
Chapter 1

O’Camelot: Adding Objects
to a Resource Aware
Functional Language
Nicholas Wolverson

Abstract: We outline an object-oriented extension to Camelot, a functional lan-
guage in the ML family designed for resource aware computation. Camelot is
compiled for the Java Virtual Machine, and our extension allows Camelot pro-
grams to interact easily with the Java object system.1

1.1 INTRODUCTION

The Mobile Resource Guarantees (MRG) project aims to equip mobile byte-
code programs with guarantees that their usage of certain computational resources
(time, heap or stack space, . . . ) does not exceed some agreed limit, using a Proof
Carrying Code framework. Programs written in the functional language Camelot
will be compiled into bytecode for the Java Virtual Machine. The resulting class
files will be packaged with a proof of the desired property and transmitted across
the network to a code consumer—perhaps a mobile phone, or PDA. The recipient
can then use the proof to verify the given property of the program before execu-
tion. There is thus an unforgeable guarantee that the program will not exceed the
stated bounds.

The core Camelot language, as described in [7], enables the programmer to
write a program with a predictable (and in time provable) resource usage. How-
ever, only primitive interaction with the outside world is possible, through com-
mand line arguments and printed output. To be able to write a full interface for
a game or utility to be run on a mobile device, Camelot programs must be able

1This research was supported by the MRG project (IST-2001-33149) which is funded
by the EC under the FET proactive initiative on Global Computing.

1



to interface with external Java libraries. Similarly, the programmer may wish to
utilise device-specific libraries, or even Java’s extensive class library.

Here we describe an Object-Oriented extension to Camelot primarily intended
to allow Camelot programs to access Java libraries. It would also be possible
to write resource-certified libraries in Camelot for consumption by standard Java
programs, or indeed use the object system for OO programming for its own sake,
but giving Camelot programs access to the outside world is the main objective.

1.2 CAMELOT

Camelot is an ML-like language with additional features to enable close control of
heap usage. Certain restrictions are made in order to enable a compilation process
which is transparent in terms of resource usage, and to allow analysis of resource
usage by various novel type systems.

One can define datatypes in the usual fashion:

type ’a lst = Nil | Cons of ’a
type (’a, ’b) pair = Pair of ’a * ’b

Values belonging to such datatypes may be created by applying constructors,
and deconstructed with thematch statement:

let rev l acc =
match l with

Nil -> acc
| Cons (h, t) -> rev t (Cons (h, acc))

let reverse l = rev l Nil

The first of the mentioned restrictions is to the form of patterns in thematch
statement. Nested patterns are not permitted, and instead each constructor of a
datatype must be matched by exactly one pattern. Patterns are also not permitted
in the arguments of function definitions. These features must be simulated by
nestedmatch statements.

The second restriction is on function application. While, function application
is written using a curried syntax as above, higher order functions are not permitted
in the current version of Camelot. Functions must always be fully applied, and
there is no lambda term. This is because closures would seem to introduce an ad-
ditional non-transparent memory usage, although hopefully this can be overcome
at a later date, and higher order functions added to the language.

This basic core is extended with features allowing control of heap allocated
storage. The representation of Camelot datatypes is critical here—values from
user-defined datatypes are represented by heap-allocated objects from a certain
Java class. Consider the earlier list-reversal example. This function allocates an
amount of heap-space equal to that occupied by the original list. This space may
be eventually reclaimed by the Java garbage collector, but there is no guarantee
when this will happen, if at all.

2



In order to allow better control of heap usage, Camelot includes adiamond
type(denoted by<>) representing regions of heap-allocated memory, and Camelot
allows explicit manipulation of diamond objects. These diamond objects corre-
spond directly to objects of the Java diamond class used to representd datatypes.
Constructors and match rules are equipped with annotations referring to diamond
values:

let rev l acc =
match l with

Nil -> acc
| Cons (h, t)@d -> rev t (Cons (h, acc)@d)

let reverse l = rev l Nil

The annotation@don the occurrence ofCons in the match rule indicates that
the space used in that list cell should be made available for re-use via the diamond
valued. The annotation on the second occurrence ofCons specifies that the list
cell Cons(h, acc) should be constructed in the heap space referred to byd.

