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Abstract. For stationary systems, efficient techniques for adaptive motor control
exist which learn the system’s inverse dynamics online and use this single model
for control. However, in realistic domains the system dynamics often change de-
pending on an external unobserved context, for instance thework load of the
system or contact conditions with other objects. A solutionto context-dependent
control is to learn multiple inverse models for different contexts and to infer the
current context by analyzing the experienced dynamics. Previous multiple model
approaches have only been tested on linear systems. This paper presents an ef-
ficient multiple model approach for non-linear dynamics, which can bootstrap
context separation from context-unlabeled data and realizes simultaneous online
context estimation, control, and training of multiple inverse models. The approach
formulates a consistent probabilistic model used to infer the unobserved context
and uses Locally Weighted Projection Regression as an efficient online regressor
which provides local confidence bounds estimates used for inference.

1 Introduction

Learning dynamics for control is essential in situations where analytical derivation of
the plant dynamics is not feasible. This can be either due to the complexity of the system
or due to lack of or inaccurate knowledge of the physical properties of the system being
controlled. Adaptive control is an established research area that has offered a multitude
of methods that can be used in such cases. However, the dynamics of the environment
that the system has to interact with or even of the system itself are often changing in a
rapid or discontinuous fashion. For example, a robot arm maybe required to manipulate
objects of different weights – an instantiation of control under multiple contexts. In
these cases, classic adaptive control methods are inadequate since they result in large
errors and instability during the period of adaptation. Furthermore, if the dynamics
change back and forth, readapting everytime is a suboptimaland inefficient strategy.

Humans do not have difficulty controlling their limbs under different contexts. It
has been suggested that they achieve this by using not just one model that is constantly
adapted to new environments, but a set of models, each of which is appropriate for a dif-
ferent environment [1]. The key issue that needs to be resolved for this multiple model
paradigm is that at any time the current context needs to be determined; this will be re-
ferred to as the context estimation problem and is central tothis work. Context estimates
are needed both during training and control, i.e., for deciding which model should be
used for control and which model should be trained with the data experienced. Biologi-
cal systems (e.g. humans) estimate contexts using a varietyof sensory information like
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Fig. 1. Typical setup of a multiple model paradigm for control

vision or tactile input. In artificial systems though, the available sensory information
may be much poorer and the context has to be estimated from theexperienced dynam-
ics only. Our approach will formulate a proper probabilistic model that represents the
context as a latent switching variable. This model allows usto estimate the context
online based only on the learned inverse models using a Markovian filtering. Further,
an Expectation-Maximization procedure is used to bootstrap the distinction of contexts
from context-unlabeled data.

There are some existing paradigms that implement the multiple model approach:
Multiple Model Switching and Tuning (MMST) [4, 5], MultiplePaired Forward and
Inverse Models (MPFIM) [3] and Modular Selection and Identification for Control
(MOSAIC) [2]. Fig. 1 shows the typical setup of a multiple model paradigm, where
a set of different context dynamics models is maintained. Inmost existing approaches,
the dynamics models for each context is a pair consisting of aforward and an inverse
model.Context estimation is performed by comparing the observed dynamics of the
system with the dynamics predicted by each context’s forward model. For control pur-
poses, one can either switch between commands predicted by the most likely context
or mix them. Similarly, context estimates can be used for ‘hard’ or ‘soft’ assignment
of data for training the most likely contexts. The most general of the mentioned para-
digms is MOSAIC, which is an extension of MPFIM. MOSAIC uses mixing instead of
switching, with the hope that more contexts can be handled with a smaller number of
models. This seems plausible in the case of linear dynamics and indeed MOSAIC has
been realized only for linear systems. Real robotic systemsare highly non-linear, re-
quiring the ability to learn online and adjust model complexity in a data-driven manner.
Existing multiple model approaches are, therefore, not scalable. In this paper we present
a non-linear multiple model approach to control based on an efficient non-linear online
learning algorithm (LWPR) that addresses these requirements. To the best of our knowl-
edge, this is the first multiple model study that manages to learn non-linear dynamics
under multiple contexts with online separation of contextual data.
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2 Adaptive non-linear control with LWPR

