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Abstract

Bayesian observer models are very effective in describing human performance in
perceptual tasks, so much so that they are trusted to faithfully recover hidden men-
tal representations of priors, likelihoods, or loss functions from the data. However,
the intrinsic degeneracy of the Bayesian framework, as multiple combinations of
elements can yield empirically indistinguishable results, prompts the question of
model identifiability. We propose a novel framework for a systematic testing of
the identifiability of a significant class of Bayesian observer models, with practi-
cal applications for improving experimental design. We examine the theoretical
identifiability of the inferred internal representations in two case studies. First,
we show which experimental designs work better to remove the underlying de-
generacy in a time interval estimation task. Second, we find that the reconstructed
representations in a speed perception task under a slow-speed prior are fairly ro-
bust.

1 Motivation

Bayesian Decision Theory (BDT) has been traditionally used as a benchmark of ideal perceptual
performance [1], and a large body of work has established that humans behave close to Bayesian
observers in a variety of psychophysical tasks (see e.g. [2, 3, 4]). The efficacy of the Bayesian
framework in explaining a huge set of diverse behavioral data suggests a stronger interpretation
of BDT as a process model of perception, according to which the formal elements of the decision
process (priors, likelihoods, loss functions) are independently represented in the brain and shared
across tasks [5, 6]. Importantly, such mental representations, albeit not directly accessible to the
experimenter, can be tentatively recovered from the behavioral data by ‘inverting’ a model of the
decision process (e.g., priors [7, 8, 9, 10, 11, 12, 13, 14], likelihood [9], and loss functions [12, 15]).
The ability to faithfully reconstruct the observer’s internal representations is key to the understanding
of several outstanding issues, such as the complexity of statistical learning [11, 12, 16], the nature
of mental categories [10, 13], and linking behavioral to neural representations of uncertainty [4, 6].

In spite of these successes, the validity of the conclusions reached by fitting Bayesian observer
models to the data can be questioned [17, 18]. A major issue is that the inverse mapping from
observed behavior to elements of the decision process is not unique [19]. To see this degeneracy,
consider a simple perceptual task in which the observer is exposed to stimulus s that induces a noisy
sensory measurement x. The Bayesian observer reports the optimal estimate s∗ that minimizes his
or her expected loss, where the loss function L (s, ŝ) encodes the loss (or cost) for choosing ŝ when
the real stimulus is s. The optimal estimate for a given measurement x is computed as follows [20]:

s∗(x) = argmin
ŝ

∫
qmeas(x|s)qprior(s)L (s, ŝ) ds (1)

where qprior(s) is the observer’s prior density over stimuli and qmeas(x|s) the observer’s sensory
likelihood (as a function of s). Crucially, for a given x, the solution of Eq. 1 is the same for any
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triplet of prior qprior(s)·φ1(s), likelihood qmeas(x|s)·φ2(s), and loss functionL (ŝ, s)·φ3(s), where
the φi(s) are three generic functions such that

∏3
i=1 φi(s) = c, for a constant c > 0. This analysis

shows that the ‘inverse problem’ is ill-posed, as multiple combinations of priors, likelihoods and
loss functions yield identical behavior [19], even before considering other confounding issues, such
as latent states. If uncontrolled, this redundancy of solutions may condemn the Bayesian models of
perception to a severe form of model non-identifiability that prevents the reliable recovery of model
components, and in particular the sought-after internal representations, from the data.

In practice, the degeneracy of Eq. 1 can be prevented by enforcing constraints on the shape that the
internal representations are allowed to take. Such constraints include: (a) theoretical considerations
(e.g., that the likelihood emerges from a specific noise model [21]); (b) assumptions related to
the experimental layout (e.g., that the observer will adopt the loss function imposed by the reward
system of the task [3]); (c) additional measurements obtained either in independent experiments or
in distinct conditions of the same experiment (e.g., through Bayesian transfer [5]). Crucially, both
(b) and (c) are under partial control of the experimenter, as they depend on the experimental design
(e.g., choice of reward system, number of conditions, separate control experiments). Although
several approaches have been used or proposed to suppress the degeneracy of Bayesian models of
perception [12, 19], there has been no systematic analysis – neither empirical nor theoretical – of
their effectiveness, nor a framework to perform such study a priori, before running an experiment.

This paper aims to fill this gap for a large class of psychophysical tasks. Similar issues of model
non-identifiability are not new to psychology [22], and generic techniques of analysis have been
proposed (e.g., [23]). Here we present an efficient method that exploits the common structure shared
by many Bayesian models of sensory estimation. First, we provide a general framework that allows a
modeller to perform a systematic, a priori investigation of identifiability, that is the ability to reliably
recover the parameters of interest, for a chosen Bayesian observer model. Second, we show how,
by comparing identifiability within distinct ideal experimental setups, our framework can be used
to improve experimental design. In Section 2 we introduce a novel class of observer models that is
both flexible and efficient, key requirements for the subsequent analysis. In Section 3 we describe
a method to efficiently explore identifiability of a given observer model within our framework. In
Section 4 we show an application of our technique to two well-known scenarios in time perception
[24] and speed perception [9]. We conclude with a few remarks in Section 5.

2 Bayesian observer model

Here we introduce a continuous class of Bayesian observer models parametrized by vector θ. Each
value of θ corresponds to a specific observer that can be used to model the psychophysical task of
interest. The current model (class) extends previous work [12, 14] by encompassing any sensori-
motor estimation task in which a one-dimensional stimulus magnitude variable s, such as duration,
distance, speed, etc. is directly estimated by the observer. This is a fundamental experimental condi-
tion representative of several studies in the field (e.g., [7, 9, 12, 24, 14]). With minor modifications,
the model can also cover angular variables such as orientation (for small errors) [8, 11] and multi-
dimensional variables when symmetries make the actual inference space one-dimensional [25]. The
main novel feature of the presented model is that it covers a large representational basis with a sin-
gle parametrization, while still allowing fast computation of the observer’s behavior, both necessary
requirements to permit an exploration of the complex model space, as described in Section 3.