With explicit management of heap-space comes the possibility of program er-
rors. For example, if the above list reversal function is applied to a sublist of a
larger list, the sublist will be correctly reversed but the larger list will become
damaged. Various type systems can be used to ensure that diamond annotations
are safe. Most simply, we can require all uses of heap-allocated storage to be lin-
early typed as in [4], but we can also take a less restrictive approach as described
in [6]. It is also possible to infer some diamond annotations, as in [5].

1.3 EXTENSIONS

In designing an object system for Camelot, many choices are made for us, or at
least tightly constrained. We wish to create a system allowing interoperation with
Java, and we wish to compile an object system to JVML. So we are almost forced
into drawing the object system of the JVM (and Grail) up to the Camelot level.
At least we cannot seriously consider a fundamentally different system.

On the other hand, the type system is strongly influenced by the existing
Camelot type system. There is more scope for choice, but implementation can
become complex, and an overly complex type system is undesirable from a pro-
grammer’s point of view. We also do not want to interfere with type systems for
resources as mentioned above.

We shall first attempt to make the essential features of Java objects visible in
Camelot in a simple form, with the view that a simple abbreviation or module
system can be added at a later date to make things more palatable if desired.

Basic Features

We shall view objects as records of possibly mutable fields together with related
methods, although Camelot has no existing record system. We define the usual

3



operations on these objects, namely object creation, method invocation, field ac-
cess and update, and casting and matching. As one might expect we choose a
class-based system closely modelling the Java object system. Consequently we
must acknowledge Java’s uses of classes for encapsulation, and associate static
methods and fields with classes also. We now consider these features.

Static method callsThere is no conceptual difference between static methods
and functions, ignoring the use of classes for encapsulation, so we can treat
static method calls just like function calls.

java.lang.Math.max a b

Static field accessSome libraries require the use of static fields. We should only
need to provide access to constant static fields, so they correspond to simple
values.

java.math.BigInteger.ONE

Object creation We clearly need a way to create objects, and there is no need to
deviate from thenew operator. By analogy with standard Camelot function
application syntax (i.e. curried form) we have:

new java.math.BigInteger ‘‘1’’

Method invocation Drawing inspiration from the OCaml syntax, and again using
a curried form, we have instance method invocation:

n#multiply r

It could be argued that in order to look like Java, we should not use a curried
form, but then there is little reason for the curried form in the core language in
any case, lacking higher order functions.

As usual, the arguments of a method invocation may be subclasses of the
method’s argument types, or classes that implement the specified interface.

Instance field accessTo retrieve the value of an instance variable, we write

object#field

whereas to update that value we use the syntax

object#field <- value

assuming thatfield is declared to be amutablefield.

It could be argued that allowing unfettered external access to an object’s vari-
ables is against the spirit of OO, and more to the point inappropriate for our
small language extension, but we wish to allow easy interoperability with any
external Java code.

Casts and typecaseIt shall be necessary to cast objects up to superclasses, and
recover subclasses. Here we propose a simple notation for up-casting:

obj :> Class

This notation is that of OCaml, also borrowed by MLj, and like MLj we shall
extend patterns in the manner oftypecase as follows:

4



match obj with o :> C1 -> o.a()
| o :> C2 -> o.b()
| _ -> obj.c()

Hereo is bound in the appropriate subexpressions to the objectobj viewed
as an object of typeC1 or C2 respectively. The default case is mandatory as
in datatype matches.

Unlike MLj we choose not to allow downcasting outside of the new form of
match statement, partly because at present Camelot has no exception support
to handle invalid down-casts.

An example of the above features follows.

let fac’ (n: java.math.BigInteger) r =
let zero = new java.math.BigInteger "0" in
let one = java.math.BigInteger.ONE in
if n#equals zero then r
else fac’ (n#subtract one) (n#multiply r)

let fac n = fac’ n (java.math.BigInteger.ZERO)

The reader may notice a type constraint on the parametern, which we will
discuss later. Another example, illustrating the ease of interoperability:

let convert (l: string list) =
match l with [] -> new java.util.LinkedList ()

| h::t ->
let ll = convert t
in let _ = ll#addFirst h
in ll

Defining classes

Once we have the ability to write and compile programs using objects, we may
as well start writing classes in Camelot. We must be able to create classes to
implement callbacks, such as in the Swing GUI system which requires us to write
stateful adaptor classes. Otherwise, as mentioned previously, we may wish to
write Camelot code to be called from Java, for example to create a resource-
certified library for use in a Java program, and defining a class is a natural way
to do this. Implementation of these classes will obviously be tied to the JVM, but
the form these take in Camelot has more scope for variation.