Let us first consider the single context scenario of learningthe dynamics of a system
(e.g., a robot) and using them for control. At time stept, let Θt be the state of the
system (which include the position and velocity components) andτt the control signal.
A deterministic forward modelf describes the discrete-time system dynamics as

Θt+1 = f(Θt, τt) . (1)

Learning a forward modelf of the dynamics is useful for predicting the behavior of the
system. However, for control purposes, an inverse model is needed. The inverse model
g maps from transitions between states to the control signal that is needed to achieve
this transition:

τt = g(Θt, Θt+1) . (2)

A probabilistic graphical model representation of the forward and inverse model is
shown in Fig. 2(a) and Fig. 2(c), respectively.

Idealistically, an accurate inverse model can be used to exactly follow a sequence of
transitions that form a desired trajectory of the system. However, given only an approx-
imate inverse model, the error in following the trajectory may accumulate and become
unacceptably large. A standard approach for control with anapproximate inverse model
is to combine it with a conventional linear feedback controller that counteracts the de-
viation from the desired trajectory. Given a desired trajectory Θ∗

1:T and the true state
Θt, the composite control command at timet is

τt = g(Θ∗

t
, Θ∗

t+1) +A (Θ∗

t
−Θt) , (3)

whereA is a gain matrix. We will use this composite control with gains based on the
Proportional Derivative (PD) control law. One effect of thecomposite control approach
is that the more accurate the inverse modelg, the smaller are the errors and the error-
correcting PD control signals. Thus, the total amount of feedback control is a measure
of the accuracy of the inverse ’predictive’ model.

To learn the inverse dynamics we need anon-linear, online regression technique
which also provides error bounds that we may use for context separation. We use the
Locally Weighted Projection Regression (LWPR) [6] – an algorithm which is extremely
robust and efficient for incremental learning of non-linearmodels in high dimensions.
A LWPR model consists of a set of local linear models that comepaired with a kernel
that defines the locality of the model. For a given inputx, the kernel of thek-th local
model determines a weightingwk(x) while the local linear model predicts an output
ψk(x). The combined prediction of LWPR is

φ(x) =
1

W

∑

k

wk(x) ψk(x) , W =
∑

k

wk(x) . (4)

Each locality kernelwk(x) has a parametric Gaussian form and the distance metric is
adapted during learning in a data driven manner. The local models are trained using an
online variant of Partial Least Squares using the collectedsufficient statistics. LWPR
is incremental and non-parametric in the sense that new local models are added when
training proceeds and new areas of the input domain are explored.
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Fig. 2. Graphical model representation of the: (a) Forward model (c) Inverse model and (b,d) their
respective context augmented models

The role of LWPR in the probabilistic inverse model of Fig. 2 can be summarized
in the equation:

P (τ |Θt+1, Θt) = N (φ(Θt+1, Θt), σ(Θt+1, Θt)), (5)

whoseφ(Θt+1, Θt) is a learned LWPR regression mapping desired state transitions to
torques. Here, we have two options for choosing the variance: (1) we can assume a
fixed noise level independent of the context and the input; (2) we can use the confi-
dence bounds provided by each LWPR model which also depends on the current input
(Θt+1, Θt). We will test both cases in our experiments. Please see [6] for more details
on LWPR and the input dependent variance estimate.