The generic observer model is constructed in four steps (Figure 1 a & b): 1) the sensation stage
describes how the physical stimulus s determines the internal measurement x; 2) the perception stage
describes how the internal measurement x is combined with the prior to yield a posterior distribution;
3) the decision-making stage describes how the posterior distribution and loss function guide the
choice of an ‘optimal’ estimate s∗ (possibly corrupted by lapses); and finally 4) the response stage
describes how the optimal estimate leads to the observed response r.

2.1 Sensation stage

For computational convenience, we assume that the stimulus s ∈ R+ (the task space) comes from
a discrete experimental distribution of stimuli si with frequencies Pi, with Pi > 0,

∑
i Pi = 1

for 1 ≤ i ≤ Nexp. Discrete distributions of stimuli are common in psychophysics, and continu-
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Figure 1: Observer model. Graphical model of a sensorimotor estimation task, as seen from the
outside (a), and from the subjective point of view of the observer (b). a: Objective generative
model of the task. Stimulus s induces a noisy sensory measurement x in the observer, who decides
for estimate s∗ (see b). The recorded response r is further perturbed by reporting noise. Shaded
nodes denote experimentally accessible variables. b: Observer’s internal model of the task. The
observer performs inference in an internal measurement space in which the unknown stimulus is
denoted by t (with t = f(s)). The observer either chooses the subjectively optimal value of t, given
internal measurement x, by minimizing the expected loss, or simply lapses with probability λ. The
observer’s chosen estimate t∗ is converted to task space through the inverse mapping s∗ = f−1(t∗).
The whole process in this panel is encoded in (a) by the estimate distribution pest (s∗|x).

ous distributions can be ‘binned’ and approximated up to the desired precision by increasing Nexp.
Due to noise in the sensory systems, stimulus s induces an internal measurement x ∈ R according
to measurement distribution pmeas(x|s) [20]. In general, the magnitude of sensory noise may be
stimulus-dependent in task space, in which case the shape of the likelihood would change from point
to point – which is unwieldy for subsequent computations. We want instead to find a transformed
space in which the scale of the noise is stimulus-independent and the likelihood translationally in-
variant [9] (see Supplementary Material). We assume that such change of variables is performed by
a function f(s) : s → t that monotonically maps stimulus s from task space into t = f(s), which
lives with x in an internal measurement space. We assume for f(s) the following parametric form:

f(s) = A ln

[
1 +

(
s

s0

)d
]
+B with inverse f−1(t) = s0

d

√
e

t−B
A − 1 (2)

where A and B are chosen, without loss of generality, such that the discrete distribution of stimuli
mapped in internal space, {f(si)} for 1 ≤ i ≤ Nexp, has range [−1, 1]. The parametric form of the
sensory map in Eq. 2 can approximate both Weber-Fechner’s law and Steven’s law, for different
values of base noise magnitude s0 and power exponent d (see Supplementary Material).

We determine the shape of pmeas(x|s) with a maximum-entropy approach by fixing the first four
moments of the distribution, and under the rather general assumptions that the sensory measurement
is unimodal and centered on the stimulus in internal measurement space. For computational con-
venience, we express pmeas(x|s) as a mixture of (two) Gaussians in internal measurement space:

pmeas(x|s) = πN
(
x|f(s) + µ1, σ

2
1

)
+ (1− π)N

(
x|f(s) + µ2, σ

2
2

)
(3)

where N
(
x|µ, σ2

)
is a normal distribution with mean µ and variance σ2 (in this paper we consider

a two-component mixture but derivations easily generalize to more components). The parameters in
Eq. 3 are partially determined by specifying the first four central moments: E [x] = f(s),Var[x] =
σ2,Skew[x] = γ,Kurt[x] = κ; where σ, γ, κ are free parameters. The remaining degrees of freedom
(one, for two Gaussians) are fixed by picking a distribution that satisfies unimodality and locally
maximizes the differential entropy (see Supplementary Material). The sensation model represented
by Eqs. 2 and 3 allows to express a large class of sensory models in the psychophysics literature,
including for instance stimulus-dependent noise [9, 12, 24] and ‘robust’ mixture models [21, 26].

2.2 Perceptual stage

Without loss of generality, we represent the observer’s prior distribution qprior(t) as a mixture of M
dense, regularly spaced Gaussian distributions in internal measurement space:

qprior(t) =

M∑

m=1

wmN
(
t|µmin + (m− 1)a, a2

)
a ≡ µmax − µmin

M − 1
(4)
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where wm are the mixing weights, a the lattice spacing and [µmin, µmax] the range in internal space
over which the prior is defined (chosen 50% wider than the true stimulus range). Eq. 4 allows
the modeller to approximate any observer’s prior, where M regulates the fine-grainedness of the
representation and is determined by computational constraints (for all our analyses we fix M = 15).

For simplicity, we assume that the observer’s internal representation of the likelihood, qmeas(x|t),
is expressed in the same measurement space and takes again the form of a unimodal mixture of two
Gaussians, Eq. 3, although with possibly different variance, skewness and kurtosis (respectively,
σ̃2, γ̃ and κ̃) than the true likelihood. We write the observer’s posterior distribution as: qpost(t|x) =
1
Z qprior(t)qmeas(x|t) with Z the normalization constant.

2.3 Decision-making stage

According to Bayesian Decision Theory (BDT), the observer’s ‘optimal’ estimate corresponds to the
value of the stimulus that minimizes the expected loss, with respect to loss function L(t, t̂), where
t is the true value of the stimulus and t̂ its estimate. In general the loss could depend on t and t̂ in
different ways, but for now we assume a functional dependence only on the stimulus difference in
internal measurement space, t̂− t. The (subjectively) optimal estimate is:

t∗(x) = argmin
t̂

∫
qpost(t|x)L

(
t̂− t

)
dt (5)

where the integral on the r.h.s. represents the expected loss. We make the further assumption that
the loss function is well-behaved, that is smooth, with a unique minimum at zero (i.e., the loss is
minimal when the estimate matches the true stimulus), and with no other local minima. As before,
we adopt a maximum-entropy approach and we restrict ourselves to the class of loss functions that
can be described as mixtures of two (inverted) Gaussians:

L(t̂− t) = −π`N
(
t̂− t|µ`

1, σ
`
1

2
)
− (1− π`)N

(
t̂− t|µ`

2, σ
`
2

2
)
. (6)

