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Abstract It is widely recognised that compliant actuation is
advantageous to robot control once dynamic tasks are con-
sidered. However, the benefit of intrinsic compliance comes
with high control complexity. Specifically, coordinating the
motion of a system through a compliant actuator and find-
ing a task-specific impedance profile that leads to better per-
formance is known to be non-trivial. Here, we propose an
optimal control formulation to compute the motor position
commands, and the associated time-varying torque and stiff-
ness profiles. To demonstrate the utility of the approach, we
consider an “explosive” ball-throwing task where exploita-
tion of the intrinsic dynamics of the compliantly actuated
system leads to improved task performance (i.e., distance
thrown). In this example we show that: (i) the proposed con-
trol methodology is able to tailor impedance strategies to
specific task objectives and system dynamics, (ii) the ability
to vary stiffness can be exploited to achieve better perfor-
mance, (iii) in systems with variable physical compliance,
the present formulation enables exploitation of the energy
storage capabilities of the actuators to improve task perfor-
mance. We illustrate these in numerical simulations, and in
hardware experiments on a two-link variable stiffness robot.
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1 Introduction

Recently, significant research effort has focused on devel-
opment of variable stiffness actuators (VSAs). Numerous
designs for VSAs have been proposed, with the motiva-
tion of (i) improving safety of humans when interacting
with compliantly actuated robots (Bicchi and Tonietti 2004;
Zinn et al. 2004), (ii) adding functionality to enable adapta-
tion to task requirements, e.g., robots can be stiff and accu-
rate, but also compliant to the environment if required, and
(iii) improving the dynamic range of existing systems by ex-
ploiting the energy storage capabilities of VSAs (Hurst et
al. 2010). Due to the last point, a particularly promising area
in which variable stiffness actuators may be deployed are
applications involving highly dynamic movements (Braun
et al. 2011). Typical examples of such movements include:
throwing, hitting, jumping or kicking, often referred to in
human studies as explosive movements (Newton et al. 1996;
Putnam 1993; van Soest and Bobbert 1993). Additionally,
rhythmic movements such as walking and running may also
contain an explosive component (Wilson et al. 2003).

Explosive movement tasks may be intuitively charac-
terised by “large release of energy over a short time frame”.
Achieving such movements with traditional, joint torque ac-
tuators presents significant difficulties, particularly due to
the size and power limitation of the motors. In contrast, by
incorporating a physical elastic element, variable stiffness
actuators offer the possibility of achieving a much higher
dynamic range with smaller motors by instead exploiting the
compliant nature of the actuators.
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One of the difficulties of using such actuators, however,
is the considerably increased complexity in the planning and
control, particularly in the context of dynamic movements.
Indeed, VSAs (English 1999a, 1999b; Ham et al. 2007;
Hurst et al. 2010; Koganezawa et al. 1999; Laurin-Kovitz
et al. 1991; Migliore et al. 2007; Morita and Sugano 1995;
Shen and Goldfarb 2007; Tonietti et al. 2005; Wolf and
Hirzinger 2008), often introduce non-linearities, coupling of
motion, torque and stiffness characteristics, and redundancy
(i.e., increased dimensionality of the control input). As a re-
sult, it becomes increasingly difficult to hand-tune or design
control strategies for such actuators in order to exploit the
benefits of variable stiffness. To address this issue, Hogan
(1985) pointed out that if the objective is to minimise the
tracking error and the interface force, then the manipulator
impedance (e.g., stiffness, damping and inertia) should be
inversely proportional to the environmental impedance. This
rule, by which the manipulator should act as the dual of the
environment, is known as a duality principle in impedance
control (Anderson and Spong 1988). It is, however, not en-
tirely clear how to select a desirable, possibly time-varying
target impedance for a given non-linear system and a generic
dynamic task. As such, it is usually the case that the control
of the VSAs presented in the literature to date is realised
with “tuned” constant impedances that may not be optimal
with respect to the task.

There is growing interest in addressing this issue for var-
ious tasks. For example, in contact tasks, trajectory track-
ing with optimal constant impedance control has been pro-
posed by Johansson and Spong (1994). The benefit of op-
timal time-varying stiffness control has been investigated
by Matinfar and Hashtrudi-Zaad (2005) and Mitrovic et al.
(2011) for contact tasks and compliant motion control tasks,
respectively. The utility of damping variation was shown by
Ikeura et al. (2002), where a robot hand, controlled by an
optimal variable damper, effectively supported a human in
a cooperative lifting task. The optimisation of the passive
system properties has also been discussed under more dy-
namic conditions. In this context, Vanderborght et al. (2006)
and Verrelst et al. (2005) demonstrated that tracking a small
amplitude oscillatory motion of a pendulum can be made ef-
ficient by matching the (constant) stiffness of the actuators
with the natural stiffness of the reference trajectory. With a
similar objective (Uemura and Kawamura 2009) combined
trajectory tracking with adaptation of the constant joint stiff-
ness to its optimal value. By considering velocity maximisa-
tion, optimal control on variable stiffness devices has been
recently considered by Garabini et al. (2011) and Haddadin
et al. (2011). In these works, analytical predictions to opti-
mal bang-bang control were obtained for idealised variable
stiffness systems.

Here we present a non-linear optimal control formula-
tion for variable stiffness control that is applicable to multi-

link robots, performing complex dynamic tasks, under real-
world conditions. The premise of this formulation is to: pro-
vide a physically realistic control parametrisation and a dy-
namic representation that allow the natural dynamics of the
robot and the intrinsic compliance of the VSAs to be ex-
ploited during the motion. To achieve this, we propose to
directly optimise on the level of the redundant input com-
mands to the VSAs while taking into account the: (i) possi-
bly non-linear model of the VSA, (ii) the bandwidth limita-
tions of the actuator dynamics and (iii) the range limitations
of the input commands respectively. When implemented, the
optimal input commands provide the elastic joint torque and
joint stiffness profiles together with the link trajectories that
are not planned in traditional sense but are the direct conse-
quence of the mechanical properties of the system dynamics
and the actuators. In this way, the proposed formulation en-
ables the dynamics of the compliantly actuated system to
be exploited to achieve better task performance. This may
be difficult to obtain by alternative formulations that do not
take the physical constraints imposed by the VS actuators
into account.

The present formulation is tested on a highly dynamic
ball throwing task.1 In this task we first show that (i) in-
creased penalisation of effort results in shorter distance
thrown and that (ii) over-arm versus under-arm throwing
may emerge depending on the weight of the ball. Both of
these results are intuitive but non-trivial to obtain by hand-
tuning or other heuristic methods. Furthermore, we investi-
gate how, by taking an optimal control approach, one may
exploit the physical properties of a variable stiffness system
to improve performance. To this end, we show by example,
that in variable stiffness control the ability to independently
control the joint torque and the joint stiffness can be lever-
aged to achieve larger distance thrown, compared to an al-
ternative strategy that does not employ independent stiffness
modulation. In addition, we discuss why (and under what
condition) may stiffness modulation emerge as an optimal
strategy in the case of highly dynamic (explosive) tasks, de-
spite the energy cost it requires.