3 Learning Multiple Models for multiple contexts

In the multiple context scenario, we assume that instead of having a single forward and
inverse dynamics (Fig. 2(a,c)), the dynamics depend on an unobserved random variable
ct, the context. Fig. 2(b,d) illustrates this situation as augmented graphical models for
the forward and inverse models. We assume a discrete contextvariable and maintain
separate LWPR models to represent the inverse dynamics for each context. Thus, Eq.5
becomes:

P (τ |Θt+1, Θt, ct = i) = N (φi(Θt+1, Θt), σi(Θt+1, Θt)) . (6)

The problem we face in the context of adaptive online controlis twofold: (1) Given
a batch of yet unlabeled data and a set of yet untrained inverse models, we have to
bootstrap the specialization of inverse models to different parts of the data while at the
same time associating different data points to different contexts– we call this problem
data separation; (2) Given a set of already trained inverse models and previous observa-
tions, we have to estimate the current context in order to choose the right inverse model
in calculating the control signal– we call this problemcontext estimation. These prob-
lems are very closely related. We first address the simpler context estimation problem
before discussing data separation.
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Fig. 3. Multiple model with temporal contextual dependencies using: (a) forward model or (b)
inverse model for context estimation. (c) Schematic of the simulated 3-link robot arm

3.1 Context Estimation

In general, context estimation with a given set of models is performed comparing the
predictions of each model with the observed dynamics. Usually this is done by compar-
ing a set of trained forward models with the observed dynamics. However, the predic-
tions of inverse models can equally be compared with the observed dynamics and thus,
there is no need to learn additional forward models. Our viewpoint is that at each time
stept we “observe” a state transition and an applied torque signalsummarized in the
triplet (Θt, Θt+1, τt), i.e., we have access to the true applied control command (which
was generated via composite control) as part of the observation. To estimate the latent
context variablect (without yet exploiting the temporal dependency) we can compute
P (ct |Θt, Θt+1, τt), i.e., the probability of being in a context given the observed tran-
sition between two consecutive states and the command that resulted in this transition.
Using Bayes rule, we get

P (ct = i |Θt, Θt+1, τt) = P (τt | ct = i, Θt, Θt+1)
P (ct = i)

P (τt |Θt, Θt+1)
. (7)

Here, we usedP (ct = i |Θt, Θt+1) = P (ct = i), which is the context prior. Assuming
a uniform prior, the RHS quotient is a normalization factor independent of the context
i. Hence, the responsibilityP (ct = i |Θt, Θt+1, τt) is proportional to thei-th model
likelihood (eq.6).

It is straight-forward to extend this to take a Markovian dependency between con-
texts into account: intuitively, we would expect that in most practical cases, the context
would stay the same most of the time and switch only occasionally. For instance, in our
current experiments we apply control signals at 100Hz and weexpect that the frequency
of context switches will be much lower. Thus, including the temporal dependency be-
tween contextsP (ct+1 | ct), the graphical models in Fig. 2(b,d) can be reformulated as
the Dynamic Bayesian Networks shown in Fig. 3(a,b). Application of standard HMM
techniques is straightforward by using eq.7 as the observation likelihood in the HMM,
given the hidden statect = i.
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A low transition probability penalizes too frequent transitions and using smoothing
or Viterbi alignment produces more stable context estimates. In the experiments, we
will assume a fixed transition matrixP (ct = j | ct = i) with high value .999 fori = j

and .001 otherwise and use the HMM model only for filtering or smoothing, depending
on whether we investigate an online or batch estimation scenario, respectively.

3.2 Data separation

In existing multiple model approaches, separation of data for learning happens online.
The predictions of the models are compared with the observedbehaviour of the system
to give context estimates and train the models online. However, to get these context esti-
mates we need a mechanism for getting relatively accurate (initial) models to bootstrap
the context estimation procedure. Most of the existing multiple model paradigms do not
give a satisfying answer to this issue. MMST assumes that relatively good models are
available from the beginning, whereas MPFIM does not address this issue at all.