Although the loss function is not a distribution, we find convenient to parametrize it in terms
of statistics of a corresponding unimodal distribution obtained by flipping Eq. 6 upside down:
Mode [t′] = 0,Var [t′] = σ2

` ,Skew [t′] = γ`,Kurt [t′] = κ`; with t′ ≡ t̂ − t. Note that we fix
the location of the mode of the mixture of Gaussians so that the global minimum of the loss is at
zero. As before, the remaining free parameter is fixed by taking a local maximum-entropy solution.
A single inverted Gaussian already allows to express a large variety of losses, from a delta function
(MAP strategy) for σ` → 0 to a quadratic loss for σ` →∞ (in practice, for σ` & 1), and it has been
shown to capture human sensorimotor behavior quite well [15]. Eq. 6 further extends the range of
describable losses to asymmetric and more or less peaked functions. Crucially, Eqs. 3, 4, 5 and 6
combined yield an analytical expression for the expected loss that is a mixture of Gaussians (see
Supplementary Material) that allows for a fast numerical solution [14, 27].

We allow the possibility that the observer may occasionally deviate from BDT due to lapses with
probability λ ≥ 0. In the case of lapse, the observer’s estimate t∗ is drawn randomly from the prior
[11, 14]. The combined stochastic estimator with lapse in task space has distribution:

pest(s
∗|x) = (1− λ) · δ

[
s∗ − f−1 (t∗(x))

]
+ λ · qprior(s∗) |f ′(s∗)| (7)

where f ′(s∗) is the derivative of the mapping in Eq. 2 (see Supplementary Material).

2.4 Response stage

We assume that the observer’s response r is equal to the observer’s estimate corrupted by indepen-
dent normal noise in task space, due to motor error and other residual sources of variability:

preport(r|s∗) = N
(
r|s∗, σ2

report(s
∗)
)

(8)

where we choose a simple parameteric form for the variance: σ2
report(s) = m2

0 +m2
1s

2, that is the
sum of two independent noise terms (constant noise plus some noise that grows with the magnitude
of the stimulus). In our current analysis we are interested in observer models of perception, so we do
not explicitly model details of the motor aspect of the task and we do not include the consequences
of response error into the decision making part of the model (Eq. 5).
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Finally, the main observable that the experimenter can measure is the response probability density,
presp(r|s;θ), of a response r for a given stimulus s and observer’s parameter vector θ [12]:

presp(r|s;θ) =
∫
N
(
r|s∗, σ2

report(s
∗)
)
pest(s

∗|x)pmeas(x|s) ds∗ dx, (9)

obtained by marginalizing over unobserved variables (see Figure 1 a), and which we can compute
through Eqs. 3–8. An observer model is fully characterized by parameter vector θ:

θ =
(
σ, γ, κ, s0, d, σ̃, γ̃, κ̃, σ`, γ`, κ`, {wn}Mn=1 ,m0,m1, λ

)
. (10)

An experimental design is specified by a reference observer model θ∗, an experimental distribution
of stimuli (a discrete set of Nexp stimuli si, each with relative frequency Pi), and possibly a subset
of parameters that are assumed to be equal to some a priori or experimentally measured values
during the inference. For experiments with multiple conditions, an observer model typically shares
several parameters across conditions. The reference observer θ∗ represents a ‘typical’ observer for
the idealized task under examination; its parameters are determined from pilot experiments, the
literature, or educated guesses. We are ready now to tackle the problem of identifiability of the
parameters of θ∗ within our framework for a given experimental design.

3 Mapping a priori identifiability

Two observer models θ and θ∗ are a priori practically non-identifiable if they produce similar re-
sponse probability densities presp(r|si;θ) and presp(r|si;θ∗) for all stimuli si in the experiment.
Specifically, we assume that data are generated by the reference observer θ∗ and we ask what is
the chance that a randomly generated dataset D of a fixed size Ntr will instead provide support for
observer θ. For one specific dataset D, a natural way to quantify support would be the posterior
probability of a model given the data, Pr(θ|D). However, randomly generating a large number of
datasets so as to approximate the expected value of Pr(θ|D) over all datasets, in the spirit of previous
work on model identifiability [23], becomes intractable for complex models such as ours.

Instead, we define the support for observer model θ, given dataset D, as its log likelihood,
log Pr(D|θ). The log (marginal) likelihood is a widespread measure of evidence in model com-
parison, from sampling algorithms to metrics such as AIC, BIC and DIC [28]. Since we know the
generative model of the data, Pr(D|θ∗), we can compute the expected support for model θ as:

〈log Pr(D|θ)〉 =
∫

|D|=Ntr

log Pr (D|θ) Pr (D|θ∗) dD (11)

where the formal integration is performed over all possible datasets with fixed number of trials Ntr.
In the limit of large Ntr we have (see Supplementary Material for the derivation):

〈log Pr(D|θ)〉 ≈ −Ntr

Nexp∑

i=1

Pi ·DKL (presp(r|si;θ∗)||presp(r|si;θ)) (12)

where DKL(·||·) is the Kullback-Leibler (KL) divergence between two distributions. Crucially,
DKL is non-negative, and zero only when the two distributions are identical. The asymmetry of
the KL-divergence captures the different status of θ∗ and θ (that is, we measure differences only on
datasets generated by θ∗). Eq. 12 provides us with means to quantify the average support for model
θ given true model θ∗, which we use as a proxy to assess model identifiability. As an empirical tool
to explore the identifiability landscape, we define the approximate expected posterior density as:

E (θ|θ∗) ∝ e〈log Pr(D|θ)〉 (13)
and we sample from Eq. 13 via MCMC. Clearly, E (θ|θ∗) is maximal for θ = θ∗ and generally
high for regions of the parameter space empirically close to the predictions of θ∗. Moreover, the
peakedness of E(θ|θ∗) is modulated by the number of trials Ntr (the more the trials, the more
information is available to discriminate between models).

