
Chapter 1

Nitro: A low-level functional
language
Allan Clark1

Abstract: Nitro is to be a small functional language. Setting Nitro apart from
the many other functional languages available to programmers will be that Nitro
code will be low-level, and more of the underlying machine will be visible to
the programmer. This allows functional programmers to write inherently low-
level code such as operating system code, device drivers and run times for higher
level languages. Programs written in Nitro will be guaranteed to have certain
safety properties. Therefore writing low-level components in Nitro will have two
benefits, the safety properties of Nitro programs will be guaranteed, and writing
in Nitro will be familiar to anyone accustomed to programming with a functional
language such as SML[1].

This paper gives a definition of the core of the Nitro programming language.

1.1 INTRODUCTION

The C programming language is ubiquitious in low-level systems programming.
It is rare for programs such as operating system kernels, low-level device drivers,
and abstract machines to be written in languages other than C. One good reason
for this is that C provides the control over the underlying machine that many other
high level languages are designed to abstract away from.

The aim of the Nitro programming language is intended to provide to low-level
programmers the safety, convenience and clarity that has been afforded to high
level functional programmers for many years. We can then be more confident that
our low-level code is safe and correct. Given that our high-level code will run on
top of this low-level code we obtain the added benefit of improving the confidence
we have in our total trusted computing base.

1Laboratory for Foundations of Computer Science, The University of Edinburgh,
King’s Buildings, Edinburgh, EH9 3JZ, Scotland;Email:A.D.Clark@sms.ed.ac.uk

1

In the remainder of this paper I give an initial list of aspects of functional
programming that would be desirable to a low-level programmer. I then give an
informal description of the abstract syntax of the language, and finally a definition
of that abstract syntax in operational semantics.

1.2 THE ABSTRACT SYNTAX

In this section I present the abstract syntax of the core of the Nitro programming
language. The core is all of Nitro, minus the modular language and derived forms.
This section will take the form of a list of the core Nitro constructs and an infor-
mal and brief semantics of each clause. Each clause is presented using an SML
like notation, those readers unfamiliar with SML can think of this a mathematical
notation. In particular one should keep in mind that each clause is merely a rep-
resentation of that clause designed to be easily readable and unambiguous. The
semantics in this section is merely to give the reader an overview of the language
and highlight the interesting parts, however, when accompanied with the syntax
of the full language, should be enough to allow the reader to begin programming
in Nitro. The full formal semantics will be given in the sections that follow.

1.2.1 Simple Objects

We use the word object here to refer to a data value, something which can be
passed around within the language, we make no reference to object oriented pro-
gramming. We begin with a brief look at the types of objects in Nitro. This is
a necessary beginning as we cannot describe the means by which we manipulate
objects in Nitro before we have described what it means to be an object in Nitro.

There are five simple types in Nitro:

• int

• float

• boolean

• char

• string

Notice that a string is distinct from a list of characters.

1.2.2 Type constructions

Other types can be constructed in one of these principal ways.

Tagged(constructors)A tagged union type consists of a set of constructors, each
of which takes one argument, which may be a complex type, and returns the
tagged union type. Tagged union types should be familiar to most functional
programmers.

2

Tuple type (type list) A tuple type is similar to a structure, except that each com-
ponent is accessed by position rather than name. Again tuple types should be
familiar to most functional programmers.

Fn type ((string * type) list * type) A function will take in a list of arguments,
and return a value. Note that the list of arguments is not a datatype, that is they
are values separated from each other. Also within the type is stored the name
of the argument if given within the type. This means that if a type constraint
is given with a name for a parameter then the implementation must have the
same name for that parameter. The logic behind this is a type constraint given
in a signature. In a signature we can constrain a value to have a function type,
say

Fn_type ((("height", int), ("width", int)), int)

suppose that this is the type of a function named drawrect, which is supposed
to draw a rectangle on the screen. A user of this interface can then see that
the height should be given as the first argument and the width as the second.
Without the argument names there the programmer would be forced to look at
the implementation, which might not be available. The checking of the type
of the implementation would then force the implementor to give the argument
names such that height is first, and width second. Of course this does not stop
the implementation from drawing a rectangle that iswidth tall, but it is likely
to prevent this, and/or make the bug easier to find.