The problem of bootstrapping the context separation from context-unlabeled data is
very similar to clustering problems using mixture of Gaussians. In fact, the context vari-
able can be interpreted as a latent mixture indicator and each inverse model contributes
a mixture component to give rise to the mixture model of the form P (τt |Θt, Θt+1) =∑

i
P (τt |Θt, Θt+1, ct = i) P (ct = i). Clustering with mixtures of Gaussians is usually

trained using Expectation-Maximization (EM), where initially the data are labeled with
random responsibilities (are assigned randomly to the different mixture components).
Then every mixture component is trained on its assigned (weighted) data (M-step) and
afterwards the responsibilities for each data point is recomputed by setting them propor-
tional to the likelihoods for each mixture component (E-step). Iterating this procedure,
each mixture component will specialize on different parts of the data and the responsi-
bilities encode the learned cluster assignments.

We will apply a common variant of the EM-algorithm where responsibilities are
computed greedily, i.e., where the data is hard assigned to the mixture component with
maximal likelihood instead of weighted continuously with the component’s likelihood
in the M-step. In our case, the likelihood of a data triplet(Θt, Θt+1, τt) under theith
inverse model isP (τt |Θt, Θt+1, ct = i), which is a Gaussian with either fixed vari-
ance or the variance given by LWPR’s confidence bounds. This approach is similar to
MOSAIC’s approach to data separation except that it is basedon the inverse models,
accounts for the possibility of non-linear models, and allows us to use the correct con-
fidence bounds predicted by LWPR.

4 Experiments

The methods proposed earlier were tested on a simulated1 3 joint arm, with 3 degrees of
freedom (see Fig.3(c)). The first joint allows up and down movements and the next two
allow left and right movements. The target trajectories forthe arm were a superposition
of different phase-shifted sinusoidal trajectories for each joint:

θ∗
i

= ai cos(αi

2π

T
t) + bi cos(βi

2π

T
t) , (8)

1 Robot arm simulation modeled in dynamical physics engine ODE/OpenGL
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Fig. 4. Control performance of online trained LWPR on a single context over the training cycles.
Left: normalized MSE on the test data. Middle: contributionof the error-correcting feedback PD
control. Right: tracking error under decreasing PD gains.

whereT = 4000 is the total length of the target trajectory,ai, bi ∈ [−1, 1] are dif-
ferent amplitudes andαi, βi ∈ {1, .., 15} parameterize different frequencies. Different
contexts are simulated by changing the weight of the third body of the arm. This is
equivalent to varying work loads held by the arm.

4.1 Learning single context dynamics and using them for control

We will first demonstrate that LWPR can learn an accurate inverse model of the arm
dynamics online and use it for control. Training was repeated independently for six
different contexts. Twenty iterations of the trajectory were executed. In the first 3 iter-
ations, a pure PD controller is used, whereas, after that a composite controller with the
model being learnt is used. Every second sample of the dynamics experienced is used
for training the inverse model online and every other sampleis kept to test the accuracy
of the inverse model. Fig. 4 (left) shows how the normalised mean square error (nMSE)
on the test data drops as training proceeds through the 20 iterations, indeed, converging
to very low nMSE for all joints.

The accuracy of the inverse model learned can also be judged based on the contri-
bution of the feedback command to the total composite command. The smaller the con-
tribution of the feedback command, the more accurate the inverse model learnt is. The
average contribution of the feedback command through the 20iterations can be seen
in Fig. 4(middle). Already from the fourth iteration, when we switch from PD control
to composite control, the contribution is quite low and drops further – in accordance
to the behaviour of the nMSE. In Fig. 4(right), we can also seehow the tracking error
decreases as the model becomes more accurate while, at the same time, we decrease the
gains of the feedback controller.
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4.2 Experiments with context estimation

The context estimation methods described in section 3.1 were used for online estimation
and control with the six contexts learnt. Random switches between the six contexts were
performed in the simulation, where at every time step we switch to a random context
with probability .001 and stay in the current context otherwise. The context estimates
were used online for selecting the model that will provide the feed-forward commands.

We have two classes of experiments, one is where we are not using HMM filtering
of the contextual variable and the other is where we use it. Also, we have two choices
for the variance of the observation model, one is where we usea constant (found empir-
ically) and the other is where we use the more principled confidence bounds provided
by LWPR. The simulation was run for 10 iterations. The percentage of accurate online
context estimates for the four cases along with offline Viterbi alignment can be seen in
the Fig. 5(left).