We allow the programmer to define a class which may explicitly subclass an-
other class, and implement a number of interfaces. We also allow the programmer
to define (possibly mutable) fields and methods, as well as static methods and
fields for the purpose of creating a specific class for interfacing with Java. We
naturally allow reference toself , and also allow overridden methods from the
superclass to be invoked using thesuper notation as in Java.

5



Lastly, we allow variables to be written at the top of the class definition, to be
bound at object construction and available throughout the body of the object (as in
OCaml and MLj). This seems more attractive than an explicit object constructor
or maker, but we still need to acknowledge that Java objects may have multiple
constructors.

The form of a class declaration is:

class ClassName x1 . . .xn = super?
implements Int f , . . . , Int f
valdec. . .valdec
method. . .method

end

This defines a class calledClassName, which must be initialised by callingnew
with n arguments. These values become bound toxi in the body of the class. The
optionalsuperclause takes the form:

SuperClassName y1 . . .ym with

This causesClassNameto be a direct subclass ofSuperClassName. Addition-
ally, the superclass is constructed with argumentsyi , as if by the expression
new SuperClassName y1 . . .ym. The argumentsy1 . . .ym must be a subset of the
bound variablesx1 . . .xn. ClassNameinherits the methods and values present in
its superclass, and these may be referred to in its definition. If no superclass is
given, the class will be a subclass ofjava.lang.Object , the root of the class
hierarchy.

As well as a superclass, a class can declare that it implements one or more
interfaces. These correspond directly to the Java notion of an interface. Java li-
braries often require the creation of a class implementing a particular interface—
for example, to use a Swing GUI one must create classes implementing various
interfaces to be used as callbacks. Note that at the current time it is not possi-
ble to define interfaces in Camelot, they are provided purely for the purpose of
interoperability.

Now we describe field declarations:

field x = e
field mutable x = e

val x = e

Instance fields are defined using the keywordfield , and can be declared to
be mutable or not, but in either case they must be initialised at the point of defi-
nition. As mentioned earlier, the variables bound at the top of the class definition
are available for use in the expression on the right hand side of the definition. It is
also possible to define static fields usingval .

Methods are defined as follows:

6



method m x1 . . .xn = e
method m () = e

fun m x1 . . .xn = e
fun m () = e

Again, notice that we use the usualfun syntax to declare what Java would
call static methods. Static methods are simplymonomorphicCamelot functions
which happen to be defined within a class, and are used as described previously.
Instance methods, on the other hand, are actually a fundamentally new addition to
the language. We consider the instance methods of a class to be a set of mutually
recursive monomorphic functions, in which the special variablethis is bound to
the current object of that class.

We can consider the methods as mutually recursive without using any addi-
tional syntax (such asand blocks) since they are monomorphic, and as such we
do not risk preventing generalisation of type variables. In any case this implicit
mutual recursion feels appropriate when we are compiling to the Java Virtual Ma-
chine, and have to come to terms with open recursion in any case.

In the body of an instance method, the syntax

super# m x1 . . .xn

is used to invoke the methodm defined in the superclass, ignoring any overriding
definition in the current class. There is a good case that thissuper syntax is con-
fusing, as it does not simply refer to the object as if it were cast to the superclass,
but while there may be subtlety in the semantics ofsuper we feel that this still
reflects the user’s intuition.

1.4 IMPLEMENTATION

Typing

The typing rules in Figure 1.1 are for the Object Oriented extensions to Camelot.
Typing rules for the base language are roughly as one might expect, except that
the rule for function application forces functions to be fully applied.

Consider rules INVOKE, and FIELD. Firstly, types must match exactly for field
access, whereas methods can be called with subtypes of their argument types.
Otherwise these are fairly similar.