Tscheme (id list * scheme)A type scheme provides a mechanism to define a
general complex type that can be parameterised by a number of simple types.
The id list is a list of arguments to the type scheme. The type scheme may
consist of the other type constructions above, and can make use of the type
scheme’s parameters. We can then instantiate the parameters to make a new
type.

1.2.3 Type Matching

We now describe what it means for a type to match another type. This will be
useful when we come to describe the semantics of expressions, and we wish to
say, the expression is typeable as long as the type of a sub component matches
some other given type. Essentially a typet1 matches another typet2 if t1 is at
least as general ast2 . So for example the built-in typeint can only be matched
by itself, the polymorphic function typeFn type (("", ’a), ’a) can be
matched by any function type, that has one parameter and returns a value of the
same type as its parameter. Function types have the special meaning where the
string components of the parameters must be compatable. The empty string is
compatible with any string, while a non-empty string is only compatible with an
identical string.

3

1.2.4 Expressions

We are now ready to begin our look at the semantics of the Nitro language. We
begin with expressions which form the main part of the language. An expression
may be:

IntConst (n) Where n is an integer constant. The expression is always typeable.
The expression has type int.

FloatConst (f) Where f is a floating point constant. The expression is always
typeable. The expression has type float.

BoolConst (b)Where b is one oftrue or false . The expression is always
typeable. The expression has type bool.

StringLiteral s Where s is a literal string given in the text of the program. The
expression is always typeable. The expression has type string.

Path (p) Where p is a path to an identifier. Concerning ourselves with only the
core of the language for the time being, a path can simply be an identifier.
The expression is typeable provided that the identifier referred to by the path
is currently in scope. The type of the expression is given by the type of the
identifier in the current context.

Apply (expr * expr list) The first expression must evaluate to a value with func-
tion type, this function is then applied to the list of expressions. Notice that
the function is applied to a list of expressions, where the list of expressions is
not curried arguments or a value of tuple type or a value of some type list, but
simply a list or sequence of arbitrary expressions. In particular the function
expression must be applied to the whole list of argument expressions at the
same time. This differs from most functional languages where functions only
take one argument, and multiple arguments are simulated by tuple types, and
the use of curried functions.

The expression is typable whenever the first expression admits a type of the
form Fn type(((name1, type1) . . .(namen, typen)) ∗ result type), and the list
of expressions admit typest1 . . . tn, and the listt1 . . . tn is compatible with the
type1 . . . typen. The type of the expression is thenresult type.

Object Construction An object construction can be used to build a more com-
plex object from simpler constituent objects. Below is a list of such possible
expressions.

Constructor a WhereConstructor is a tagged union type constructor and
a is its argument. The expression is typeable, whenever the expressiona
is typeable and admits a typet andConstructor , in the current context
accepts an argument of typet’ andt is compatible witht’ . The type of
the expression is the tagged union type to whichConstructor belongs
according to the current context.

4

Tuple (expr list) Creates a tuple value with arity equal to the length of the
list of expressions. The expression is typeable whenever all of the expres-
sions in the expression list are typeable Where the expression list has types
t1 . . . tn the whole tuple expression has type,Tupletype(t1 . . . tn)

MatchRules ((p list * expr) list) A set of match rules are not an expression by
themeselves but are used in two definitions below so they are included sepa-
rately here. Each match rule consists of a list of patterns and an accompany-
ing expression. A pattern is a plan of an object against which a value can be
matched. A pattern is essentially a construction of a value, using the Object
Construction expressions described in the list above. In addition a pattern can
contain one or more holes which represent that any object of the correct type
can be used to match that part of the pattern. A hole in a pattern is generally
an identifier, where this identifier is then bound to the part of the expression
being matched and can then be used in the evaluation of the expression accom-
panying the pattern list in the current match rule. Below is a list desribing the
forms a pattern can take, the identifiers bound by that pattern and the string,
type pair associated with a type correct pattern of that form.

