Optimal Torque and Stiffness Control in Compliantly Actuated Robots

D.J. Braun¹, F. Petit², F. Huber², S. Haddadin², P. van der Smagt², A. Albu-Schäffer² and S. Vijayakumar¹

¹IPAB, University of Edinburgh, UK ²Institute of Robotics and Mechatronics, DLR, Germany

- Anthropomorphic robots driven by variable-impedance actuators (VIAs) are highly *redundant* in their *kinematics* and *actuation*.
- VIAs are capable of modulating torque and impedance simultaneously but impose complex *actuation constraints*.
- We propose a framework for *optimizing torque and impedance under real-world actuation constraints.*
- Simulations and experiments *validate* this approach *on two conceptually different* variable-impedance systems.

DLR Hand-Arm System

Optimal variable stiffness control