4 Results

We apply our framework to two case studies: the inference of priors in a time interval estimation
task (see [24]) and the reconstruction of prior and noise characteristics in speed perception [9].
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Figure 2: Internal representations in interval timing (Short condition). Accuracy of the recon-
structed priors in the Short range; each row corresponds to a different experimental design. a: The
first column shows the reference prior (thick red line) and the recovered mean prior ± 1 SD (black
line and shaded area). The other columns display the distributions of the recovered central moments
of the prior. Each panel shows the median (black line), the interquartile range (dark-shaded area)
and the 95 % interval (light-shaded area). The green dashed line marks the true value. b: Box plots
of the symmetric KL-divergence between the reconstructed priors and the prior of the reference ob-
server. At top, the primacy probability P ∗ of each setup having less reconstruction error than all
the others (computed by bootstrap). c: Joint posterior density of sensory noise σ and motor noise
m1 in setup BSL (gray contour plot; colored plots are marginal distributions). The parameters are
anti-correlated, and discordant with the true value (star and dashed lines). d: Marginal posterior
density for loss width parameter σ`, suitably rescaled.

4.1 Temporal context and interval timing

We consider a time interval estimation and reproduction task very similar to [24]. In each trial, the
stimulus s is a time interval (e.g., the interval between two flashes), drawn from a fixed experimental
distribution, and the response r is the reproduced duration (e.g., the interval between the second
flash and a mouse click). Subjects perform in one or two conditions, corresponding to two different
discrete uniform distributions of durations, either on a Short (494-847 ms) or a Long (847-1200
ms) range. Subjects are trained separately on each condition till they (roughly) learn the underlying
distribution, at which point their performance is measured in a test session; here we only simulate the
test sessions. We assume that the experimenter’s goal is to faithfully recover the observer’s priors,
and we analyze the effect of different experimental designs on the reconstruction error.

To cast the problem within our framework, we need first to define the reference observer θ∗. We
make the following assumptions: (a) the observer’s priors (or prior, in only one condition) are
smoothed versions of the experimental uniform distributions; (b) the sensory noise is affected by
the scalar property of interval timing, so that the sensory mapping is logarithmic (s0 ≈ 0, d = 1);
(c) we take average sensorimotor noise parameters from [24]: σ = 0.10, γ = 0, κ = 0, andm0 ≈ 0,
m1 = 0.07; (d) for simplicity, the internal likelihood coincides with the measurement distribution;
(e) the loss function in internal measurement space is almost-quadratic, with σ` = 0.5, γ` = 0,
κ` = 0; (f) we assume a small lapse probability λ = 0.03; (g) in case the observer performs in two
conditions, all observer’s parameters are shared across conditions (except for the priors). For the
inferred observer θ we allow all model parameters to change freely, keeping only assumptions (d)
and (g). We compare the following variations of the experimental setup:

1. BSL: The baseline version of the experiment, the observer performs in both the Short and
Long conditions (Ntr = 500 each);

2. SRT or LNG: The observer performs more trials (Ntr = 1000), but only either in the Short
(SRT) or in the Long (LNG) condition;
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3. MAP: As BSL, but we assume a difference in the performance feedback of the task such
that the reference observer adopts a narrower loss function, closer to MAP (σ` = 0.1);

4. MTR: As BSL, but the observer’s motor noise parametersm0,m1 are assumed to be known
(e.g. measured in a separate experiment), and therefore fixed during the inference.

We sample from the approximate posterior density (Eq. 13), obtaining a set of sampled priors for
each distinct experimental setup (see Supplementary Material for details). Figure 2 a shows the
reconstructed priors and their central moments for the Short condition (results are analogous for the
Long condition; see Supplementary Material). We summarize the reconstruction error of the recov-
ered priors in terms of symmetric KL-divergence from the reference prior (Figure 2 b). Our analysis
suggests that the baseline setup BSL does a relatively poor job at inferring the observers’ priors.
Mean and skewness of the inferred prior are generally okay, but for example the SD tends to be
considerably lower than the true value. Examining the posterior density across various dimensions,
we find that this mismatch emerges from a partial non-identifiability of the sensory noise, σ, and the
motor noise, w1 (Figure 2 c).1 Limiting the task to a single condition with double number of trials
(SRT) only slightly improves the quality of the inference. Surprisingly, we find that a design that
encourages the observer to adopt a loss function closer to MAP considerably worsens the quality of
the reconstruction in our model. In fact, the loss width parameter σ` is only weakly identifiable (Fig-
ure 2 d), with severe consequences for the recovery of the priors in the MAP case. Finally, we find
that if we can independently measure the motor parameters of the observer (MTR), the degeneracy
is mostly removed and the priors can be recovered quite reliably.

Our analysis suggests that the reconstruction of internal representations in interval timing requires
strong experimental constraints and validations [12]. This worked example also shows how our
framework can be used to rank experimental designs by the quality of the inferred features of interest
(here, the recovered priors), and to identify parameters that may critically affect the inference. Some
findings align with our intuitions (e.g., measuring the motor parameters) but others may be non-
obvious, such as the bad impact that a narrow loss function may have on the inferred priors within
our model. Incidentally, the low identifiability of σ` that we found in this task suggests that claims
about the loss function adopted by observers in interval timing (see [24]), without independent
validation, might deserve additional investigation. Finally, note that the analysis we performed
is theoretical, as the effects of each experimental design are formulated in terms of changes in the
parameters of the ideal reference observer. Nevertheless, the framework allows to test the robustness
of our conclusions as we modify our assumptions about the reference observer.

4.2 Slow-speed prior in speed perception

As a further demonstration, we use our framework to re-examine a well-known finding in visual
speed perception, that observers have a heavy-tailed prior expectation for slow speeds [9, 29]. The
original study uses a 2AFC paradigm [9], that we convert for our analysis into an equivalent estima-
tion task (see e.g. [30]). In each trial, the stimulus magnitude s is speed of motion (e.g., the speed
of a moving dot in deg/s), and the response r is the perceived speed (e.g., measured by interception
timing). Subjects perform in two conditions, with different contrast levels of the stimulus, either
High (cHigh = 0.5) or Low (cLow = 0.075), corresponding to different levels of estimation noise.
Note that in a real speed estimation experiment subjects quickly develop a prior that depends on the
experimental distribution of speeds [30] – but here we assume no learning of that kind in agreement
with the underlying 2AFC task. Instead, we assume that observers use their ‘natural’ prior over
speeds. Our goal is to probe the reliability of the inference of the slow-speed prior and of the noise
characteristics of the reference observer (see [9]).