A type correct pattern, will be given a pair consisting of a string and a type.
A match rule is typeable, when all of its patterns are typeable, and the expres-
sion is typeable in the context obtained by adding the identifiers bound by the
patterns to the current context. A type correct match rule produces a function
type which has parameters equal to the type of the patterns and a result type
equal to the type of the expression.

A set of match rules, is then typeable, when all of the match rules are typeable
and they all have matching types. Recall the meaning of matching function
types given in the section Type Matching. The function type assigned to the
match rules is equal to the least general function type, which is a match for all
of the function types obtained from the list of match rules.

Here is a list of what a pattern can be, along with the identifiers that are bound
by it, when the pattern form is typeable and the string, type pair associated
with a type correct pattern of that form.

Identifier id • Expressions - Matches all expressions
• Identifiers -id is bound to the value of the matched expression
• Type result -("", ’a)

Wildcard • Expressions - Matches all expressions
• Identifiers - No additional identifiers are bound
• Type result -("", ’a)

Intconst n • Expressions - An integer expression with the valuen

• Identifiers - No additional identifiers are bound
• Type result -("", int)

Boolconst b • Expressions - A boolean expression with the valueb

5

• Identifiers - No additional identifiers are bound

• Type result -("", bool)

UnitExp • Expressions - A unit expression

• Identifiers - No additional identifiers are bound

• Type result -("", unit) Unit patterns are not really useful, since
they could always be matched with, however it does force the type of
the expression matched to beunit which can prevent a bug such as a
partial application of a curried function.

Tuple (pattern list) • Expressions - Matches any tuple value that has arity
equal to the length of the given pattern list, and whose component val-
ues match the given patterns.

• Identifiers - No additional identifiers are bound, but the patterns in the
given pattern list may bind identifiers.

• Type result - If the pattern list gives types (t1 . . . tn) then the result is
("", Tuple type(t1 . . . tn))

Constructor (pattern) • Expressions - A value which has been constructed
using the given constructor, and whose argument matches the pattern
pattern

• Identifiers - No additional identifiers are bound, but there may be iden-
tifiers bound bypattern

• Type result - Wheret’ → t is the type of the given Constructor in the
current context, andt’ matches the tpe of the patternpattern then,
("", t)

As (p, id) • Expressions - Matches any expression which matches the pat-
ternp

• Identifiers - The identifier id is bound to the matched expression

• Type result - Wherep has typet , and the name of the identifier iss ,
(s, t)

Match expr list * matchrules We evaluate the given expression list, and then
each match rule is matched against in the order in which they are written. The
first match rule whose pattern list matches the values of the expression list has
its associated expression evaluated to give the result of the the whole match
expression. The expression is typeable, wherematchrules are typeable and
evaluate to the function typeFn types(((s1, t1) . . .(sn, tn), result type) .
The given expression must be typeable and have types(t ′1 . . . t ′n) and the types
(t ′1 . . . t ′n) must match the types(t1 . . . tn) The type of the whole expression
is thenresult type , though this may be further constrained by the type of
the expressions.

Fn (matchrules) As in most functional languages Nitro provides a way to write
down a function as an expression. The major difference is that the matchrules
here can have a list of patterns that match a list of expressions, where the

6

expressions are, unlike within a tuple expression, separate expressions. This
decision allows us to interact with most low-level language functions, notably
C functions, in a natural manner. In addition allowing the programmer to
differentiate between mutiple values and tuple values, allows the programmer
to help the compiler produce efficient code, see [2].

The expression is typeable whenmatchrules are typeable and omit the
function typefun type which is then the type of the whole expression.