The present control methodology is illustrated with a
number of simulation studies, and with throwing exper-
iments on a variable stiffness robot. These experiments
demonstrate the viability of the proposed variable stiffness
control framework under real-world conditions.

2 Model of a variable stiffness robot

In this section, we present a model of a variable stiffness
robotic system that is the basis for the optimal control for-

1Regarding the ball throwing task, the reader may also refer to recent
works that consider underactuated robots, and use optimal motion con-
trol, or employ unstable zero dynamics to achieve fast and accurate
throw; see Mettin et al. (2010), Shoji et al. (2010).
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mulation introduced later in this paper. The basic ingredients
of this model are: (i) the dynamic equation of the robot, (ii)
the torque and stiffness function associated with the compli-
ant actuators and (iii) the performance index that defines the
control task.

2.1 Robot dynamics

Consider an n-degree-of-freedom robotic system, the con-
figuration of which is uniquely specified by q ∈ R

n joint an-
gles. Let the equation of motion of the system be represented
as

M(q)q̈ + C(q, q̇) + D(q̇) + G(q) = τ (q, θ), (1)

where M ∈ R
n×n is a symmetric and positive definite mass

matrix, C ∈ R
n represents centrifugal and Coriolis terms,

D ∈ R
n represents the dissipative terms due viscous fric-

tion, G ∈ R
n are the gravitational terms, τ ∈ R

n are the joint
torques and θ ∈ R

m are the motor positions, that are the in-
puts to the actuators. If the motors were directly (rigidly)
connected to the links (i.e., θ = q) the joint torques τ could
be considered as control input (Siciliano and Khatib 2008).
In the present paper, however, we consider robots equipped
with compliant actuators, a model of which is introduced in
the following.

2.2 Compliant actuators

If the actuators have in-built compliance, the joint torques
τ cannot be directly commanded.2 In such cases, the
torque function is in general complicated, position de-
pendent, see (1), and can only be indirectly modulated
through control of the motor positions θ . A viable ap-
proach for this, is to use servo-control on θ to adjust
the length and the moment-arm of the compliant ele-
ments (i.e., springs) embedded in the actuator (Ham et
al. 2007; Hurst et al. 2010). In the following, we con-
sider a model of VSAs that allow simultaneous torque and
stiffness modulation. This model includes the dynamics
of the servo-controlled motors and the compliant mecha-
nism.

2.2.1 Dynamics of the motors

In this paper, we consider the motor positions θ to be servo-
controlled through critically-damped second-order dynam-
ics,

θ̈ + 2αθ̇ + α2θ = α2θd, (2)

2This is because on compliant actuators the joint torques do not corre-
spond to the motor torques directly.

where3 α = diag(α1, . . . , αm) ∈ R
m×m are positive gains

and θd ∈ R
m are the desired angles (i.e., motor angles re-

flected through gear reduction). The equation above models
the servo-controlled closed-loop dynamics of the position
input to the variable stiffness actuators. The admissible val-
ues for α (i.e., one parameter per equation) are limited by the
bandwidth of the motor-gearbox unit under the implemented
servo control loop. Using α ∈ (0,αmax], (2) provides motor
positions that can be tracked by the real actuators. In prac-
tise, αmax is estimated from velocity limits of the servo sys-
tem, or identified by fitting the response of the real actuators
with the response of (2) obtained under the same excitation
θd . Setting α = αmax provides full exploitation of the dy-
namic range of the actuators, while setting α ≺ αmax allows
one to limit the dynamic range (maximum speed and accel-
eration) of the actuators.

In addition to the dynamic constraints represented by (2),
there are often also range constraints on the motor positions.
The admissible set defined by these constraints is given by

Θ = {
θ ∈ R

m : θmin � θ � θmax

}
, (3)

where θmin and θmax are the lower and the upper bounds to
the admissible motor positions. In this paper we will explic-
itly incorporate (3) into the optimal control formulation (see
Sect. 2.3.1) when devising the optimal motor commands and
the corresponding torque/stiffness modulation.

2.2.2 Torque modulation

On compliantly actuated systems, the relation between the
joint torques, joint angles and the motor positions is given
in the following form4

τ (q, θ) = AT (q, θ)F(q, θ), (4)

where A ∈ R
p×n (p ≥ n) is the moment-arm matrix, defined

by the geometric attributes of the actuators, and F ∈ R
p are

the corresponding forces due to the elastic elements (charac-
terised by the physical attributes of these elements). As indi-
cated in (4), both the moment arm and the associated forces
may explicitly depend on the motor positions θ . As will be
subsequently discussed, this dependence may allow one to
independently modulate the joint torques and the (passive)
joint stiffness of the actuators.

3Where α2 = diag(α2
1, . . . , α2

m).
4While in the present paper, the actuator torque is assumed to be po-
sition dependent (as is the case in the majority of VS actuators), the
formulation remains valid for cases where the torque is velocity de-
pendent (e.g., due to viscoelastic forces).
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2.2.3 Stiffness modulation

Using (4), the passive joint stiffness of the actuators K :=
−∂τ/∂q ∈ R

n×n, can be computed as

K(q, θ) = −∂AT

∂q
F − AT ∂F

∂q
. (5)

Relation (5) allows one to identify the conditions under
which changing the motor positions θ leads to active mod-
ulation of K. Specifically, the first term in (5) indicates that
the joint stiffness can be directly changed by modulation
of the elastic force F through θ , if the moment arm A de-
pends on the link-side position (e.g., Mitrovic et al. 2011).
If the moment arm does not depend on q, then joint-level
stiffness modulation requires either (i) a non-linear force–
angle relation (i.e., the stiffness, defined by KF = −∂F/∂q,
should be motor position dependent) or (ii) a motor posi-
tion dependent moment arm. The former is the mechanism
used in many antagonistic actuators (e.g., English 1999a;
Migliore et al. 2007), while the latter allows joint stiffness
modulation, even if KF is constant (e.g., Ham et al. 2007;
Kim and Song 2010). Regardless of which of these mech-
anisms is employed, we assume that the joint torque func-
tion (4) is redundant with respect to the motor positions (i.e.,
m > n) enabling (but not ensuring) simultaneous and inde-
pendent torque and stiffness modulation on one or more of
the joints.

2.3 Optimal control formulation

An optimal control problem is defined with a performance
criterion which is minimised (or maximised) with respect
to the control actions. There are two types of physical con-
straints that apply to this minimisation in general. The first
comes from the plant dynamics while the second is due to
the physical restrictions on the realisable control actions.