Secondly, note that we look up methods(c) (respectively fields(c)). This actu-
ally implies that at the time this rule is applied the class of the object in question
must be known, at least in the obvious translation to a constraint-typing rule. This
has real consequences for the programmer—the programmer must ensure that the
type of the object is suitably constrained at the time of invocation. In practise,
this will probably mean that almost all function arguments of object type must be
constrained before use, and coercions may also be necessary in some places. In
such a system, it is probably not feasible to resolve method overloading cleanly.

7



INVOKE
Σ ` e : c (id : τ1 → . . .→ τn → τ) ∈methods(c) Σ ` xi : τ′i τ′i 6 τi

Σ ` e#id x : τ

FIELD
Σ ` e : c (id : τ) ∈ fields(c)

Σ ` e#id : τ

CAST
Σ ` e : τ τ 6 τ′

Σ ` e :> τ′ : τ′

FIGURE 1.1. Additional Camelot typing rules

A more intelligent solution would only place constraints to be solved globally,
but unfortunately these cannot be equality constraints, and so we have to depart
from the simple unification algorithm. We are not alone in this problem. The
MLj implementation also suffers from this. In [1], it is noted that constraints must
be solved globally for a more usable implementation, but the existing implemen-
tation did not do this. In [9], a new type inference algorithm is given for MLj
which uses branching search and backtracking. Branching search is required be-
cause of the complexities of the type system, including implicit coercions such
asoption , and it may be that our more naı̈ve type system could use a simpler
algorithm.

A solution avoiding these issues may be to avoid considering method invoca-
tions during type inference. Constraints could be inferred and solved by unifica-
tion as usual, but with no constraints present for these invocations. After unifi-
cation has taken place, we will be left with a typed program with some free type
variables, and we can then resolve overloading in a more simplistic fashion (as
the types of objects and method arguments should be known by this point). The
remaining type variables will thus be instantiated after unification.

Translation

As mentioned earlier, the target for the present Camelot compiler is Java byte-
code. However we make use of the intermediate language Grail (see [2]). Grail
is a low-level functional language, and is basically a functional form for Java
bytecode. Grail’s functional nature makes the compilation from Camelot more
straightforward, but Grail is faithful enough to JVML that the compilation pro-
cess is reversible.

Here we use the notation of Grail to describe the compilation of new Camelot
features, but mostly the meanings of Grail phrases should be self-evident. How-
ever, it is worthwhile noting that the JVML basic blocks comprising a Camelot
method are represented in Grail by a collection of mutually tail-recursive functions—

8



Camelot expression Grail operation
java.lang.Math.max a b invokestatic <int

java.lang.Math.max (int,int)>
(a, b)

java.math.BigInteger.ONE getstatic <java.math.BigInteger
java.math.BigInteger.ONE>

new java.math.BigInteger new <java.math.BigInteger
‘‘1’’ (java.lang.String)> ("1")

n#multiply r invokevirtual <java.math.BigInteger
java.math.BigInteger.multiply

(java.math.BigInteger)> (r)
object#field getfield object <type

TheClass.field>
obj :> Class checkcast Class obj

TABLE 1.1. Translation of new Camelot expressions

calling these functions corresponds to JVML jump instructions. Also there are
several different method invocation instructions:invokestatic for static meth-
ods (as we translate standard Camelot functions to),invokevirtual for in-
stance methods, andinvokespecial for calling object constructors. Grail
differs from JVML by combining object creation and initialisation into thenew
instruction, but we must still in one case use theinvokespecial instruction.

Notational issues aside, translating the new features is relatively straightfor-
ward, as the JVM (and Grail) provide what we need. Table 1.1 gives the transla-
tions of many features.

The new match expressions are more complex. An example of the new type
of match statement is

match ewith
o1 :> C1 -> e1
...
on :> Cn -> en

where eachCi is a class name. We generate functions as in Figure 1.2. Addition-
ally we generate functionsρ1 . . .ρn which compute the expressionse1 . . .en then
proceed with the current computation.

Making Classes

Compiling new classes is fairly straightforward. Value definitions translate to in-
stance variables, and method definitions are method definitions. Since a method
is not so far from a function, the machinery required to translate methods is al-
most all there; references to self must also be allowed, and the correct scope used.

9



fun β1(. . .) =
let

val i1 = instance C1 e
in

if i1 = 1 then γ1 else β2
end

fun γ1 (. . . ) =
let

val o1 = checkcast C1 e
in ρ1 end

. . .