Embed (pattern, code, expr)One of the goals of Nitro is to allow the interaction
with existing low-level languages. We do this by allowing interaction with the
host language. The host language is which ever language the implementation
in use is compiled to. For example this paper describes an implmentation that
compiles Nitro to Cyclone code, hence using that implementation a program-
mer is able to embed Cyclone code. For typing purposes embed is seen as an
expression. It is upto the programmer to ensure that this expression is used
with a safe type. The givenpattern is used to declare variables, which
must be set by the embedded code. In general the code will use side effecting
assignments to achieve this. To what extent the code can use identifiers not
within the pattern, but currently in scope, is left undefined, and is implemen-
tation specific. For the Cyclone implmentation,code is a cyclone statement,
usually used to set one or more of the identifiers declared withinpattern .
Theexpr will then use these identifiers to build up a value, commonly either
a single identifier or a tuple expression of identifiers. Note that using an em-
bed expression is therefore unsafe, since we make no check on the underlying
code, though the implementation is of course free to make as many checks
as it deems worthwhile. The expression is typeable, whenever thepattern
is typeable in the current context, andexpr is typeable in the context where
each identifier declared inpattern is added to the enivironment. The type
of the whole expression is then the type ofexpr

Reduce (id list, expr)A reduce expression, is similar to a function, however it is
expanded inline and the arguments to which it is applied are not evaluated, but
are substituted into their equivalent place in theexpr of the reduce clause. A
reduce clause is therefore somewhat similar to aλ abstraction in theλ calculus.
However it is in general used here to increase efficiency and therefore is akin to
a macro in C. A reduce expression is typeable whenever the expressionexpr
is typeable within the context that includes theid list into the current
context with unknown type. If the types of the identifiers are inferred to be
(τ1 . . .τn) and their textual representations are(s1 . . .sn) and theexpr has
type τ then the whole expression has typeFunction((s1,τ1) . . .(sn,τn) → τ).
Notice that we can use identifiers that are currently in scope, since the reduce
abstraction can only be applied wherever it is in scope, the identifiers that it
uses must also still be in scope.

7

1.3 THE NITRO LANGUAGE

This section aims to give a formal definition of the Nitro programming language.
The section Abstract Syntax gave an informal semantics for the abstract syntax of
the language, while the section Concrete Syntax, gave the physical forms that the
abstract syntax is written in, plus the derived forms provided to allow programs
to be written concisely. We begin this section with the static semantics of the
abstract syntax. This is followed by a dynamic semantics of the abstract syntax.

1.3.1 Static Semantics

Contexts

We represent our contexts with a C, additional contexts have a prime appended,
so we can have the contexts C, C’ and C”. A context is made up of an environment
E, a constructor environment CE and a type environment TE. An environment E
is a list of pairs of identifiers and types. The expression

E(v) = τ

means that looking through the list of pairs, the first occurence of the identifier v
is paired with the typeτ. To add to an environment we use

E +(v, ty)

which means the environment obtained by adding the binding

(v, ty)

to the environment
E

A constructor environment CE is a list of pairs of identifiers and pairs of types.
The two types associated with an identifier are the argument to the constructor
and the resulting tagged union type obtained by applying the constructor.

We useC(E) to mean the environment component of the context C. We can
also update a context with a new component, thus

C⊕E′

is the context C with the environment component E’ in place of E. The type envi-
ronment consists of a list of type variables that are currently in context and a list
of type functions, where a type function is a name and a list of type variables that
it takes as arguments. To add a list of type variables to a type environment we use
TE + tyvars, and to add a type function we use TE + tyfun.

Before we proceed, we first explain the Closure and MGST operations. Typi-
cally we will want to take the Closure of a type with respect to a context. So the
closure of a type t with respect to the object O is Closure (O, t), which gives us

8

back a type scheme or type function being tyfun(tyvars, t) where tyvars is all the
type variables that occur in t, and do not occur in the object O.

