wp) w# L E{xi=w)Fhe | (h,va)

LET
E-hLetixer el (h2,v,(1000 — p—q) (Len
Ethe d(h,L,p) EFhiel(hzva) (LETV)
Eth,Letvey e | (hy,v,p—q)
E+FhFTf | (hy,Vv,
: Y (h1, v, p) (cALL)

EFh,callf | (h,v, (1100 — p)
[self := null,param:= E(y)] - h,MT ¢ m{} (hy,v, p)
Erh,em(y) | (h,v,(301D & p)
E(x) = Ref | hoheaffl) = Soméc)
[self:= Ref | param:= E(y)] - h,MT c m{} (hy,Vv, p)
EFh,x-m(y) § (hy,v,(501 D@ p)

(INVOKESTATIC)

(INVOKE)

1.3.2 Discussion of rules

In rule GeTF, the notationh(l).fld represents the value of fieftl in the object
at heap locatiot, while in rule PuTF the notatiorh[l.fld — v| denotes the corre-
sponding update operation. In riNew, the conditiorfreshlodl, h) expresses the
fact that is a location outside the domaintfwhile newObj h | E d(fld;,X1),. . ., (fldy, Xn)]
represents the heap which agrees witin all locations different frorhand maps
| to an object of class, with the field entriedld; := E(x;). We silently assume a
static semantics which ensures well-typedness of object creation and initialisation
(including class membership), field access operations and method invocations.
The temporal costs associated to basic instructions reflect the number of byte-
code instructions to which the expression expands. For exampleptireoper-
ation involves two instructions for pushing the object poirE€x) and the new
contentE(y) onto the operand stack, plus one additional instruction for perform-
ing the actual field modification. In the rules for conditionals, we charge for
pushing the valu&(x) onto the stack, with an additional tick charged for evaluat-
ing the branch condition and performing the appropriate jump. The difference in
the costs betweeret andLETV arises from the fact that the latter one is purely
sequential composition. The implicit typing convention ensures that the check
w #£ 1 always succeeds ireT, and that the value returned By in LETV is in-
deed.. Both rules combine the component coptandq using the operator:
method invocations ie, ande, are not nested inside each other, hence the max-
imal invocation depth is the maximum of the individual invocation debtha
rule cALL, the Grail convention that functions calls amount to immediate jumps
explains why the call merely invokes the execution of the function body dfe
charge for one anonymous instruction, and also explicitly for the execution of a
jump. In ruleINVOKESTATIC, the body of method.mis executed in an environ-
ment which represents a fresh frame - the essentially only binding is that of the

3The usage of in rulesIFTRUE, IFFALSE andCALL is arbitrary - usings would
give the same result as the invocation depth component of the increment is 0.



(standard) method parameterEdy). The instruction counter is incremented by

3, for evaluatingg(y) and for pushing and popping the frame. In addition, both
the invocation counter and the invocation depth are incremented by one - the us-
age of@ ensures that the depth correctly represents the nesting depth of frames.
Finally, ruleINvOKE first evaluates the object pointBfx) and uses the resulting
location to retrieve the object’s dynamic class from the heap. Then, the method
body associated tm andc is executed in a fresh environment which contains the
reference td (x) in variableself and the valud&(y) in variableparam The costs
charged arise by again considering the evaluatiog(&f andE(y) and the push-

ing and popping of the frame, but we also charge one clock-tick for the indirection
needed to retrieve the correct method body from the class file.

1.4 APROGRAM LOGIC FOR GRAIL

1.4.1 Style of the Program Logic: VDM vs Hoare

In developing a program logic, we consider two different styles: VDM-style [Jon90]
and Hoare-style [Hoa69]. The more commonly used Hoare-style is based on
triples of the form{P} e {Q} stating that if the assertioR is valid before exe-
cuting the expressiog then the assertio is valid after execution. In order to
capture intermediate values in the execution of a program, auxiliary variables are
used. These variables have to be universally quantified in the formal definition
of validity. For example the specification of the exponential function, returning
its result in variables, can be written with auxiliary variabl¥ andY as follows
{0<y A x=X Ay=Y}expgxy) {v=X'}. In contrast, a VDM-style logic
uses tuples of the forra : Q stating that an assertid is valid for expression

e, whereQ can refer to variables in both pre- and post-state of the executien of
Variables in the pre-state are often written as “hooked” variablesxeag.in the
specification of an exponential functiemgx,y) : {0<y — v=xX}.