. . .

fun βn−1(. . .) =
let

val in−1 = instance Cn−1 e
in

if in−1 = 1 then γn−1 else γn

end

fun γn (. . . ) =
let

val on = checkcast Cn e
in ρn end

FIGURE 1.2. Functions generated formatch expression

Mutable fields must also be considered—these correspond to aputfield in-
struction.

Another aspect is initialisers. The following example sketches a translation.

class X x y z = Y x y with
val a = z + 1
val b = y
method ...

end

class X {
field int a

method <init> (int x, int y, int z) =
let

val () = invokespecial <Y.<init>(int, int)> (x, y)
val t = z+1

in
putfield this <int X.a> t

end

method ...
}

1.5 RELATED WORK

We have made reference to MLj, the aspects of which related to Java interoper-
ability are described in [1]. MLj is a fully formed implementation of Standard
ML, and as such is a much larger language than we consider here. In particular,
MLj can draw upon features from SML such as modules and functors, for ex-

10



ample, allowing the creation of classes parameterised on types. Such flexibility
comes with a price, and we hope that the restrictions of our system will make the
certification of the resource usage of O’Camelot programs more feasible.

By virtue of compiling an ML-like language to the JVM, we have made many
of the same choices that have been made with MLj. In many cases there is one
obvious translation from high level concept to implementation, and in others the
appropriate language construct is suggested by the Java object system. However
we have also made different choices more appropriate to our purpose, in terms of
transparency of resource usage and wanting a smaller language. For example, we
represent objects as records of mutable fields whereas MLj uses immutable fields
holding references.

There have been various other attempts to add object oriented features to ML
and ML-like languages. OCaml provides a flexible system with many features (a
formalised subset is described in [10]), but at the cost of a complex type system.
While it may be possible to compile such a system to JVML, it would be very
hard to define a simple interlanguage interface. A class mechanism for Moby is
defined in [3] with the principal that classes and modules should be orthogonal
concepts. Lacking a module system, Camelot is unable to take such an approach,
but both Moby and OCaml have been a guide to concrete representation.

Many other relevant issues are discussed in [8], but again Camelot’s lack of a
module system (and our desire to avoid this to keep the language small) gives us
a different perspective on the issues.

1.6 CONCLUSION

We have described the language Camelot and its unique features enabling the
control of heap-allocated data, and outlined an object-oriented extension allow-
ing interoperability with Java programs and libraries. We have kept the language
extension fairly minimal in order to facilitate further research on resource aware
programming, yet it is fully-featured enough for the mobile applications we en-
visage for Camelot.

The O’Camelot compiler is a work in progress, but implements almost all the
features described here. The current version of the compiler can be obtained from
http://www.dcs.ed.ac.uk/home/mrg/publications/ .

REFERENCES

[1] Nick Benton and Andrew Kennedy. Interlanguage working without tears: Blending
SML with java. In International Conference on Functional Programming, pages
126–137, 1999.

[2] L. Beringer, K. MacKenzie, and I.G. Stark. Grail: a functional form for mobile
imperative code.

[3] K. Fisher and J. Reppy. Moby objects and classes, 1998.

[4] Martin Hofmann. A type system for bounded space and functional in-place update.
Nordic Journal of Computing, 7(4):258–289, 2000.

11



[5] Martin Hofmann and Steffen Jost. Static prediction of heap space usage for first-order
functional programs. InPOPL’03, January 2003.

[6] Michal Koněcný. Typing with conditions and guarantees in LFPL. InTypes for Proofs
and Programs: Proceedings of the International Workshop TYPES 2002, volume
2646 ofLecture Notes in Computer Science, pages 182–199. Springer, 2002.

[7] K. MacKenzie and N. Wolverson. Camelot and Grail: Compiling a resource-aware
functional language for the java virtual machine. Submitted toImplementation of
Functional Languages 2003.

[8] David MacQueen.Formal Aspects of Computing, 2002.

[9] Bruce McAdam. Type inference for mlj. In Stephen Gilmore, editor,Trends in Func-
tional Programming, volume 2. Intellect, 2000.

[10] Didier Remy and Jerome Vouillon. Objective ML: An effective object-oriented ex-
tension to ML.Theory and Practice of Object Systems, 4(1):27–50, 1998.

12