Fig. 5(middle) gives an example of how the best context estimation method that we
have, the HMM filtering using LWPR’s confidence bounds, performs when used for
online context estimation and control. Sometimes the context estimation lags behind
a few time steps when there are context switches, which is a natural effect of online
filtering (as opposed to retrospect smoothing).

The performance of online context estimation and control isclose to the control
performance we achieved for the single context displayed inFig. 4. Using the HMM
filtering based on LWPR’s confidence bounds, the average tracking error over the 10
cycles was 0.0019 and the ratio of feedback PD control was 0.074.
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Fig. 6. The evolution of the data separation from unlabeled data over six iterations of the EM-
procedure. Left: without exploiting temporal modelling ofthe context variable. Right: using a
Viterbi alignment according to the temporal modelling. Both methods use LWPR’s confidence
bounds as local variance estimate. The first column displaysthe initial random assignment of
datapoints to contexts. The last column displays the correct context for each datapoint.

4.3 Experiments with data separation

Finally, we investigate the bootstrapping of data separation from unlabeled data. Here,
when generating the data, we switched between two differentcontexts (work loads)
with probability .001 at each time step. We first collected a batch of context-unlabeled
data from 4 cycles through the target trajectory where the arm was controlled by pure
feedback PD control. The EM procedure for data separation (section 3.2) was tested
on this data with and without temporal modelling (always using LWPR’s confidence
bounds as a basis). In the temporal case, Viterbi alignment was used to assign data-
points to contexts rather than filtered estimates. Fig. 6 compares the evolution of the
data separation for the two methods over six EM-iterations.Using the temporal context
performs much better, i.e., 84% of the datapoints were assigned to the correct context.

The bootstrapping of the context separation from unlabeleddata gives rise to two
separate inverse models for the two different contexts. To further improve these models,
we then used them for online context estimation and control,just as investigated in the
previous section, for another 12 cycles through the target trajectory. Simultaneously, the
context estimates were used for selecting data for further training of the models. The
accuracy of context estimation was 88% while the tracking error was 0.0051 and the
ratio of feedback PD control was 0.23. The errors are slightly higher than in the case
where models were trained using labeled data, but this is satisfying considering the fact
that we started with unlabeled data.
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5 Discussion

In this paper we presented an efficient multiple model paradigm for the general case of
non-linear control. The approach is based on a probabilistic model of multiple-context
dynamics, using LWPR as an efficient online regressor for each inverse model. We have
demonstrated that it is possible to bootstrap multiple models of non-linear dynamics
from context-unlabeled data and use them for simultaneous online context estimation,
control, and training.

In comparison to previous multiple model approaches, most notably MOSAIC, our
approach is the first to handle the case of non-linear dynamics. Further, we showed that
it is unnecessary to maintain pairs of forward and inverse models. Context estimation
can more efficiently be based solely on the learned inverse models for each context. We
have seen that including a Markovian model of context switching greatly enhances the
context estimation performance. If additional knowledge about the context is available,
for instance, if it is related to sensory information, one can easily extend our framework
by augmenting the likelihood term in the Markovian model.

An issue yet unaddressed by any existing method is that of determining the number
of separate contexts based on data only, if it is not known a priori. As detailed in section
3.2, our formulation of data separation is very similar to that of clustering using mixture
of Gaussians. Hence, existing techniques for determining the necessary number of clus-
ters in mixtures of Gaussians literature can directly be exploited. More specifically, a
common approach is to incrementally add new mixture components when the new data
cannot, with sufficient likelihood, be explained with existing mixture components [7].
This can also be realized online, which will be the subject offuture research to extend
the presented approach.
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7. J. J. Verbeek, N. Vlassis, and B. J. A. Kröse. Efficient greedy learning of gaussian mixture
models.Neural Computation, 15(2):469–485, 2003.