We define the reference observer θ∗ as follows: (a) the observer’s prior is defined in task space by
a parametric formula: pprior(s) = (s2 + s2prior)

−kprior , with sprior = 1 deg/s and kprior = 2.4
[29]; (b) the sensory mapping has parameters s0 = 0.35 deg/s, d = 1 [29]; (c) the amount of
sensory noise depends on the contrast level, as per [9]: σHigh = 0.2, σLow = 0.4, and γ = 0,
κ = 0; (d) the internal likelihood coincides with the measurement distribution; (e) the loss function
in internal measurement space is almost-quadratic, with σ` = 0.5, γ` = 0, κ` = 0; (f) we assume

1This degeneracy is not surprising, as both sensory and motor noise of the reference observer θ∗ are ap-
proximately Gaussian in internal measurement space (∼ log task space). This lack of identifiability also affects
the prior since the relative weight between prior and likelihood needs to remain roughly the same.
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Figure 3: Internal representations in speed perception. Accuracy of the reconstructed internal
representations (priors and likelihoods). Each row corresponds to different assumptions during the
inference. a: The first column shows the reference log prior (thick red line) and the recovered mean
log prior ± 1 SD (black line and shaded area). The other two columns display the approximate
posteriors of kprior and sprior, obtained by fitting the reconstructed ‘non-parametric’ priors with
a parametric formula (see text). Each panel shows the median (black line), the interquartile range
(dark-shaded area) and the 95 % interval (light-shaded area). The green dashed line marks the
true value. b: Box plots of the symmetric KL-divergence between the reconstructed and reference
prior. c: Approximate posterior distributions for sensory mapping and sensory noise parameters.
In experimental design STD, the internal likelihood parameters (σ̃High, σ̃Low) are equal to their
objective counterparts (σHigh, σLow).

a considerable amount of reporting noise, with m0 = 0.3 deg/s, m1 = 0.21; (g) we assume a
contrast-dependent lapse probability (λHigh = 0.01, λLow = 0.05); (h) all parameters that are
not contrast-dependent are shared across the two conditions. For the inferred observer θ we allow
all model parameters to change freely, keeping only assumptions (d) and (h). We consider the
standard experimental setup described above (STD), and an ‘uncoupled’ variant (UNC) in which
we do not take the usual assumption that the internal representation of the likelihoods is coupled to
the experimental one (so, σ̃High, σ̃Low, γ̃ and κ̃ are free parameters). As a sanity check, we also
consider an observer with a uniformly flat speed prior (FLA), to show that in this case the algorithm
can correctly infer back the absence of a prior for slow speeds (see Supplementary Material).

Unlike the previous example, our analysis shows that here the reconstruction of both the prior and the
characteristics of sensory noise is relatively reliable (Figure 3 and Supplementary Material), without
major biases, even when we decouple the internal representation of the noise from its objective
counterpart (except for underestimation of the noise lower bound s0, and of the internal noise σ̃High,
Figure 3 c). In particular, in all cases the exponent kprior of the prior over speeds can be recovered
with good accuracy. Our results provide theoretical validation, in addition to existing empirical
support, for previous work that inferred internal representations in speed perception [9, 29].

5 Conclusions

We have proposed a framework for studying a priori identifiability of Bayesian models of perception.
We have built a fairly general class of observer models and presented an efficient technique to
explore their vast identifiability landscape. In one case study, a time interval estimation task, we have
demonstrated how our framework could be used to rank candidate experimental designs depending
on their ability to resolve the underlying degeneracy of parameters of interest. The obtained ranking
is non-trivial: for example, it suggests that experimentally imposing a narrow loss function may
be detrimental, under certain assumptions. In a second case study, we have shown instead that the
inference of internal representations in speed perception, at least when cast as an estimation task in
the presence of a slow-speed prior, is generally robust and in theory not prone to major degeneracies.

Several modifications can be implemented to increase the scope of the psychophysical tasks covered
by the framework. For example, the observer model could include a generalization to arbitrary loss
spaces (see Supplementary Material), the generative model could be extended to allow multiple
cues (to analyze cue-integration studies), and a variant of the model could be developed for discrete-
choice paradigms, such as 2AFC, whose identifiability properties are largely unknown.
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1 Introduction

Here we report supplementary information to the main paper, such as extended mathematical deriva-
tions and implementation details. For ease of reference, this document follows the same division in
sections of the paper, and supplementary methods are reported in the same order as they are origi-
nally referenced in the main text.

2 Bayesian observer model

We describe here several technical details regarding the construction of the Bayesian observer model
which are omitted in the paper.
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2.1 Mapping to internal measurement space

The mapping to internal measurement space is a mathematical trick to deal with observer models
whose sensory noise magnitude is stimulus-dependent in task space. For this derivation, let us
assume that the measurement probability density, pmeas(x|s), can be expressed as a Gaussian with
stimulus-dependent noise:

pmeas(x|s) = N
(
x|s, σ2

meas(s)
)
. (S1)

In the case of Weber’s law, we would have σmeas(s) = bs, with b > 0 standing for Weber’s constant
(this feature of noise is called the scalar property in time perception [1, 2]).

The problem with Eq. S1 is that the measurement distribution is Gaussian but the likelihood (func-
tion of s) is not – which is unwieldy for the computation of the posterior. A solution consists in
finding a transformed space in which the likelihood is (approximately) Gaussian. It is easy to show
that a mapping of the form:

f(s) =

∫ s

−∞

1

σmeas(s′)
ds′ + const (S2)

achieves this goal. In fact, we can write an informal proof as follows:

f (x) = f (s+ σmeas(s) · η)
≈ f (s) + f ′ (s) · σmeas(s) · η
= t+ η

(S3)

where η is a normally distributed random variable with zero mean and unit variance. The second
passage of Eq. S3 uses a first-order Taylor expansion, under the assumption that the noise magnitude
is low compared to the magnitude of the stimulus. The last passage shows that the measurement
variable is approximately Gaussian in internal measurement space with mean t ≡ f(s) and unit
variance.