In the following, we define the control inputs, propose
a state-space representation of the dynamics, introduce the
computational framework used in this work and discuss ap-
plication of the present formulation to compliantly actuated
robots.

2.3.1 System dynamics and control constraints

In this paper, we propose a state-space representation of a
variable stiffness system that includes the rigid body dynam-
ics of the robot (1) and the closed-loop dynamics of the mo-
tors (2). In this representation,

ẋ = f(x,u), (6)

x = (xT
1 ,xT

2 ,xT
3 ,xT

4 )T = (qT , q̇T , θT , θ̇
T
)T ∈ R

2(n+m) is
the state vector,

f =
⎡

⎢
⎣

x2
M(x1)−1(τ (x1,x3) − C(x1,x2) − D(x2) − G(x1))

x4
−2αx4 − α2x3 + α2u

⎤

⎥
⎦ ,

is the non-linear vector field while u = θd ∈ R
m are the

control inputs associated with the desired motor positions,
see (2).

In the model above, the diagonal matrix α ∈ R
m×m pro-

vides a simple way to incorporate the bandwidth limitations
of the motor dynamics (see Sect. 2.2.1). In addition, the con-
straints on the motor positions (3), defined by θ ∈ Θ (where
Θ = {θ ∈ R

m : θmin � θ � θmax}), can also be incorporated
through control constraints defined by

u ∈ U = {
u ∈ R

m : θmin � u � θmax

}
. (7)

This is because u ∈ U implies θ ∈ Θ under (2).
The three important ingredients in this formulation are:

(a) the intrinsically non-linear state dependent torque model
(4), that is specific to the variable stiffness actuator,

(b) the bandwidth limitation of the actuators, that is incor-
porated by (2) and

(c) the range constraints on the (desired) motor positions
enforced by (7).

Formulations that utilise idealistic VSA models (e.g., lin-
ear torque models), instead of the design specific non-linear
one (4), may not be able to exploit the intrinsic compliance
of the system to improve performance. Moreover if (b) and
(c) are not included in the formulation, than the planned op-
timal strategy may not be applicable under real-world condi-
tions. This is because disregarding (b) allows instantaneous
modulation of the elastic joint torque and the joint stiffness,
while not including (c) would enable unconstrained joint
torque and stiffness modulation. Neither of these is possi-
ble on a realistic VS actuator.

2.3.2 Control objective

Within the framework of optimal control, a wide variety of
tasks can be represented using the following formulation:
For a given finite time interval t ∈ [0, T ], and for a given ini-
tial state of the system x(0) = x0, find an admissible control
law u = u(t,x) ∈ U that minimises the optimisation crite-
rion

J = h
(
x(T )

) +
∫ T

0
c
(
x(t),u

(
t,x(t)

))
dt, (8)

where h(x(T )) ∈ R is the terminal cost, while c(x,u) ∈ R is
the running cost used to encode the control objectives within
the formulation (Nelson 1983).

It is known that defining the objective function is non-
trivial for many tasks (Anderson and Pandy 2001; Bobrow
et al. 1985; Flash and Hogan 1985; Pandy et al. 1995;
Uno et al. 1989). This is mainly because the relation between
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the cost and the optimal behaviour are often non-intuitive
(Todorov 2004), but also because different costs may lead
to similar behaviour for a given task (Collins 1995). Despite
these issues, representation of “explosive movement tasks”
with an objective function is in many cases unambiguous
(Pandy et al. 1990). One of the main reasons for this is
that such objective functions are defined by the kinematic
attributes of the movement with no emphasis on minimising
the effort cost associated with the task.5 This is exemplified
in Sect. 3.1.3 where we demonstrate how to define (8) to
represent an explosive ball throwing task.

2.3.3 Solution method

For non-linear plant dynamics (6) and non-quadratic cost (8),
a globally valid optimal control law could be derived by
means of dynamic programming (Bellman 1957). This
method requires one to find the general solution to the
non-linear Hamilton-Jacobi-Bellman (HJB) partial differ-
ential equation in order to define the optimal feedback con-
trol law u = u(t,x) (Bryson and Ho 1975; Stengel 1994).
While the HJB equation provides a sufficient condition to a
global optimal feed-back control, it is computationally ex-
pensive and as such less attractive for complex non-linear
systems.

To circumvent this issue, one may utilise trajectory op-
timisation to define an open-loop optimal control u = u(t)

provided by Pontryagin’s maximum principle (PMP) (Kirk
1970; Pontryagin et al. 1962). According to this method, the
optimal control input can be computed from the solution of a
non-linear two-point boundary value problem.6 While appli-
cation of PMP is not intractable, it often requires good ini-
tialisation, and a sophisticated numerical treatment, to con-
verge to the optimal solution (Betts 1998). Another alter-
native is to employ differential dynamic programming (Ja-
cobson and Mayne 1970), or the iterative linear quadratic
regulator/Gaussian (iLQR/G) framework (Li and Todorov
2004, 2007) that uses a local (quadratic or linear) approx-
imation of the system dynamics and (quadratic approxima-
tion of) the objective function to improve computational ef-
ficiency. In the present paper we compute the control actions
for the non-linear optimal control problem (6) and (8) using
the iLQR framework.

Procedurally, the iLQR method is initialised with a nomi-
nal control sequence û(t) and the corresponding state trajec-
tory x̂(t). These are then iteratively improved by means of
sequentially solving a set of local LQR sub-problems. The

5This is indeed the case in many athletic disciplines (e.g., shot put, dis-
cus throw, hammer throw, javelin throw, high jump) executed through
explosive actions.
6This two-point boundary value problem defines the stationary point
of the optimal control problem (6) and (8). In this way, it provides a
necessary condition to find a locally optimal solution.

sub-problems are formed by linear approximation of the sys-
tem dynamics (6),

δẋ = fxδx + fuδu, (9)

and quadratic approximation of the objective function (8),

�J = hT
x δx(T ) + δxT (T )hxxδx(T )

+
∫ T

0

(
cT

x δx + cT
u δu

)
dt

+
∫ T

0

1

2

(
δxT cxxδx + δxT cxuδu + δuT cuuδu

)
dt,

(10)

evaluated along the current state and control sequence.7

This sub-problem, (9) and (10), is solved for (δx, δu) via
a modified Ricatti-like system and a new (improved) se-
quence is formed by updating the nominal trajectory x̂ ←
x̂ + δx and û ← û + δu. When the method converges
(i.e., �J ≈ 0 achieved numerically), it returns the opti-
mal state and control trajectories (x∗(t),u∗(t)) together
with a set of feedback-gains8 L∗(t) ∈ R

m×2(n+m). The lo-
cally valid9 feedback control law for optimal task execu-
tion can then be defined as u = u∗(t) + L∗(t)(x − x∗(t)).
By disregarding the feedback corrections, the method pro-
vides a feed-forward optimal control sequence defined by:
u = u∗(t).