The MGST operation is performed on two types or type schemes and we ob-
tain the most general type of which both the original types are sub types. When
we say t1 is a subtype of t2 then we mean that any object that is of type t2
is also of type t1. Any object which is of typeTuple(bool,bool) is also
of type Tuple(’a,bool) . For example suppose we take the MGST of the
type Tuple(’a, int) with Tuple(bool, ’a) then we obtain the type
Tuple(bool,int) . Note that within the definition of the MGST there is an
implicit check that the types do have a most general super type. For example
MGST (int, bool) will fail.

1.3.2 Declarations

We now begin by looking at declarations, we start with type declarations.

Type declarations

First we define the rules for Constructor definitions, here the rules need to contain
a result type, that is the type that the constructor will produce.

1.
C ` ty→ τ′

C,τ `Cname ty→ (Cname,(τ′ → τ))

A list of constructors will all produce the same result type, and all add to the
constructor environment. We also infer a type, which is just the same as the type
passed in along with the context, the reason for this is to keep these rules in the
same structure as those rules below for tuple and function types. So where

∀x,0 < x≤ n C,τ `Cnamex tyx → cyx

2.
∀x,0 < x≤ n Cx = Cx−1⊕ (Cx−1(CE)+cyx)
C0,τ ` (Cname1, ty1 . . .Cnamen, tyn)→ τ,Cn

Now we add rules to type check ordinary types, tuple and function types, these
rules must also produce a Constructor Environment though of course it is just the
same one that was used to type check the respect types. Also the conclusion
requires both a context and a type, we have ignored the type here.

3.
∀x,0 < x≤ n C, ` tyx → τx

C ` Tuple(ty1 . . . tyn)→ Tuple(τ1 . . .τn),C(CE)

4.

∀x,0 < x≤ n C` tyx → τx C ` ty→ τ′ τ = Function((s1,τ1) . . .(sn,τn)→ τ′)
C, ` Function((s1, ty1) . . .(sn, tyn)→ ty)→ τ,C(CE)

9

Now we deal with the case where the type is a type function. That is we have
some type parameters, we deal separately with tagged union definitions which
contain constructor definitions. We first must had those to the environment before
we type check the body of the type, which may include those type parameters. We
use{} to mean the empty type scheme, this means that the type is just the type
name. So where we have

τvar = ty f un(tyvars,name,{})

then we have
5.

TE′ = TE+ τvar C⊕ (TE′+ tyvars),τvar ` ty→CE′,τ Closure(τvar,τ)
C ` Type tyvars name= ty→C⊕CE′,TE′

notice that we place the type into the environment in which we check the body of
the type. This is to allow for recursive type definitions.

Finally we define the application of type function. Here we use the notation
tyvars→ tys to mean that the list of type variables are instantiated to be the given
types. We use this to give a type environment in which to take the Closure of the
type function given by the tyname. So when

TE′ = TE+(tyvars→ (τ1 . . .τn))

we have
6.

∀x,0 < x≤ n C` tyx → τx ty f un(tyvars,name,τ′) = TE(tyname) τ = Closure(TE′,τ′)
C ` (ty1 . . . tyn)tyname→ τ

Value declarations

Value declarations are quite straightforward, we simply introduce a new value into
the current environment.

7.
C ` exp→ τ VE′ = VE+(name,τ)

C `Valuename= exp→C⊕VE′

1.3.3 Expressions

In this section the inference rules have conclusions of the form Environment`
expr : type in general either the type is a specific type such as int, or it is a type
variable t. In the cases where it is a type variable t, it is most often the case that
the sub goals will refer in some way to the type variable t to restrict it to the type
of the expression expr according to the environment. In the few cases that this is
not true, then it means that the expression can have any type.

10

Simple Expressions

We begin our look at expressions with the simple expressions. All of these ex-
pressions do not contain any sub expressions, therefore their type is dependent
only on the expression and the current environment.