For Weber’s law, the solution of Eq. S2 has a logarithmic form f(s) ∝ log s, which is commonly
used in the psychophysics literature. We want the mapping to cover both constant noise and scalar
noise (and intermediate cases), so we consider a generalized transform, f(s) ∝ log

(
1 + s

s0

)
, where

the base magnitude parameter s0 controls whether the mapping is purely logarithmic (for s0 → 0),
linear (for s0 → ∞) or in-between [3]. For the paper, we further generalize the mapping, Eq. 2
in the main text, by adding a power exponent d that allows to reproduce Steven’s power law of
sensation [4]. Note that the exponent d has no effect if the mapping is (close to) purely logarithmic.

2.2 Moment-based parametrization of a unimodal mixture of two Gaussians

Let us consider a mixture of two Gaussian distributions:

p(s) = wN
(
x|µ1, σ

2
1

)
+ (1− w)N

(
x|µ2, σ

2
2

)
. (S4)

We want to express its parameters (w, µi, σi, for i = 1, 2) as a function of the standardized moments
of the distribution: mean µ, variance σ2, skewness γ and (excess) kurtosis κ, with the additional
constraint of unimodality. The first two standardized moments are µ = 0 and σ2 = 1 (this is without
loss of generality, as we may later rescale and shift the resulting distribution to match arbitrary values
of µ and σ2). Since there are five parameters and only four constraints, we will find a solution (or
multiple solutions) as a function of the remaining parameter w.

• For the special case γ = 0 and κ ≤ 0 we have:

µ1 = 4

√
−κ
2
, µ2 = −µ1, σ2

1 = σ2
2 =

√
1−

√
−κ
2
. (S5)

• For the special case γ = 0 with κ > 0 the solutions are:

µ1 = µ2 = 0, σ2
1 = 1∓

√
(1− w)κ√

3w
, σ2

2 = 1±
√
wκ√

3(1− w)
. (S6)
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• Finally, for the general case γ 6= 0:

µ1 = −1− w
w
· µ2

µ2 = Roots
[(
2− 6w + 8w2 − 6w3 + 2w4

)
y6 +

(
4w2γ − 12w3γ + 8w4γ

)
y3

+
(
3w3κ− 3w4κ

)
y2 − w4γ2

]
σ2
1 = 1 +

(w − 1)µ2

3w4γ

[
3w3κ+ (5− 7w)w2γµ2 − 2(w − 1)(1− w + w2)µ4

2

]
σ2
2 = 1 +

κ

γµ2
+

(
2

3w
− 7

3

)
µ2
2 − 2(w − 1)(1 + w2 − w) µ5

2

3w3γ
(S7)

where Roots specifies the real roots of the polynomial in square brackets.

The final degree of freedom is chosen by picking the value of w that locally maximizes the differen-
tial entropy of the distribution while respecting the requirement of unimodality and within the range
0.025 ≤ w ≤ 0.975. The latter constraint is added to prevent highly degenerate solutions such as,
e.g., w → 0 with σ2

1 → ∞. At the implementation level, we do not perform these computations
at every step but we precomputed a table that maps a pair of values (γ, κ) to a parameter vector
w, µi, σj for j = 1, 2 that uniquely identifies a mixture of two Gaussians.1 This table also encodes
the boundaries of γ, κ since not all values are allowed (see Figure S1).
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Figure S1: Tabulated values of w as a function of skewness and kurtosis. The values of the mix-
ing weight w that respect the constraints of unimodality and 0.025 ≤ w ≤ 0.975 cover a crescent-
shaped region in the domain of skewness γ and excess kurtosis κ (shaded area). The black line
represents the hard bound between skewness and kurtosis that applies to all univariate distributions,
that is κ ≥ γ2 − 2.

2.3 Computation of the expected loss

The observer’s prior is written as:

qprior(t) =

M∑
m=1

wmN
(
t|µm, a

2
)

(S8)

1Thanks to symmetries we need to precompute the table only for γ ≥ 0 and we flip the sign of µ1 and µ2

for γ < 0.
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where a is the lattice spacing and we have defined µm ≡ µmin + (m− 1)a (see Eq. 4 in the paper).
The internal measurement likelihood takes the form:

qmeas(x|t) =
2∑

j=1

π̃jN
(
x|t+ µ̃j , σ̃

2
j

)
(S9)

with π̃1 ≡ π̃, π̃2 ≡ 1 − π̃ (see the corresponding Eq. 3 in the paper). The posterior distribution is
computed by multiplying Eq. S8 and S9:

qpost (t|x) =
M∑

m=1

2∑
j=1

wmπ̃jN
(
t|µm, a

2
)
N
(
t|x− µ̃j , σ̃

2
j

)
=

M∑
m=1

2∑
j=1

γmjN
(
t|νmj , τ

2
mj

) (S10)

obtained after some algebraic manipulations and where we have defined:

γmj ≡ wmπ̃jN
(
µm|x− µ̃j , a

2 + σ̃2
j

)
νmj ≡

µmσ̃
2
j + (x− µ̃j)a

2

a2 + σ̃2
j

(S11)

τ2mj ≡
a2σ̃2

j

a2 + σ̃2
j

.

The loss function depends on the signed error in internal measurement space and is defined as:

L
(
t̂− t

)
=−

2∑
k=1

π`
kN

(
t̂− t|µ`

k, σ
`
k

2
)

(S12)

with π`
1 ≡ π` and π`

2 ≡ 1 − π` (see Eq. 6 in the paper). The expected loss for estimate t̂, given
measurement x, therefore takes the closed analytical form:

E
[
L; t̂, x

]
qpost

=

∫
qpost (t|x)L

(
t̂− t

)
dt

=−
M∑

m=1

2∑
j=1

γmj

2∑
k=1

π`
k

∫
N
(
t|νmj , τ

2
mj

)
N
(
t|t̂− µ`

k, σ
`
k

2
)
dt

=−
M∑

m=1

2∑
j=1

γmj

2∑
k=1

π`
kN

(
t̂|νmj + µ`

k, τ
2
mj + σ`

k

2
)
.