The main advantage of a VDM-style program logic is the absence of auxiliary
variables in the assertions, which are used in a Hoare-style to propagate values
from the pre- to the post-condition. This requires a rather intricate rule of adap-
tation in a Hoare-style logic, which is elaborated by Kleymann [Kle99] and used
by Oheimb [von01] in a program logic for a Java subset. To avoid such compli-
cations we prefer DM style which gives direct access to both the pre- and the
post-state of the computation.

1.4.2 Type Definitions

In modelling assertions we useshallow embeddingvhich defines an assertion
as a predicate over the state of the computation. In contrast, a deep embedding
would define assertions as a separate data type, and has the advantage of being
easier to manipulate, but the disadvantage of being less flexible.

In our setting, a VDM-style assertion (specification) is a set, usually written
as set comprehension with the predicate inside, which can refer to the pre- and the
post-state of a program expression, as well as the resources consumed.



A GVM state consists of a store (environment) of local variables (of &k
and the heap (of typeeap). As can be seen from the operational semantics, only
the heap is modified in the evaluation of an expression, returning a value (of type
val) and a resource tuple (of typeouni). Thus, the overall type of a VDM-style
assertion is:

vdmassertion= envx heapx heapx val x rcount

With this type, the informal statement “asserti®ris fulfilled in pre-state , h),
post-statel, hh) with result valuev and resource consumptigai is written for-
mally as set membership, i.€E, h,hh,v, p) € P. Similarly, a program expression
e satisfies an assertion, written@sP, iff every (terminating) execution afis al-
lowedinP,i.e.VEhhhvp Erhel (hhvp) — (E,h,hh,v, p) € P.
The requirement that this holds for every derivable statemgpis the soundness
criterion for our logic, considered further in Section 1.4.5.

For example, suppose for the expressien n (GetF x coun) Var n, we
would like to specify that the result value is the value of thentfield of object
x in the heap, which has to be an instance of cka®ss This is written using the
set comprehension:

{(E,h,hh)v, p) | E(x) = Ref | A h.oheagl) = Some Foo— v = h(l).count}

Sometimes we will want to prove statements under assumptionsvVDMecon-
texthas the role of storing assumptions that program expressions meet specifica-
tions. It has the following type:

vdmcontext {exprx vdmassertioh

The rules for @QLL, INVOKE and INVOKESTATIC are the only ones which
extend the context of assumptions.

1.4.3 Program Logic
VDM Rules

The judgement of the program logic
Gre:P

is read as “under the assumptioBsthe Grail codee satisfies the specification

P,” whereG is of typevdmcontexte is of typeexprandP of type vdmassertion

This judgement is defined inductively by the rules given below. First, there are
two structural rules, and then one rule for each form of program expression. The
rules in fact derive the strongest specification for each expression (this is proven
formally in the completeness proof, in Section 1.4.6).

(e,P)eG Gre:P PCQ

Gre:P (vax) Gre:Q (veonsEq



(VNULL)

G Null:{(E,h,hhv,p) [hh=h Av=null A p=(1000}

GrInti:{(E,h,hhyv,p)|hh=hAv=i A p=(1000} (VINT)
G Var x: {(E,h,hhv,p) [hh=h A v=E(x) A p=(1000} (VVAR)
Gr>Primop pxy: {(E,h,hhv,p)| v=pEX E{y) A (VPRIM)
hh=h A p=(3000}
(VGETF)
Gr>GetF x fld: {(E,h,hh,v,p) | 3L.E(x) =Ref IA hh=h A
v=hh().fld A p=(2000}
Gr>PutF x fld y: {(E,h,hh,v,p) | 3. E(X) =Ref IAp=(3000 A
hh=h[l.fld— E{y)] Av= 1}
(VPUTF)

G New c fldvals: {(E,h,hh,v,p) | 3I. | €dom hA v=Ref IA
hh=newObjh|E cfldvals\ p=(1000}
(VNEW)
Gre P Goe: P
GrIf xe e:{(E,hhhv,p)|3pp. p=pps(2000 A
(E{x) =true=> (E,h,hh,v,pp) € P) A
(E(x) = false=> (E,h,hh,v, pp) € P2) A
(E{x) =true v E(x) =false)}

(VIF)
Gre P Goe: P
G Letxe e: {(E,h,hhv,p)| I pr p2hiw (E,hhi,wp1)ePr Aw# LA
(E{x:=w),h;,hhv,p2) € P> A
P=(1000®(p1— P2)}