2.3.4 Application to compliant control

Using the optimal solution given by x∗ = (q∗T (t), q̇∗T (t),

θ∗T (t), θ̇
∗T

(t))T , the optimal joint torques τ∗ = τ (q∗(t),
θ∗(t)), and the optimal joint stiffness K∗ = K(q∗(t), θ∗(t))
can be obtained from (4) and (5) by substitution. More-
over, if the optimal feedback gains10 L∗ = (Pq(t),Dq(t),

Pθ (t),Dθ (t)) can also be computed, then the control in-
puts will be given in a form of a locally valid feedback
control law:11 u = u∗(t) + Pq(t)(q − q∗(t)) + Dq(t)(q̇ −
q̇∗(t)) + Pθ (t)(θ − θ∗(t)) + Dθ (t)(θ̇ − θ̇

∗
(t)). This con-

trol law would lead to a local feed-back control of the elas-
tic torque and the associated stiffness properties of the VS
actuators. While the feedback correction part may not be

7The lower indices in (9) and (10), denote partial derivatives with re-
spect to the corresponding variables.
8If the control inputs are saturated (i.e., restricted with “hard con-
straints” (7)), the corresponding feedback gains may be set to zero,
as suggested in Li and Todorov (2007). Alternatively, one could utilise
penalty terms to embed the inequality constraints in the objective func-
tion (8), see Stengel (1994).
9This control law is only optimal in the neighbourhood of the optimal
open-loop motion generated by: u = u∗(t).
10Pq ∈ R

m×n, Dq ∈ R
m×n, Pθ ∈ R

m×m and Dθ ∈ R
m×m.

11Note that the feedback correction on u∗ is a PD-control performed
with optimal position and velocity gains.
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Fig. 1 (a) Configuration of the arm with the inertial (m1,m2,m3,

I1, I2) and geometric (l1, l2, lc1, lc2) parameters. (b) Ball throwing.
(c) Prototype of the variable stiffness actuator (identical for both
joints). θ1 (and θ2) can be used to change the equilibrium position of
the link, while θ3 (and θ4) adjusts the spring pretension. The physical
parameters of the dynamics and the actuators are reported in Table 1

of a central importance for short movements, it may be-
come beneficial when the motion is long and/or when the
system dynamics are not well identified. Such feedback in-
troduces additional energy cost and in practise it may also
lead to stability issues due to noise and the limited band-
width of the control loop. In this work we focus on feed-
forward motor position control: u = u∗(t), to generate the
desired joint torque and stiffness, supported with the zero-
time-delay feedback given by the intrinsic compliance of the
VSAs.

In order to obtain the motor commands and the associ-
ated torques and time-varying stiffness profiles, the present
framework optimally resolves the actuation redundancy
(i.e., u ∈ R

m, m > n) in a system dependent and task specific
way (Todorov 2004). In this light, the actuation redundancy
is not only resolved, but optimally exploited to devise the
best stiffness profiles for the system (1), actuator (4) and
task (8) considered.

2.3.5 Implementation and limitations

In the iLQR implementation, we utilise finite differences to
derive the linear approximation of the system dynamics (9),
and the quadratic approximation of the cost (10) wherever
an exact analytical approximation is not feasible. Further-
more, we use a fixed-step fourth-order Runge-Kutta method
for numerical integration of the dynamics during the itera-
tions. It is also important to point out that the iLQR method
is local, and in order to circumvent local minima issues, we
utilise multiple (random) initialisations to find the best pos-
sible solution.

The model-based iLQR method is a viable optimisation
tool when the model of the system dynamics is reasonably

Table 1 Geometric and inertial parameters of the two-link arm and
the variable stiffness actuators. The viscous frictional parameters at the
joints are defined by b1 and b2

(∗) l∗ [m] lc∗ [m] m∗ [kg] I∗ [kg m2] b∗ [ N m s
rad ]

1 0.250 0.135 0.42 0.0022 0.01

2 0.305 0.115 0.23 0.0017 0.01

(∗) κ∗ [ N
m ] r∗ [m] B∗ [m] C∗ [m] q0∗ [rad]

1 771 0.01 0.03 0.125 −π/2

2 771 0.01 0.03 0.125 0

The mass at the moving end of the arm is defined by: m3 = mb + mm

where mb = 0.075 kg is the mass of the ball while mm = 0.05 kg is the
mass of the magnet. The range limits on the control inputs/motor posi-
tions are umin = θmin ∈ [−2π/5,−π/2,0,0]T rad and umax = θmax ∈
[2π/5,π/2,π/2,π/2]T rad. The “servo gain parameter” in (6) is set
to: α = diag(

√
75,

√
75,

√
250,

√
250) s−1. Unless redefined, these pa-

rameters are used in the simulations and experiments

well identified. If such model is not available analytically
or too complex to estimate accurately, one could employ
any model-free method for optimal control over u, (e.g., see
Lagoudakis and Parr 2003; Peters and Schaal 2006). Alter-
natively, one could also use dynamics learning (e.g., iLQG-
LD, see Mitrovic et al. 2010) where the model is acquired
from data.

3 Optimal variable stiffness control

In this section, we investigate the proposed optimal control
formulation to devise appropriate controllers for dynamic,
explosive movements. As an example, we look at the prob-
lem of throwing a ball using a two-link arm equipped with
variable stiffness actuators. Following the problem formula-
tion, we analyse the control strategies obtained by our ap-
proach in the light of varying the objective function and the
dynamical properties of the system. Our goal is to verify
that the proposed approach is able to predict intuitive but
non-trivial behaviours, before going on to analyse the ex-
ploitation of variable stiffness in greater depth.

3.1 Problem formulation

Here we present the system dynamics, introduce the variable
stiffness actuation mechanism, and define the optimisation
criterion for a ball-throwing task.

3.1.1 System dynamics

The configuration of the arm, depicted in Fig. 1a, is specified
with joint angles q = (q1, q2)

T , while the system dynamics
(left hand side of the equation of motion (1)), is specified
by the symmetric and positive definite mass matrix M, the
Coriolis and normal inertial terms C, viscous friction D and
the gravitational terms G defined by (11):
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M =
[

I1 + m1l
2
c1 + I2 + m2(l

2
1 + 2l1lc2 cos(q2) + l2

c2
) + m3(l

2
1 + 2l1l2 cos(q2) + l2

2) ×
I2 + m2(l

2
c2 + l1lc2 cos(q2)) + m3(l

2
2 + l1l2 cos(q2)) I2 + m2l

2
c2 + m3l

2
2

]

,

C =
[
−(m2lc2 + m3l2)l1 sin(q2)(2q̇1q̇2 + q̇2

2 )

(m2lc2 + m3l2)l1 sin(q2)q̇
2
1

]

, D =
[
b1q̇1

b2q̇2

]
, (11)

G =
[
g(m1lc1 + m2l1 + m3l1) cos(q1) + g(m2lc2 + m3l2) cos(q1 + q2)

g(m2lc2 + m3l2) cos(q1 + q2)

]

.