8.
C ` n : int

9.
C ` f : f loat

10.
C ` b : bool

11.
C ` sl : string

12.
E(v) = τ
C ` v : τ

Object Construction

This sections details the expressions that represent constructing an object from
simpler objects. We start with the explicit constructors for tagged union data
types. Notice that they are similar to an Apply expression, except that a construc-
tor only has one argument, which of course may be a tuple.

13.
C(CE)(Constructor) = τ′ → τ C ` arg : τ′

C `Constructor(arg) : τ

Tuple construction forms a single object from many objects.
14.

C ` (e0 . . .en) : (τ0 . . .τn)
C ` tuple(e0 . . .en) : τ

τ = Tupletype(τ0 . . .τn)

Matching

In this section we describe the matching rules. We begin with patterns, the rules
for patterns have a conclusion of the form

C ` pattern→ (s, ty,E)

where s is the string associated with the pattern, ty is the type associated with
the pattern and E is a new environment obtained by adding the identifiers intro-
duced by the pattern to the current context’s environment. In these rules the value
name(id) correspondes to the textual representation of the identifier id.

15.
C ` Identi f ier(id)→ (name(id),τ,C(E)+(id,τ))

11

16.
C `WildCard→ (”” ,τ,C(E))

17.
C ` IntConst(n)→ (”” , Int,C(E))

18.
C ` BoolConst(b)→ (”” ,Bool,C(E))

19.
C `UnitExp→ (”” ,Unit,C(E))

A list of patterns is type checked in the intuitive way. We return a list of strings
and types, the strings are disregarded when type checking a tuple pattern, however
they are required when type checking a match rule. 20.

C ` ε → (ε,E)

21.

C ` p→ (s, ty,E′′) C⊕E′′ ` patterns(tys,E′)
C ` p :: patterns→ ((s, ty) :: tys,E′)

where no identi f er occurs twice

22.
C ` patterns→ (((s1, t1) . . .(sn, tn)),E′)

C ` Tuple(patterns)→ (”” ,Tuple(t1 . . . tn),E′)

23.

C(CE) `Constructor→ (τ′ → τ) C ` pattern→ (s,τ′,E′)
C `Constructor(pattern)→ (”” ,τ,E′)

24.

C ` p→ (s,τ,E′)
C ` As(id, p)→ (name(id),τ,E′+(id,τ))

id does not occur in p

So now a match rule consists of a list of patterns and an associated expression.
We first have to type check the patterns and then the expression in the environment
given by typechecking the pattern list

25.
C ` patterns→ (stys,E′) C⊕E′ ` exp→ τ

C ` (patterns,exp)→ (stys→ τ)

And a list of match rules must have compatible types
26.

C ` ε → τ

27.

C `mrule→ τ′ C `mrules→ τ′′ C `MGST(τ′,τ′′)→ τ
C `mrule:: mrules→ τ

12

Compound Expressions

Now we define the types of expressions that contain other expressions. We begin
with application.

28.

C ` e : ((s0,τ0) . . .(sn,τn))→ τ C ` (e0 . . .en) : (τ0 . . .τn)
C ` Apply(e,(e0 . . .en)) : τ

29.
C `mrules→ τ

C ` Function(mrules)→ τ

To type check a match expression is effectively the same as an application of
a function expression.

30.

C ` exprs→ (τ1 . . .τn) C `mrules→ ((s1,τ′1) . . .(sn,τ′n)→ τ)
C `Match(exprs,mrules)→ τ

The embed expression is type checked basically without type checking the
embedded code. We rely on the embedded code being type safe. This means that
an embed expression is type checked just as a match rule.

C ` pattern→ (s,τ′,E′) C⊕E′ ` exp→ τ
C ` Embed(pattern,code,expr)→ τ

Similarly a reduce expression is type checked almost like a function. The dif-
ference being that there is only one match rule, and each pattern in the match rule
must be an identifier. So for each identifier we give it a new type variable and then
add the pair to the current environment. This gives us an environment in which to
type check the expression which gives us the type of the whole expression.