(VLET)
G>e P Goe:P
Gr>Letver & {(E,h,hhv,p) |3 prpz2hi. (E hhy, L, p) €PLA
(E,hg,hh,v, pp) € Po A
p=p1— P2}
GuU{(Cal1f,P)}r> (FT f): {(E,h,hhyv,p) | (E,h,hhv,(1100 ® p) € P}
Gr-Callf:P

(VLETV)

(vcALL)
VE. Gu{(cmy),P)}>
MT c m: {(E,h,hhv,p) | E = [self := null,param:= E’(x)]
= (E/,h,hh,v,(301 ) & p) € P}
Grcm(y): P

(VINVOKESTATIC)
VE'NIc. E'(x) =Ref |A h.oheagl) = Soméc) =
GU {x-m(y),P)}t>
MT ¢ m: {(E,h,hh,v,p) | E = [self:=E'(x),param:=E’(y)] A h=H
— (E',h,hh,v,(501 1) & p) € P}

G x-m(y) : P
(VINVOKE)



Discussion of the Rules

The axiom rulevax allows one to use specifications found in the context. The
VCONSEQconsequence rule allows one to derive an asseQitirat follows from
another derivable assertiéh Because of our encoding of assertions as sets, im-
plication on assertions is written as subset inclusion.

The leaf rules ¥NULL to VNEW) directly model the corresponding rules in
the operational semantics, with constants for the resource tuples. The only rules
modifying the heap arePuTFandvNEW. The former adds a new mapping to the
heap, the latter allocates a new object using the auxiliary funcigwObj The
VIF rule uses the appropriate assertion based on the boolean value in the variable
Since the header of the conditional is just a variable, the heap cannot be modified
by this step and therefore only existential quantification over the resource tuple
ppis needed. In th&LET rule, however, existential quantification over the result
valuew and result heajn; of evaluating the let header is needed, as well as a
guantification over the resource tuples from let header and body. Combining the
resource tuples on top level, rather than forwarding the consumed resources from
header to body, has the advantage of minimising dependencies between the states
in the execution. This, together with the separation of the components of the state,
facilitates the use of the simplification machinery provided by Isabelle.

The rules for recursive functions and methods are the most interesting, in-
volving the contextG. The vcALL rule is similar to Hoare’s original rule for
parameter-less recursive procedures. In a backward reasoning style it requires to
prove the assertion under consideration, for the body of the function, under the
additional assumption that this assertion holds for the entire function, which is
captured in the context. Additionally, we have to modify the resource tuple when
analysing the body. We use a global tabl€ to map function names to their
corresponding bodies.

TheVINVOKESTATIC andVINVOKE rules have the same overall structure. The
former can directly extract the method body from the class file by accessing the
global tableMT, indexed with class nhame and method name. The latter has to
look up the class name in the heap. Therefore, an additional quantification over
all possible class namesds required. For both rules the environment, containing
the special variableself andparam is initialised appropriately.

1.4.4 Additional Admissible Rules of the Logic
Additionally to the above rules, we may use further rules in the verification.
Context weakening

The weakening rule

G>e:P

—_ (WEAK)
GuDre:P

is proven by induction on the derivations®f>e: P.

10



Cut rules

These rules allow to substitute derivations for context assumptions. Rule

{(eeP)}UD>e: Q G>ee: P GCD

(ccum)
Dre:Q
is proven by induction on derivations ¢fegP)} UD>e: Q, rule
Gre:P DCG CallinvContextG) DprovesG
= XG) P (cuT2)

Dre:P

by induction on derivations db > e: P. The premises ofuT2 are defined by
CallinvContextG) =
VeQ(e,Q) € G— ((3f. e=Callf) v (Ixmy e=x-m(y))V(Icmy e=cm(y)))
and

DprovesG = ((VfQ.(Callf,Q)eG—Dr>Callf:Q)A
(VxmyQ (x-m(y),Q) € G — Dr>x-m(y) : Q) A
(VemyQ (em(y),Q) € G— Drcm(y) : Q))

Mutual recursion

Unlike Nipkow’s mechanism for mutually recursive procedures [Nip02], we do
not define a separate derivation system for judgements with sets of VDM asser-
tions on both sides, but instead give a single rule for mutual recursion. We assume
the existence of a specification tal$pecwhich maps each function identifier to
a VDM assertion, and another similar tab&Specassociating assertions to pairs
of class names and method names.