The geometric and inertial parameters of the model are given
in Table 1.

3.1.2 Actuation model

As an example of a physically realisable VSA, we investi-
gate throwing using an arm equipped with variable stiffness
actuators (MACCEPA12) introduced by Ham et al. (2007).
In this actuator (depicted in Fig. 1c), two servo motors are
employed at each joint for (i) direct control of the equilib-
rium point of the actuator θ1,2 and (ii) control of the pre-
tension of the (linear) spring θ3,4. The relations between the
motor side positions θ = [θ1, θ2, θ3, θ4]T , joint torque τ and
stiffness13 K are given by

τ =
[

B1C1 sinα1
E1

0

0 B2C2 sinα2
E2

]

︸ ︷︷ ︸
AT

[
κ1(ls1 − l01)

κ2(ls2 − l02)

]

︸ ︷︷ ︸
F

, (12)

K =
[
k1 0
0 k2

]
=

[
− ∂τ1

∂q1
0

0 − ∂τ2
∂q2

]

, (13)

where Bi , Ci , αi = θi − qi + q0i and Ei =√
B2

i + C2
i − 2BiCi cosαi , i ∈ {1,2} specify the geometry

of the actuators, lsi = riθi+2 + Ei and l0i = Ci − Bi are
the extended and unextended length of the springs while κi

are the spring constants (see Fig. 1c for an illustration and
Table 1 for the specific parameter values).

By changing the motor positions θ , the torque (12) and
the stiffness (13) of the joints can be simultaneously mod-
ulated, however, these relations are highly non-linear (see
Fig. 2) and, moreover, the range of motion of the adjuster
servos is limited, restricting the achievable value of the joint-
stiffness for a given torque. Such physical limitations (7),

12Mechanically Adjustable Compliance and Controllable Equilibrium
Position Actuators.
13In the present case the stiffness matrix has diagonal elements only.
Off-diagonal elements in the stiffness matrix appear if the configura-
tion change on one joint induces torque change on an another joint
(e.g., see a human arm model of Mussa-Ivaldi et al. (1985) that incor-
porates bi-articular muscles).

Fig. 2 Depicted is: (a) the torque–angle and (b) the torque–stiffness
characteristic of the (first) joint. By changing θ1 (through control in-
put u1), the torque–angle curve translates in figure (a) without affect-
ing the torque–stiffness characteristic of the joint depicted in (b). The
torque–stiffness curve can be altered by modulating the pretension of
the spring, using θ3 (controlled through u3). This makes the present
actuator a variable stiffness actuator. Note that, if θ3 is kept constant
(i.e., u3 = θd3 = θ3), the torque–stiffness curve in (b) is fixed and si-
multaneous torque–stiffness modulation is not possible

along with the non-linearity of the dynamics, make (motion,
torque and stiffness) control of this system non-trivial.

3.1.3 Performance criterion

The performance criterion for the optimal ball throwing task
is defined by

Jw = −d + 1

2

∫ T

0

(
w‖F‖2 + ε‖u‖2)dt, (14)

where d = d(q(T ), q̇(T )) is the distance thrown (measured
at the horizontal ground level y0, see Fig. 1b), ‖ ∗ ‖ denotes
the Euclidean norm, F = F(q, θ) is the spring force, w ∈
[0,∞) defines the relative importance of the distance max-
imisation and effort minimisation terms, ε‖u‖2 is a small
regularisation term (i.e., 0 < ε � 1) while T is the time
permitted for task execution (i.e., t ∈ [0, T ]). In many dy-
namic tasks, effort (here represented by the squared spring
forces) plays a significant role in selecting the optimal so-
lution, however in explosive movements its importance is
highly diminished. To show this, we utilise the weighting
parameter w to investigate the asymptotic solution of the
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optimisation as the effort term vanishes, i.e., as w → 0 and
Jw ≈ −d (see Sect. 3.2.1).

The distance thrown depends on the configuration of the
arm at release, and is computed from the ballistic equation
of the flying ball

d = xm(q) + ẋm(q, q̇)Tm(q, q̇), (15)

where xm = l1 cos(q1) + l2 cos(q1 + q2) and ẋm =
−l1 sin(q1)q̇1 − l2r sin(q1 + q2)(q̇1 + q̇2) denote the hori-
zontal position and velocity of the ball, and Tm is the time
until the ball hits the ground. The latter is computed as

Tm = 1

g

(
ẏm(q, q̇) +

√
ẏm(q, q̇)2 + 2g

(
ym(q) − y0

))
(16)

where g is the gravitational constant, and ym = l1 sin(q1) +
l2 sin(q1 +q2), ẏm = l1 cos(q1)q̇1 + l2r cos(q1 +q2)(q̇1 + q̇2)

denote the vertical position and velocity of the ball respec-
tively.

3.2 Optimal solutions

In the following, we confirm that our methodology is able to
find optimal solutions adapted to the problem setup. In par-
ticular, we first look at how varying the objective function
(i.e., varying w in (14)) affects the solutions found by our
framework. We then look at how changes to the system dy-
namics (specifically, changes to the mass of the ball thrown)
modulates the behaviour found by the present approach.

3.2.1 Variation of the objective function

First, we look at how the solutions found by the proposed
framework depend on the choice of the relative importance
of the distance and effort terms (defined by the weighting
parameter w in (14)).

Typical simulation results are depicted in Fig. 3. As can
be seen, depending on w, a variety of optimal behaviours
are obtained (Fig. 3a) that are characterised by different ve-
locity, torque and stiffness profiles (Fig. 3d–f). As expected,
lower w (decreased penalisation of effort) results in larger
ball velocity and longer distance throws (Fig. 3b, c). This
exemplifies a performance-effort trade-off that characterises
many dynamic movement tasks. However, it is interesting
to note that, as the penalisation of effort diminishes (i.e.,
w → 0) there is an asymptotic behaviour of the distance
thrown and the release velocity (Fig. 3b, c) to the maximal
values. The optimal solution associated to this limiting case
corresponds to the explosive ball-throwing task, see Fig. 3a
(black line, w = 10−6).

