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Abstract— Anthropomorphic robots that aim to approach
human performance agility and efficiency are typically highly
redundant not only in their kinematics but also in actuation.
Variable-impedance actuators, used to drive many of these de-
vices, are capable of modulating torque and passive impedance
(stiffness and/or damping) simultaneously and independently.
Here, we propose a framework for simultaneous optimisation
of torque and impedance (stiffness) profiles in order to opti-
mise task performance, tuned to the complex hardware and
incorporating real-world constraints. Simulation and hardware
experiments validate the viability of this approach to complex,
state dependent constraints and demonstrate task performance
benefits of optimal temporal impedance modulation.

Index Terms— Variable-stiffness actuation, physical con-
straints, optimal control.

I. I NTRODUCTION

Modern anthropomorphic robots, designed to mimic hu-
man behaviour and performance, are highly redundant in
their kinematics and also actuation (e.g., DLR Hand-Arm
System) [1]. Variable impedance actuators (VIAs), used to
drive these complex devices, are capable of simultaneous
torque and passive impedance (stiffness and damping) mod-
ulation, as opposed to classic torque controlled designs.
To perform impedance modulation [2], VIAs often employ
multiple motors per joint [3]–[8] in contrast to a single
one on a torque-controlled device. However, the benefit of
including more motor units does not come for free. Indeed,
VIAs are highly nonlinear and assert numerous constraints:
range rate and effort limitations that are often neglected on
classical devices. Due to these reasons, in many cases the
benefit of variable-impedance control can only be shown
if the control problem is algorithmically treated and if the
control redundancy is optimally resolved in a task specific
manner [9]–[12].

In this paper we employ non-linear optimal control to
resolve the actuator redundancy, realisingvariable stiffness
control tuned to the task and specificity of the system dynam-
ics. The proposed approach can be used to embed bandwidth
limitations of the actuators and deformation limits on the
compliant elements into the formulation. This formulation
is tested on two conceptually different variable-stiffness
systems both realised in hardware. Its viability for practical
applications is demonstrated by a ball-throwing experiment
implemented on the DLR Hand-Arm System (Fig. 1).
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Fig. 1. DLR Hand-Arm System.

II. M ODELING COMPLIANTLY ACTUATED SYSTEMS

We begin by discussing the dynamics model for a compli-
antly actuated robotic system capable of simultaneous torque
and passive stiffness modulation in a feed-forward fashion1.
We will specifically look at the formalisation of: 1) rigid
body dynamics (i.e.,link-side dynamics) and the motor-
side dynamics of the robot, 2) static torque and stiffness
characteristics of the compliant mechanism that is in-built in
the actuators and 3) the physical constraints imposed by the
bandwidth limitations of the motors and the range limitations
inherent to many VSA designs.

A. Link-side and motor-side dynamics

Consider ann degree-of-freedom robotic system, the
configuration of which is uniquely specified byq ∈ R

n

generalized coordinates (e.g., joint angles). Let this system
be equipped withm compliant actuators (e.g., SEAs and/or
VSAs), and letθ ∈ R

m denote the motor angles reflected
through gear reduction, see Fig. 2. In the following we

Fig. 2. Schematic representation of a variable stiffness system.

1This is unlikeactive stiffness control(e.g., [13]) realised through position
feedback on torque controllable devices.
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define the kinetic and the gravitational potential energy of
the rigid body dynamics2: T = T (q, q̇), UG = UG(q)
and the elastic potential energy of the compliant actuators3

UE = UE(q,θ), to derive the link and motor-side equations
of motion4 through application of the Lagrangian formalism
[15],

M(q)q̈+C(q, q̇)q̇+G(q) = τ (q,θ), (1)

Jθ̈ +Bθ̇ = τE(q,θ) + τM , (2)

whereM = ∂2T /∂q̇2 ∈ R
n×n is the symmetric and positive

definite mass matrix,Cq̇ = (∂2T /∂q̇∂q)q̇− ∂T /∂q ∈ R
n

are the Coriolis and normal inertial forces,G = ∂UG/∂q ∈
R

n represents the gravitational forces,τ = −∂UE/∂q ∈ R
n

are theelastic joint torquesdelivered by the VS actuators to
the link-side dynamics,J ∈ R

m×m is the rotational inertia
of the motor-gearbox assembly,B ∈ R

m×m represents the
intrinsic viscous damping5, τE = −∂UE/∂θ ∈ R

m is the
reaction torqueby the compliant elements whileτM ∈ R

m

is the motor torque (reflected through the gear reduction).
Control of θ is realised with a PD control law6,

τM = −KM (θ − θd)−BM θ̇, (3)

whereKM ∈ R
m×m andBM ∈ R

m×m contain theservo
gainsandθd ∈ R

m is the desired position. An ideal closed-
loop motor response of (2) and (3) is critically damped and
infinitely fast. Practically this requires large stiffnessgain
KM ≫ 1 (with adequate damping) and would ensure that the
motors are position controllable:θ ≈ θd. In general however,
highly-geared actuation puts severe restriction on the motor
velocities/accelerations Due to this reason, arapidly chang-
ing desired trajectoryθd that does not respect the bandwidth
limitation of the closed loop motor dynamics will be poorly
tracked. In Section III, we provide a simple formulation to
compute desired optimal trajectories that avoids this issue.