A VDM context G is calledconsistentvith the specification tables if

e (Callf, P) € Gimplies
P=Spec fA G>FT f:{(E,h,hhyv,p)|(E,h,hh,v,(1100 — p) € P},

e (c.m(y),P) € Gimplies

P = MSpec c m
VE'. G>MT cm: {(E,h,hh v, p). E = [self:=null,param:= E'(y)]
— (E’,h,hh,v,(301 1 & p) € P},

e and(x- m(y),P) € G implies

(3E'Hlc. E'{x) = Ref IANh .oheagdl) = cAP = MSpeccmA
(VE'Wlc. (E'{x) = Ref IAN.oheagl) =c) —
G>MT c m: {(E,h,hh,v,p). E = [self:=E'(x),param:= E'(y)]Ah=H
— (E/,h,hh,v,(501 1 @ p) € P}).

11



The rule for mutually recursive function calls or method invocations

Gfinite CalllnvContexiG) Geconsistent (e,P) € G
Oe:P

(MUTREC)

is proven by induction on the size & usingccuT and the following lemma.

Lemma 1.1.If G is consistent(e, Q) € G and CalllnvContexG) holds then G-
(e,Q) is consistent.

The restriction to finite contexts rulkuTREC is fulfilled for any practical
program finitely many function symbols, and method invocations.

For illustration purposes we give the specialised rule for two (possibly mutu-
ally recursive) functions:

ie{1,2}
G= {(Call f1, Pl), (Call f2, Pz)}
GrFT f1 : {(E,h,hhv,p).(E,h,hh,v,(1100 — p) e P}
G FT f2: {(E,h,hh)v,p).(E,h,hh,v,(1100 — p) € P,}
O Callfi:PR

(FUNREC2)

Notice that the rules in particular allow one to derive statements about function
calls and method invocations in the empty context.

1.4.5 Soundness

In this section we prove soundness for the program logic in Section 1.4.3.

Validity

We first have to define thealidity of an assertion for a given program expression,

in a given context. Using standard technigues to prove soundness of function calls
and method invocations, we additionally parameterise the notion of validity by a
natural number acting as step counter in the evaluation. Note, that this counter
will only be used to do induction over when we prove soundness. It is not used
for capturing resources, since we need a more detailed cost metric for the latter,
and use the resource tuples for that.

Definition 1.1. (Validity) Let Q be in vdmassertion and e in expr e. Q is valid
for e iff

Ene:Q=(Ymm<n= (VEhhhvpEF helm(hhv,p) = (E,hhh v, p)€Q))

This definition uses a variant of the operational semantics, that adds the same
counter but is otherwise equivalent to the semantics in Section 1.3.

This definition is related to the counter-less definition of validity in Section 1.4.2
like this

12



Lemma 1.2.Let e be in expr, Q in vdmassertion and mNnthen
Vn. E=pne:Q =Fe:Q
Proof. By unfolding definitions of validity and using the operational semantics.

Note that the counten restricts the set of pre- and post-states for whizh
has to be fulfilled, i.e. that have to be containeddn Because of this negative
occurrence of the counter in the validity formula, we have the following lemma,
allowing us to weaken this counter.

Lemma 1.3.Let e be in expr, Q in vdmassertion andmin N, then
m<nA Epe:Q =Fme:Q
Proof. By unfolding the definition of validity and simplification.

The validity of an entire context is defined as the conjunction over the validity of
its components.

Definition 1.2. Let G be in vdmcontext, e in expr and Q in vdmassertion. The
context G is valid iff

[FG = V(eQ)eG. = e:Q
We generalise the above notion of validity, to one with a context as follows.

Definition 1.3. Let G be in vdmcontext, e in expr and Q in vdmassertion. The
assertion Q is valid for e in context G iff

GEFeQ=|FG=FeQ

Again, for both notions we also have definitions that are relativised over the
counter used in the definition of validity. We omit these obvious variants of the
definitions above.

Soundness Theorem

The main soundness theorem states that validity follows from derivability in an
empty context and is formalised as follows.

Theorem 1.1.(Soundness) Let e be in expr and P in vdmassertion, then
>e:P=ke:P

Proof. This theorem follows directly from Lemma 1.4 by instantiati@gvith 0.

Lemma 1.4.Let G be in vdmcontext, e in expr and P in vdmassertion, then

GreP= GEeP
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Proof. This theorem follows directly from Lemma 1.5 by unfolding the definition
of relativised validity and simplifying.

The following stronger lemma expresses the same soundness property over
contextual, relativised validity. It is the main theorem left to prove.