It is also interesting to note that a common strategy
emerges in the movements, irrespective of the w chosen.
This is a characteristic counter-movement action (Cho 2004)

Fig. 3 (a) Stroboscopic view of the optimal throwing motion: ex-
plosive movement w = 10−6 (black line) and w = 10−3 × {5,7,9}
(grey lines). (b) Distance thrown. (c) Ball velocity. (d) Joint veloci-
ties. (e) Joint torques. (f) Joint stiffness. The throwing motions are per-
formed for a fixed time duration T = 2 s. The arm is initialised from the
vertical resting configuration, q(0) = (−π/2,0)T , q̇(0) = 0, θ(0) = 0,
θ̇(0) = 0

whereby there is an initial back-swing prior to the rapid for-
ward acceleration before release. We note that such a strat-
egy is often used by humans during fast, explosive move-
ments (i.e., the “stretch shortening cycle” during throwing,
hitting, jumping, kicking) (Komi 1992; Schenau et al. 1997).
The numerical predictions depicted in Fig. 3, obtained for a
simple robotic device, are consistent with this biologically
plausible realisation.



Auton Robot

Fig. 4 Throwing movement predicted for two different masses:
mb = 0.075 kg (black line) and mb = 0.3 kg (white line). The optimisa-
tion selects an under-arm strategy for the heavier ball and an over-arm
strategy for the light ball. The arm is initialised from the vertical rest-
ing configuration. The duration of the motions is fixed to T = 1.5 s,
and we selected w = 10−6 to specify the relative importance of the
effort during the task execution. In order to make the system capa-
ble (i.e., strong enough) of over-arm throwing, the basic parameters
given in Table 1 are modified such that: the equilibrium configuration
and the stiffness of the springs is set to: q0 = (π/6,π/6)T rad and
κ = (1542,1542)T N/m respectively

3.2.2 Variation of the dynamics

In this numerical investigation, we look at how changes to
the dynamics of the system affect the solutions found by the
proposed framework. Here, we analyse the effect of chang-
ing the mass of the ball on the throwing motion. A repre-
sentative result is shown in Fig. 4. As can be observed, for
two different masses (i.e., mb = 0.075 kg and mb = 0.3 kg)
very different throwing strategies emerge. In particular, for
the heavy ball an under-arm movement is predicted, while
for the lighter ball an over-arm strategy is obtained.

Emergence of the two strategies can be explained by con-
sidering the dynamic effects during the corresponding task
execution. Specifically, if the weight of the ball is large, and
if w is non-negligible in (14), then under-arm throwing may
be preferable from the optimisation point of view. This is
because lifting a heavy ball requires significant effort pe-
nalised by the second term in the control objective (14).
This is also the case when the actuators are weak and, as
such, not capable of lifting the ball up. In that case, under-
arm throwing is the only viable strategy, even in the case
of explosive movements (i.e., when effort is not penalised).
Following the same argument, if the ball is light, over-arm
throwing is expected to lead to larger distance thrown. In
this case the motion is fast, dominated by the inertial dy-
namics, and executed through a fast counter-movement ac-
tion. Again we note that both of these strategies are simi-
lar to those naturally employed by humans (Bingham 1988).
Given a heavy ball, humans prefer to throw under-arm (as,
for example, in ten-pin bowling), while for lighter balls they

more commonly throw over-arm when attempting to send
the ball over a large distance (as, for example, when fielding
in cricket or baseball). The result presented in Fig. 4 demon-
strates that the present optimal control approach is able to
find such strategy change in task execution depending on
the dynamics (i.e., weight of the ball).

4 Exploiting variable stiffness through optimal control

It is often argued that variable stiffness actuation is benefi-
cial in order to achieve a human-like performance in highly
dynamic, explosive tasks.14 Here we explore whether such
benefits can arise from the ability of VSAs to simultaneously
modulate joint torque and stiffness, and to amplify power
(store energy).

4.1 Benefit of stiffness variation

To investigate the benefit of optimal control with variable
stiffness, we compare the throwing performance of the same
device using:

(a) optimal variable stiffness control—where the joint
torque and the joint stiffness are independently and op-
timally modulated through control, and

(b) optimal fixed stiffness control—where the joint torque
and the joint stiffness cannot be independently modu-
lated but are simultaneously optimised during the mo-
tion.

Specifically, while in the former case all components in
u = [u1(t), u2(t), u3(t), u4(t)]T are optimised in time to in-
dependently control the joint torques and the joint stiffness,
in the latter case commands to the pre-tensioning servos are
fixed to optimal constant values: u = [u1(t), u2(t), u3, u4]T
(i.e., u3,4 = const.). Note that, on the MACCEPA keeping
u3,4 constant does not ensure constant joint stiffness, but it
does ensure that the joint torque and stiffness cannot be in-
dependently optimised (see Fig. 2b in Sect. 3.1.2).

A comparison between optimal variable and optimal
fixed stiffness control is provided in Fig. 5. In Fig. 5a1, a2
we see that the throwing performance is improved for the
case when both torque and stiffness are simultaneously opti-
mised (d = 5.3 m, Jw ≈ −5.3) as opposed to using an opti-
mal fixed torque–stiffness relation (d = 4.3 m, Jw ≈ −4.3).
The difference between the activation patterns can be clearly
seen by comparing Fig. 5c1, c2 where, in the former case,

14As an example, human peak performance as characterised by the ro-
tation speed of the shoulder during a baseball pitch of a professional
pitcher, is between 6900–9800◦/s (Herman 2007). This kind of high-
performance task execution is not in the scope of present robotic sys-
tems.



Auton Robot

Fig. 5 Exploitation of variable stiffness actuation. Stroboscopic
view of the throwing motion: (a1) optimal variable stiffness con-
trol (i.e., independent torque/stiffness control) and (a2) control
with fixed torque–stiffness relation (u3,4 = const.—non-independent
torque/stiffness control). (b1, b2) Optimal equilibrium position com-
mands. (c1, c2) Optimal spring pretension commands. (Note, the op-
timal constant values, used in (c2), correspond to the maximal pre-
tension, u3 = u4 = π/2 rad). (d1, d2) Optimal torque–angle curves.
(e1, e2) Optimal torque–stiffness curves. The grey lines in (e1, e2)

correspond to minimum (inner loop) mid-range (dot/dashed lines)
and maximum (outer loop) pre-tension (stiffness), respectively. The
corresponding grey lines in (d1) and (d2) correspond to the pas-
sive torque–angle curves on the joints at zero equilibrium position
commands (i.e., u1,2 = 0). For the purpose of demonstration, we
consider an explosive task specified with w = 10−6, T = 3 s and
α = diag(5,5,

√
250,

√
250) s−1 for these two systems. The arm is ini-

tialised from a vertical resting configuration with fully relaxed springs

the spring pre-tension (and thereby the stiffness) is modu-
lated by control throughout the movement, while in the lat-
ter, it is not modulated by control.15

15There is a transient at the start of the movement as the pre-tensioning
motors move to the optimal (but fixed) commanded positions.