B. Static torque/stiffness characteristics of the actuators

According to (1), using the motor side positionsθ as
inputs,

τ = τ (q,θ), (4)

provides theelastic joint torquesas actuator outputs. The
state dependence of thisstatic torque characteristicis due
to the passive elasticity (in-built in the actuators) and not
due to position feedback. Under feed-forward motor side

2The kinetic and the potential energy calculated here shouldinclude the
actuators asrigid objectsattached to the robot.

3Here we assume that the actuator compliance is generated by linear
and/or nonlinear springs with no restriction on generality.

4Note that the motor-side model (2) represents the dynamics for all the
motorsm ≥ n used in the VS actuators (including the motors for stiffness
adjustment), see Fig.2. For elastic joint robots this model reduces to the one
proposed in [14] wherem = n andτE = −τ .

5The damping term in (2) can be seen as an approximation of the real
frictional effects.

6It is important to note that usingmotor-side servo control does notlimit
the bandwidth of the link-side motion on compliantly actuatedsystems. This
is because the intrinsic compliance in the actuator effectively decouples the
link-side and the motor-side dynamics. Such decoupling is oneof the main
reasons why exploitation of the link-side dynamics is not prevented with
high-gain motor servo control.

control,θ = θ(t), this passive elasticity, reflected on the joint
defines theoutput stiffnessof the actuators. By definition,
this stiffness relates the link-side torque response to the
associated position perturbation:

K = −∂τ (q,θ)/∂q, (5)

where7 K = K(q,θ) ∈ R
n×n. By setting a constant

motor-side positions, (4) and (5) define thepassive torque
and stiffness characteristicsof the actuators. Using a time-
dependent motor positions, these passive characteristicscan
be simultaneously and continuously modulated, although
they may not be independent.The ability to changeτ (q,θ)
and K(q,θ) independently is however one of the main
attributes of a variable-stiffness actuator.In this light, we
now turn to define two analytical conditions that are both
necessary and sufficientfor simultaneous and independent
torque and stiffness modulation: for all admissible(q,θ),

det

(

[

∂τ

∂θ

] [

∂τ

∂θ

]+
)

6= 0, (6)

rank

(

[

∂k

∂θ

]

(

I−
[

∂τ

∂θ

]+ [
∂τ

∂θ

]

))

6= 0, (7)

wherek = vec(K), I ∈ R
m×m is an identity matrix while

(∗)+ denotes the Moore-Penrose generalized inverse of(∗).
The first condition (6) allowsall componentsof the actuators’
torque to be affected throughθ while the second condition
(7) ensures that motor positions that leave the joint torques
unaffected can be used for stiffness modulation. Moreover,
the number of elementsin the stiffness matrix that can be
modulated is defined by the rank in (7). In summary, (6) and
(7) make independent torque/stiffness modulation viable8.

C. Physical constraints during variable-stiffness control

Variable stiffness devices often possesstate inequality
constraintsdue to:

1) range limits on the motor positions and also bandwidth
limitation (represented by rate constraints) posed by
the servo-controlled motor dynamics,

θm � θ � θM , |θ̇| � θ̇M , (8)

2) deformation limits of the compliant elements (i.e.,
springs in-built in the actuators)

φm(θ) � φ(q,θ) � φM (θ), (9)

where θm ≺ θM and φm ≺ φM denote the constraint
boundaries whilėθM andθ̈M defines the maximal velocities
that can be achieved by the motors.

In the next section, we provide a simple formulation that
allows (8) and (9) to be enforced ashard constraints(i.e.,

7Off-diagonal elements in the stiffness matrix would appear ifwe use
actuators where configuration change on one joint induces torque change
on another joint (in a human arm model [16] this is achieved through bi-
articular muscles).

8In practice, VSA may havesingular regionsfor some(q,θ) ∈ Rn×Rm

where simultaneous torque and stiffness modulation cannot beachieved, but
as long as these are isolated and are restricted to a small portion of the
work-space, practical issues are not expected.



constraints that cannot be violated) during the optimal control
planning. These constraints are particularly important for
realising physically viable plans. This may be especially the
case for the deformation limits (9), since violation of these
constraints would permanently damage the VS mechanism.