Lemma 1.5.Let G be in vdmcontext, e in expr and P in vdmassertion, then
Gr>e:P=— VnG k,e:P

Proof. The proof proceeds by structural induction over the program expression
The main steps in the individual cases are as follows:

e All leaf cases follow directly from unfolding the definition of validity and
applying the rules of the operational semantics.

e TheIf case additionally applies a variantlafluctLemman both the true and
the false case.

e The let case additionally applies a variant loiductLemmaand basic arith-
metic over naturals and max.

e Thecall case uses induction over the counter of the relativised validity. In the
induction step it usekhductLemmaand the rules of the operational semantics,
as well as some auxiliary lemmas on contexts.

e The invoke cases also use induction over the counter of the relativised validity,
together with a modifiethductLemmand the same auxiliary lemmas.

This proof relies on one more lemma for performing the induction.
Lemma 1.6.(InductLemma)

VeP G (eP)eG=
vn. |F, G=
ymm<n—
VE hhhv pE + hel mhhv,p) = (E,h,hhv,p) e P

Proof. This lemma is proven by unfolding the definition of relativised and context
validity, followed by simplification.

1.4.6 Completeness

The VDM-style program logic may be proven complete relative to the ambient
logic usingstrongest specificationsimilar to most general triples in Hoare-style
verification

Definition 1.4. Let e be in expr. Thetrongest specificatioof e is

SSpefe) = {(E,h,hh,v,p).E+h,e (hhv, p)}.
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It is not difficult to prove that strongest specifications are valid
Lemma 1.7.= e: SSpe(e)

and are stronger than (i.e. contained by) any other valid specification
Lemma 1.8.=e: P = SSpe(e) C P.

The overall proof idea of completeness is that of [Hof98] and [Nip02]: we first
prove alemma,
Lemma 1.9.

Vf.Gr>Callf:SSpefCallf)
AVYcemy G>cm(y) : SSpec.m(y)) = Gpre:SSpe(e)
AYXmy Go>x-m(y) : SSpetx-m(y))

which allows one to relatanyexpressioreto its strongest specificatid®Spe(e)
in a contextG, provided thatG in turn relates each function or method call to
its strongest specification. The proof of this lemma proceeds by induction on the
structure ofe.

Next, we define a specific contegtrongG which contains exactly the strongest
specifications for all function calls and method invocations.

Definition 1.5.
StrongG= {(e,P)|3f.e=cCallf A P=SSpefe)} U

{(e,P) | Icmy e=(cm(y) A P=SSpefe)} U
{(eP)|Ixmy e=(x-m(y) A P=SSpete)}

We also define a predicate which is fulfilled if for all entriesdithe entries in the
specification tables contain the strongest specifications.
Definition 1.6.

StrongTables G=
VeP (eP)eG— ((Vf.e=Callf— Specf=SSpe(e)) A
(Vecmy e=c.m(y) — MSpec ¢ m= SSpe(e)) A
(Vxmye=x-mly) — (3Ehlc. E(x) =Refla
h.oheagl) = Soméc) A
MSpec ¢ m= SSpe(e))))

Indeed,StrongGis consistenif all the specification tables contain the strongest
specifications:

Lemma 1.10.StrongTables Strong&=- StrongG consistent
On the other hand, combining rules T2 andMUTREC with Lemma 1.9 yields
Lemma 1.11.(StrongG consistent StrongG finit¢ = 01> e: SSpe(e).

Consequently, completeness
Theorem 1.2.(VDMcomplete) Let e be in expr and P in vdmassertion, then

(StrongTables Strong@ StrongGfinit¢ —=ke:P—0re: P
follows by combining Lemmas 1.8, 1.10 and 1.11 and M¢®NSEQ
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1.5 CONCLUSIONS

This paper presented a resource-aware program logic for Grail, together with
proofs of soundness and completeness. Although Grail makes several restrictions
on the structure of the code, it is powerful enough to express general recursion,
and we have developed derived rules to work with mutually recursive programs.
The logic also covers dynamic method invocation, although most of our example
programs are static. The entire logic is encoded in the Isabelle theorem prover and
has been tested on non-trivial example programs such as in-place list reversal, to
prove concrete resource bounds on space and time.

Several basic design decisions in developing this program logic are worth not-
ing. Firstly, we prefer a VDM-style logic over a Hoare-style logic, since the
former avoids complicated rules of adaptation over auxiliary variables, which are
used in Hoare-style logics to propagate intermediate results from pre- to post-
assertion. We make heavy use of the additional flexibility of formulating asser-
tions, provided by a shallow embedding of the assertion language into the theorem
prover. For us this outweighs the disadvantage of tying the logic to one particular
prover. For the time being we restrict our infrastructure to a setup where the same
theorem prover is used in the proof generation and the proof checking phase.
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