Looking at the optimal solution with no independent
torque–stiffness modulation, it appears that stiffness is max-
imised: in Fig. 5e2 we see that the solution remains on
the constant-command iso-line where the stiffness is great-
est. On the MACCEPA this means that the torque–stiffness
curve selected by optimisation is the one that gives the
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largest torque range to the joint. In contrast, if the pre-
tension is allowed to vary, the functional relation between
torque and stiffness is modulated periodically to improve
task performance (see Fig. 5c1, e1). During this modulation,
the torque range, and more importantly the stiffness of the
joint, is reduced, allowing the arm to be “more decoupled”
from the actuators and move more freely during the task ex-
ecution. This leads to larger motion range and improved task
performance (i.e., larger distance thrown).

During the task execution, power is amplified by cycli-
cally extending and compressing the springs while moving
the arm back and forth. The physical implication of such
strategy is analysed in greater depth in the next section.

4.2 The benefit of passive compliance

One of the distinct feature of VSAs that incorporate pas-
sive elasticity into the system by design, is their ability to
store mechanical energy and to utilise the stored energy to
enhance the power output of the actuators. This may be
achieved by making the elastic components absorb the en-
ergy generated by the motors at a low rate, and then releas-
ing this energy at a high rate to drive the link-side motion
(Bingham 1988; Paluska and Herr 2006). This is particu-
larly important for explosive movements where it can signif-
icantly enhance the peak joint performance (Alexander and
Bennet-Clark 1977; Jöris et al. 1985; Wilson et al. 2003).

Here, we show that the present optimal control formula-
tion naturally exploits this physical mechanism to improve
task performance. For this purpose, we first define the condi-
tions required for energy storage and power amplification on
compliantly actuated systems and then identify the presence
of these physical effects along the optimal solution.

4.2.1 Conditions for power amplification and energy
storage

During the motion of the system, the input power delivered
by the motors is given by

pin = pout + Ės = τT q̇ + Ės(q, θ), (17)

where pout is the mechanical power output of the VSA,
while Ės is the time derivative of the elastic energy accumu-
lated in the springs.16 Using (17), we can define two distinct
operation modes depending on the energy flow during the
motion; the first is

(a) power amplification, that takes place if the (positive)
output power delivered by the VSA, is higher than the

16The potential energy stored by the linear springs in the present ac-
tuators is computed as: Es(q, θ) = 1

2 F(q, θ)T K−1
s F(q, θ) where F is

the spring force while Ks = diag(κ1, κ2) is the matrix of the spring
stiffness constants.

input power provided by the motors i.e., pout > 0 and
pout > pin (Ės < 0), while the second is

(b) energy storage, which occurs when the VSA is back-
driven by the rigid body dynamics. In this latter case,
the output power is negative i.e., pout < 0 and the energy
given by the link-side motion is stored by the actuators
Ės > 0.

By alternating between these two modes, energy stored by
the springs in an earlier phase of motion can be re-utilised to
enhance the output power of the actuators in a latter phase
(e.g., when releasing the ball).

4.2.2 Optimal power flow and energy storage during the
motion

The cyclic motion observed in Fig. 5 belies a strategy of al-
ternating between the power amplification (light gray) and
energy storage (black) modes of operation as indicated in
Fig. 6. There are two characteristic power peaks just before
ball-release indicating: (i) significant power amplification at
the end of the movement and (ii) a proximal-to-distal power
flow, see Fig. 6b1, b2. Such (an optimal) proximal-to-distal
power flow was suggested to be connected with the charac-
teristic sequential action of body segments from larger prox-
imal to smaller distal links observed in humans (Jöris et al.
1985; Putnam 1993). In our passively compliant system, this
serves to gradually increase the peak ball velocity with each
swing until the final release (Fig. 6a).

Looking at Fig. 6c, we see that throughout the move-
ment, the mechanical energy input to the actuators (Ein),
is lower than that required for the same motion realised:
(i) without exploiting the energy storage effects (e.g., us-
ing non-compliant actuators Eo) and (ii) without exploit-
ing the inertial and gravitational effects during the motion
(e.g., using non-backdrivable actuators E+). This example
demonstrate the benefit passive compliance may provide by
enabling the kinetic energy and the gravitational potential
energy to be stored during the movement. While this energy
storing mechanism may contribute to improve mechanical
efficiency of the system, it does not imply that compliant
actuators would consume less electrical energy compared
to their non-compliant counterparts. Indeed, this may heav-
ily depend on how much the actuators are actively used,
but also the efficiency of the gear trains, motors and the
power electronics employed. On the other hand, it is clear
that non-compliant actuators cannot provide power amplifi-
cation (i.e., the output power cannot exceed the input power
provided by the motors: Ės = 0, pout = pin). This high-
lights the benefit that passively compliant actuators can pro-
vide during explosive movements, where high power out-
put (possibly obtained by optimal power amplification) is
necessary for effective task execution (Jöris et al. 1985;
Newton et al. 1996).
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Fig. 6 (a) Velocity of the ball during corresponding to the throw-
ing motion depicted in Fig. 5. (b1, b2) Mechanical power flow
through the actuators. The power flow is decomposed into the in-
put power pin, output power pout and the power flow through the
springs Ės (i.e., pout = pin − Ės ). (c) Mechanical energy supplied
by the motors Ein, energy stored in the actuators Es (i.e., poten-
tial energy of the springs), and output energy delivered by the VS
actuators Eout (i.e., Ein = Es + Eout where Eout = ∫ t

0 pout (s)ds).
The same plots also contain the input mechanical energy that would
be ideally required to generate the same motion by: (i) non-com-
pliant but back-drivable actuators that are not able to store energy
Eo(t) = 1

2

∫ t

0 (p1out + |p1out | + p2out + |p2out |)ds, and (ii) non-back-
drivable actuator where both acceleration and braking are actively gen-
erated E+(t) = ∫ t

0 (|p1out | + |p2out |)ds

It is important to note that the present objective func-
tion (14), used to generate the throwing motion, does not
directly encode the observed sequential energy-storing and
power-amplification strategy. This strategy emerges from
the optimisation that is able to exploit the coupling between
the dynamics and the actuators in the present formulation.

5 Experiments: optimal variable stiffness versus
optimal fixed stiffness control

In this section, we present ball-throwing experiments using
a two-link variable stiffness robot, see Fig. 7a. This devices
is capable of simultaneous and independent joint torque
and joint stiffness modulation using VS actuators (Ham
et al. 2007). Each actuator is realised with two servomo-
tors (Hitec HSR-5990TG) per joint, controlled with 50 Hz
PWM signals from a micro-controller (ATmega2560). The
joint angles are measured by rotary potentiometers (Alps
RDC503013A). The throwing experiments are performed
with a tennis ball (fitted with a magnetic plate) that weighs
mb = 0.075 kg. During motion, the ball is held with an elec-
tromagnet (Magnet-Schultz, GMHX030X00D02) mounted
at the end of the arm (see Fig. 7a) and released at the final
instant t = T .