∀0 < x < n` idx → τx ∀0 < x < n`Cx = Cx−1⊕ (idx,τx) Cn ` expr→ τ
C ` Reduce(id1 . . . idn,expr)→ τ

C0 = C

1.3.4 Dynamic Semantics

We now look at the dynamic semantics of the core of Nitro.

Simple Expressions

We begin with simple expressions, the rules in this section all have the form

C ` exp→ v

1.
C ` n→ n

13

2.
C ` f → f

3.
C ` b→ b

4.
E(id) = v

C ` id → v

Matches

A match is a set of match rules. We may fail, which means that we do not match
any of the match rules. The first rule is simple, if there are no match rules then we
fail automatically.

5.
E,vs` ε → FAIL

After that if there are still match rules to try then we attempt to match with the
first match rule, if so then we evaluate the associated expression, else we try to
match on the rest of the match rules.

6.
E,vs`mrule→ v′

E,v`mrule:: mrules→ v′

7.
E,vs`mrule→ FAIL E,vs`mrules→ v′

E,v`mrule:: mrules→ v′

So a match rule is successfully matched if each pattern matches the corre-
sponding value. The result of the whole match rules is then the result of the
expression of the match rule given that all of the identifiers that are bound in the
set of patterns are added to the value environment.

8.
∀x,0 < x≤ n Ex−1,vx ` patx → Ex En ` exp→ v′

E,v1 . . .vn ` (pat1 . . . patn → exp)→ v′
E0 = E

We are therefore left to define what it means for a pattern to be matched by a
value, and the resulting new value environment. A wildcard matches any expres-
sion, and adds nothing to the value environment.

9.
E,v` → E(VE)

Similarly a constant pattern matches the exact value it denotes and again adds
nothing to the value environment.

10.
v = con

E,v` con→ E(VE)

We may also fail a pattern match against a constant

14

11.
v 6= con

E,v` con→ FAIL

1.4 CONCLUSION

The Nitro programming language hopes to remedy the lack of functional pro-
gramming languages available to the systems programmer. The convenience and
safety of functional programming languages is without question. The efficiency
is sometimes called in to question, however more and more researchers are begin-
ning to believe that with a smart compiler a functional language need be no less
efficient than an imperative one. Furthermore research in garbage collection is ad-
vancing to the point where for some applications garbage collection can be more
efficient than manual memory management. Everyone in favour of functional pro-
gramming languages will argue that such a programming language allows us to
write, correct and secure programs by remaining type safe and catching common
programmer mistakes at compilation time. However these techniques have yet to
be applied successfully in the one area where one could argue that these features
are most required, that of low-level systems programming. Where we require that
our programs are secure and robust and we should not tolerate frequent program
errors and failures.

REFERENCES

[1] R. MILNER, M. TOFTE, R. HARPER AND D. MACQUEEN (1997), “The Definition
of Standard ML (revised)”, MIT Press, Cambridge

[2] K. M ITCHELL (1994), “Multiple Values in Standard ML”, LFCS, University of Ed-
inburgh

[3] T. JIM , G. MORRISETT, D. GROSSMAN, M. HICKS, J. CHENEY AND Y. WANG

(2002) “Cyclone: A Safe Dialect of C” USENIX Annual Technical Conference, pages
275–288, Monterey, CA.

[4] B.J. MCADAM (2002) “Repairing Type Errors in Functional Programs” LFCS, Uni-
versity of Edinburgh

[5] L. CARDELLI (1989) “Typeful Programming” Digital Equipment Corporation, Sys-
tems Research Center

[6] E. ANDERSEN“Busybox” http://www.busybox.net/

[7] J.M.BELL , F. BELLEGARDE AND J. HOOK “Type-driven Defunctionalisation” Pa-
cific Software Research Center

15