(S13)

Eq. S13 generalizes a previous result [5, Eq. 4] to the case of likelihoods and loss functions that are
mixtures of Gaussians. Thanks to the expression of Eq. S13 as a mixture of Gaussians, the global
minimum of the expected loss can be found very efficiently through an adaptation of Newton’s
method [5, 6]. Note that computational efficiency is not merely a desirable feature, but rather a
key requirement for tractability of our analysis of the complex parameter space. In Section 5.1 we
discuss how the framework can be generalized to a loss function whose error is computed in arbitrary
spaces.

2.4 Mapping densities from task space to internal measurement space and vice versa

Variables are mapped from task space to internal measurement space (and vice versa) through the
mappings described in Eq. 2 in the main text. Mapping of densities needs to take into account the
Jacobian of the transformation.

A distribution p(s) in task space is converted into internal measurment space as:

q(t) =
∣∣∣f−1′(t)∣∣∣ p(f−1(t)) = [ s0

Ad

(
e

t−B
A − 1

) 1
d−1

e
t−B
A

]
p(f−1(t)). (S14)
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Conversely, the inverse transform of a density q(t) from internal measurement space to task space
is:

p(s) = |f ′(s)| q(f(s)) =

[
Ad (s/s0)

d−1

1 + (s/s0)
d

]
q(f(s)). (S15)

3 Model identifiability

A pivotal role in our a priori identifiability analysis is taken by the equation that links the expected
log likelihood to the KL-divergence between the response distributions. Here we show the deriva-
tion.

3.1 Derivation of Eq. 12 in the paper

We want to find a closed-form solution for Eq. 11 in the paper:

〈log Pr(D|θ)〉 =
∫
|D|=Ntr

log Pr (D|θ) Pr (D|θ∗) dD. (S16)

First, we divide the datasetD as follows. Recall that the experiment presents a discrete set of stimuli
si with relative frequency Pi, for 1 ≤ i ≤ Nexp. We assume that the number of trials for each
stimulus is allocated a priori to match relative frequencies (a common practice in psychophysical
experiments). Therefore, dataset D can be divided in Nexp sub-datasets Di with respectively PiNtr

trials each. Assuming independence between trials and thanks to linearity of the expectation opera-
tor, we can write:

〈log Pr(D|θ)〉 =
Nexp∑
i=1

〈log Pr(Di|θ)〉 (S17)

where each sub-dataset Di only contains trials that show a specific stimulus si. In the following we
compute the expectation of the log likelihood for a sub-dataset with a single stimulus.

Let us consider a sub-dataset Di with N ≡ PiNtr trials and stimulus si. The true distribution of
responses in each trial is assumed to be stationary with distribution p(r) ≡ presp(r|si,θ∗), whereas
the distribution of responses according to model θ is represented by q(r) ≡ presp(r|si,θ). For ease
of derivation, we consider discrete distributions p and q, with

∑K
k=1 pk = 1 and

∑K
k=1 qk = 1,

where pk and qk are obtained from p(r) and q(r) through a suitable form of binning. Assuming
exchangeability, a sub-dataset is represented by a vector of integers, x, which describes how many
responses fall into each bin, with

∑
k xk = N , for 1 ≤ k ≤ K. Therefore, Pr(Di|θ) ≈ Pr(x|θ)

takes the shape of a multinomial distribution and in the large N limit we have:

〈log Pr(x|θ)〉 =
∑

x1,...,xK∑
i xi=N

Pr(x|θ∗) log Pr(x|θ)

=
∑

x1,...,xK∑
i xi=N

N !

x1! · · ·xK !
p1

x1 · · · pKxK log

[
N !

x1! · · ·xK !
q1

x1 · · · qKxK

]

≈
∑

x1,...,xK∑
i xi=N

N !

x1! · · ·xK !
p1

x1 · · · pKxK

N logN −N +

K∑
j=1

(xj − xj log xj + xj log qj)


≈ N logN −N +N

K∑
j=1

(pj − pj logN − pj log pj + pj log qj)

= −N
K∑
j=1

pj log
pj
qj

= −N ·DKL(p||q)

(S18)

where from the second to the third passage we have used Stirling’s approximation of the factorial
for large N , and from the third to the fourth we have used properties of the expected values of a
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multinomial distribution, namely 〈xj〉 = Npj and the approximation 〈xj log xj〉 ≈ Npj logNpj .
DKL(p||q) is the Kullback-Leibler (KL) divergence, a non-symmetric measure of the difference
between two probability distributions widely used in information theory [7]. Combining Eqs. S17
and S18 we obtain Eq. 12 in the paper.

4 Supplementary methods and results

We report here additional details and results omitted for clarity from the main text.

4.1 Sampling from the approximate expected posterior density

The observer models we consider in the paper have 26-41 parameters, which correspond to a fairly
high-dimensional parameter space. We assumed indepedent, non-informative priors on each model
parameter, uniform on a reasonably inclusive range. Some parameters that naturally cover several
orders of magnitude (e.g. the mixing weights wn, for 1 ≤ n ≤ M ) were represented in log scale.2
Also, the kurtosis parameters of likelihoods and loss function (κ, κ̃, κ`) were represented in a trans-
formed kurtosis space with κ′ ≡

√
κ+ 2 (in this space, skewness and kurtosis are on a similar scale;

the hard bound κ ≥ γ2 − 2 becomes κ′ ≥ |γ|).
We explored a priori identifiability in the large parameter space by sampling observers from the
approximate expected posterior density, Eqs. 12 and 13 in the paper, via an adaptive MCMC algo-
rithm [9]. Note that we computed the KL-divergence between the (rescaled) response distributions
of a candidate model θ and of the reference model θ∗, Eq. 12, only inside the range of experimen-
tal stimuli (this is equivalent to the experimental practice of discarding responses outside a certain
range, to avoid edge effects). For each specific experimental design, we ran 6-10 parallel chains with
different starting points near θ∗ (5 · 103 burn-in steps, 5 · 104 to 2 · 105 samples per chain, depend-
ing on model complexity). To check for convergence, we computed Gelman and Rubin’s potential
scale reduction statistic R for all parameters [10]. Large values of R denote convergence problems
whereas values close to 1 suggest convergence. For all experimental designs and parameters, R was
generally . 1.1. Paired with a visual check of the marginal pdfs of the sampled chains, this result
suggests a resonable degree of convergence. Finally, chains were thinned to reduce autocorrelations,
storing about Nsmpl = 104 sampled observers per experimental design.