The purpose of the experimental is to: illustrate the prin-
ciples of variable stiffness control, demonstrate applicability
of the present formulation to real-world problems, and pro-
vide evidence that supports the numerical predictions ob-
tained by simulations. With regard to the last point, our aim
is to confirm that variable stiffness control can be used to im-
prove task performance (versus fixed stiffness control) under
experimental conditions.

The experimental results reported below correspond to
the simulations presented in Fig. 5. Specifically, the experi-
ment corresponding to variable stiffness control is depicted
in Fig. 7b, c. In Fig. 7b, we observe a reasonable match be-
tween the simulated and the real behaviour, both in motion
and synchronisation ensuring near-to-optimal timing of the
ball release. In Fig. 7b2 we can see that stiffness modula-
tion takes place on both of the joints. Note that by increas-
ing the stiffness (increasing the stiffness commands θ3,4) the
actuators can couple the motion of the links, while by de-
creasing the stiffness the actuators will not impede the mo-
tion of the robot. Both of these can be beneficial during the
movement, namely, while the former allows the actuators
to transfer torques more effectively, the latter enables the
rigid body dynamics to extend the motion range. The throw-
ing performance obtained on the device (distance thrown:
d = 5.1 m) is reasonably close to that predicted by the sim-
ulation (d = 5.3 m, see Fig. 5a1). The difference is mainly
due to the minor mismatches between the real hardware and
the idealised modelling assumptions. These issues, however,
neither adversely affected the coordination pattern during
the motion (please see the experimental video), nor signifi-
cantly altered the throwing performance. Moreover, despite
the natural sensitivity of the thrown distance to delays in
timing (Chowdhary and Challis 1999), the experimental per-
formance is close to the one obtained under idealistic con-
ditions in simulation. We note that this result was obtained
with open-loop execution of the optimal commands, using
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Fig. 7 (a) Two-link variable stiffness arm. (b) Simulated (grey lines)
and measured (black lines): (b1, b2) motor positions θ , (b3) joint an-
gles q and (b4) velocities q̇, of variable stiffness throw. (c) Optimal
variable stiffness control—snapshots of the throwing motion. (d) Opti-

mal fixed stiffness control. The presented experiments for variable and
fixed stiffness control correspond to the simulation results presented
in Fig. 5. For the corresponding videos please see the supplementary
material
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no active feedback. This strategy is often argued to be em-
ployed by humans during fast movements (van Soest and
Bobbert 1993), and may also be preferred on compliantly
actuated robots having slow actuator dynamics.

In addition to the above experiment, we have performed a
fixed stiffness throwing experiment, see Fig. 7d. In Fig. 7c, d
we can compare the variable stiffness and the corresponding
fixed stiffness control experiments. As predicted by the sim-
ulation study (see Sect. 4.1, Fig. 5a1, a2), variable stiffness
control provides a clear performance benefit (experimental:
d = 5.1 m, simulated: d = 5.3 m) compared to the cor-
responding fixed stiffness control (experimental: d = 4 m,
simulated: d = 4.3 m). For qualitative assessment of the re-
alised motion, the reader may refer to the frame sequence
depicted in Fig. 7c, d and the corresponding experimental
video provided in the supplemental material.

6 Discussion: implications for explosive movement
tasks

Hogan (1984) suggested that humans may increase the stiff-
ness of their limb (by antagonistic co-activation) to main-
tain an unstable upright posture in an uncertain environ-
ment. While this strategy is often argued to be energeti-
cally expensive,17 it may turn out to be essential if, for e.g.,
active torque (stiffness) control is not viable under feed-
back delays. Although the utility of such a stiffness con-
trol strategy has been shown in humans (Burdet et al. 2001;
Mussa-Ivaldi et al. 1985) for (unstable) static tasks, the ben-
efit of independent torque and stiffness modulation during
movement is unclear and has yet to be demonstrated.

In this paper, we predict through simulation studies (see
Sect. 4.1), and demonstrate in hardware experiments (see
Sect. 5), that independent torque and stiffness modulation
provides performance improvement in a highly dynamic ex-
plosive movement task, compared to the alternative strategy
where torque and stiffness are not modulated independently,
see also Braun et al. (2011). It is important to note, how-
ever, that such controlled stiffness modulation is often en-
ergetically expensive, and that unlike in unstable and static
tasks, it is not essential to realise explosive dynamic move-
ments.18 Due to these reasons, one of the central questions to
be answered is whether the task performance improvement
provided by independent stiffness modulation justifies the
associated effort (energy) cost. This may not be the case for
task where effort minimisation is an essential part of the con-
trol objective (e.g., w � 1 in (14)). In explosive movements,

17During antagonistic co-activation in humans, muscles do no mechan-
ical work but consume metabolic energy.
18Indeed, an explosive movement can be executed by feed-forward
joint torque modulation, e.g., realised by optimal fixed stiffness con-
trol, as shown in Sects. 4.1 and 5.

however, details of the (optimal) control strategy may not be
devised by minimising an effort cost (e.g., w → 0 in (14)).
Accordingly, in explosive tasks, the benefit provided by in-
dependent stiffness modulation is not conditioned on the ef-
fort cost it requires.

It is important to note however that the above is not suf-
ficient to make independent stiffness modulation beneficial.
This is because the benefit provided by this control modal-
ity, during movement, will also depend on dynamic features
of the actuators: for e.g., how fast can stiffness be changed.
This additional consideration may not be important for static
tasks, but could be crucial to achieve a rapidly varying
(desired) stiffness profile during fast movements. For this
reason, the answer to whether independent torque stiffness
modulation is beneficial during movement does not only de-
pend on whether it can be achieved, but also on how (fast)
it can be realised. This implies that before any theories can
be postulated about the benefit of stiffness modulation in bi-
ological actuation based on this study, the appropriate mod-
elling of the corresponding actuator dynamics (Hill 1938;
Winters and Stark 1985) and their characteristics are in or-
der.

7 Conclusion

In this article, we demonstrate the utility of an optimal con-
trol formulation applied to compliantly actuated robotic sys-
tems. Using this formulation, we devised optimal variable
stiffness control strategies that exploit the system dynamics,
often in a non-intuitive way, that would be difficult to ob-
tain through hand-tuning and other non-algorithmic meth-
ods. In addition, we have presented an analysis of these re-
sults in the light of the energy-storage and power amplifi-
cation ability of compliant actuators, and demonstrated the
benefits of independent torque and stiffness control both in
simulation and experiment. Related to this latter result, we
discussed: why is stiffness modulation justified despite its
inherent cost, and under what condition could it emerge dur-
ing fast movements.

In future work, we intend to: (i) extend this framework by
considering other impedance terms, such as damping, and
(ii) further investigate the role of variable impedance during
dynamic tasks. The proposed computational framework will
be a key tool towards extending these results.
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