As an additional consistency check, we performed a ‘posterior predictive check’ (see e.g. [11])
with the sampled observers, that is we verified that the predicted behavior of the sampled observers
matches the behavior of the reference observer across some relevant statistics (if not, it means that
the sampling algorithm is not working correctly). We chose as relevant summary statistics the means
and standard deviations of the observers’ responses, as a function of stimulus si and experimental
condition (computed for each sampled observer via Eq. 9 in the paper). We found that the predicted
response means were generally in excellent agreement with the ‘true’ response means of the refer-
ence observer. Distributions of predicted response variances showed some minor bias, but were still
in good statistical agreement with the true response variance.

4.2 Temporal context and interval timing

The set of stimuli si used in the experiment is comprised of Nexp = 11 equiprobable, regularly
spaced intervals over the relevant range (Short 494-847 ms, Long 847-1200 ms) [2].

To reconstruct the observer’s average prior (Figure 2 a in the paper), for each sampled observer,
we computed the prior in internal space (Eq. 4 in the paper) and transformed it back to task space
via Eq. S15; the mean prior is obtained by averaging all sampled priors. We also computed the
first four central moments of each sampled prior in task space, whose distributions are shown in
Figure 2 a in the main text. The reconstruction error for each sampled prior was assessed through
the symmetric KL-divergence with the prior of the reference observer (the standard KL-divergence
produces similar results).

Note that observer models BSL, MAP and MTR were tested on both the Short and Long ranges
(models SRT and LNG were simulated only on either the Short or the Long range). Figure 2 in the

2Note that a uniform prior in log space implies a prior of the form ∼ 1/x in standard space [8].
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paper reports only data for the Short range; we show here the priors recovered in the Long range
condition for the same models (Figure S2). Results are qualitatively similar to what we observed
for the Short range, with similar deviations from the reference prior and the same ranking between
experimental designs.
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Figure S2: Internal representations in interval timing (Long condition). Accuracy of the recon-
structed priors in the Long range; each row corresponds to a different experimental design. Figure
2 in the main text reports data for the Short range in the same format. See caption of Figure 2 in
the main text for a detailed legend. a: The first column shows the reference prior and the recovered
mean prior. The other columns display the recovered central moments of the prior. b: Box plots
of the symmetric KL-divergence between the reconstructed priors and the prior of the reference
observer.

4.3 Slow-speed prior in speed perception

The set of stimuli si is comprised of Nexp = 6 equiprobable motion speeds: s ∈ {0.5, 1, 2, 4, 8, 12}
deg/s [3].

We reconstructed the observer’s average log prior in task space (Figure 3 a in the paper) for each
sampled observer. To capture the shape of the sampled priors, we fit each of them with a para-
metric formula: log q(s) = −kprior log

(
s2 + s2prior

)
+ cprior, via least-squares estimation. The

distribution of fitted parameters kprior and sprior is shown in Figure 3 a in the main text.

We show here the results for an additional observer model (FLT) which incorporates a uniformly
flat prior (Figure S3). The model inference correctly recovers a flat prior with exponent kprior ≈ 0
(compare it with Figure 3 in the paper).

5 Extensions of the observer model

We discuss here an extension of the framework presented in the main text.

5.1 Expected loss in arbitrary spaces

In the paper we have used a loss function that depends on the error, i.e. on the difference between the
estimate and the true value of the stimulus, in internal measurement space (Eq. S12). However, we
might want to compute the error in task space, or more in general in an arbitrary loss space defined
by a mapping g(s) : s→ l parametrized by s`0 and d` (see Eq. 2 in the paper). Ideally, we still want
to find a closed-form expression for the expected loss. We can write the loss function in the new loss
space as:

L (g (ŝ)− g (s)) = L
(
g
(
f−1(t̂)

)
− g

(
f−1(t)

))
= L

(
h(t̂)− h(t)

)
(S19)
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Figure S3: Internal representations in speed perception (flat prior). Accuracy of the recon-
structed internal representations (priors and likelihoods) for an observer with a uniformly flat prior.
Figure 3 in the main text reports data for other two observer models in the same format. See caption
of Figure 3 in the main text for a detailed legend. a: The first panel shows the reference log prior
and the recovered mean log prior. The other two panels display the approximate posteriors of kprior
and sprior. b: Box plot of the symmetric KL-divergence between the reconstructed and reference
prior. c: Approximate posterior distributions for sensory mapping and sensory noise parameters.

where we have defined the composite function h ≡ g ◦ f−1. Clearly the original expression of
the loss in internal measurement space is recovered if g ≡ f . We can rewrite the expected loss as
follows:

E [L]qpost (t̂) =−
M∑

m=1

2∑
j=1

γmj

2∑
k=1

π`
kN

(
h
(
t̂
)
|νmj + µ`

k, τ
2
mj + σ`

k

2
)

×
∫
N
(
h (t)|νmjk

(
t̂
)
, τ2mjk

)
dt,

(S20)

where we have defined:

νmjk

(
t̂
)
≡
νmjσ

`
k

2
+
(
h
(
t̂
)
− µ`

k

)
τ2mj

τ2mj + σ`
k

2 , τmjk ≡
τ2mjσ

`
k

2

τ2mj + σ`
k

2 . (S21)

In order to perform the integration in Eq. S20, we Taylor-expand h(t) up to the first order around
the mean of each integrated Gaussian, νmjk

(
t̂
)
. We can perform this linearization without major

loss of accuracy since the Gaussians in the integral are narrow, their variance bounded from above
by a2 (τ2mjk < τ2mj < a2, see Eqs. S11 and S21). The integration yields:

E [L]qpost (t̂) ≈−
M∑

m=1

2∑
j=1

γmj

2∑
k=1

π`
kN

(
h
(
t̂
)
|νmj + µ`

k, τ
2
mj + σ`

k

2
) 1

h′
(
νmjk

(
t̂
)) . (S22)

Eq. S22 is not a regular mixture of Gaussians, but we can write its first and second derivative
analytically, which in principle allows to apply Newton’s method for numerical minimization. This
derivation shows that the techniques developed in the paper can be extended to the general case of a
loss function based in an arbitrary space (including, in particular, task space).
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