III. O PTIMAL VARIABLE -STIFFNESS CONTROL

In this section, we develop a paradigm to realise optimal
variable-stiffness control that includes the model of the
system dynamics together with all the relevant constraints
required for physically realizable control planning. Using a
non-linear optimal control framework, the proposed formu-
lation is then employed to devise the inputs for variable-
stiffness modulation that is best suited to the task considered.

A. The role of constraints

1) Motivation: In Section II-C, we have outlined funda-
mental constraints that may be applicable during variable
stiffness control. Incorporating these constraints (in full or in
part) is necessary to make the resultsapplicable to real-world
problems. There is however also another equally important
reason why the effect of these constraints must be considered
once variable stiffness control is required. This is because
variable stiffness control strategies mayqualitatively differ
depending on range/bandwidth limitations of the actuators.
To illustrate this point by an example, let us consider two
dynamical systems performing a task where rapid stiffness
variation is beneficial (e.g., bang-bang control is optimal).
Let us now assume that due to bandwidth limitations of the
actuators, one of the systems is not able to change its stiffness
fast enough to realise a bang-bang strategy that would lead
to improved task performance. Under such condition, the
optimal strategy would be smoothed out to an averaged
impedance. This hypothetical example, evidenced through
our numerical investigations (exemplified in Section IV),
motivates the treatment of constraints detailed in this section.

2) Basic idea: While incorporating all the relevant con-
straints into the optimisation is vital, efficient numerical
treatment of them is non-trivial. Indeed, solving an optimal
control problem with control and state inequality constraints
usually requires a computationally demanding non-linear
constrained optimisation algorithm. Moreover, excessiveap-
plication of constraints often make the associated formulation
more susceptible to local-minima issues. Finding an optimal
solution to such a formulation is difficult. Therefore, reduc-
tion of the number/complexity of the constraints is preferred.
In the next section we address this problem by replacingstate
inequality constraintswith control constraintsthat are easier
to enforce numerically.

B. Embedding state inequality constraints through control
constraints

Let us now formally define the admissible set of states as

Ψ = {ψ ∈ C
2([0, T ],Rm) :

ψm(θ) � ψ(q,θ) � ψM (θ)}, (10)

whereψ denotes the set of generalized quantitiesψ ∈ R
m

(e.g., motor position, spring length) to be constrained during

the motion whileψm ≺ ψM are the associated (possibly
state-dependent) lower and upper bounds. Now, by choosing:
ψ = θ we can represent (8) while by usingψ = φ(q,θ), the
constraints of (9) can be expressed. In this light, (10) defines
a general representationof state inequality constraints to be
enforced during the motion. Next we proceed toexplicitly
embed (10) into the formulation using control constraints.
For this purpose, we introduce:

1) a canonical control set9

U = {u ∈ PC([0, T ],Rm) : 0 � u � 1}, (11)

2) canonical state variablesz = (z1, z2, ..., zm)T :

zi =
ψi − ψim

ψiM − ψim

, (12)

3) and generatez through a second-order critically-
damped differential equation

z̈+ 2αż+α2z = α2u, (13)

whereα2 = diag([α2
1, α

2
2, ..., α

2
m]) and αi > 0 for

∀i ∈ {1, 2, ...,m}.
Note that as long as the control inputs are admissibleu ∈

U , (11) and (13) would automatically ensure10 compatibility
of ψ with (10). This is to say that using (11)–(13) one can
replace the original state inequality constraintsψ ∈ Ψ with
the canonical control constraintsu ∈ U . The question which
remains however is how to include the new state variablesz

into the dynamics model (1). To this end we consider (12)
to be a coordinate transformation that relatesz with q and
θ through the following equality constraint

Ψ(q,θ, z) = 0, (14)

where:Ψ(q,θ, z) = ψ(q,θ)−diag(z)(ψM (θ)−ψm(θ))+
ψm(θ). Under the assumption that∂Ψ/∂θ ∈ R

m×m is a
full-rank matrix (i.e.,∀(q, z), det(∂Ψ/∂θ) 6= 0), one can
invoke the implicit function theorem to (at least locally)
define the solution of (14) with respect toθ,

θ = Ψ−1
θ (q, z), (15)

whereΨ−1
θ is the corresponding inverse mapping of (14).

The condition (i.e.,∀(q, z), det(∂Ψ/∂θ) 6= 0) for (15) to
exist depends on the constraints. In this light, application of
the proposed scheme may favor (although it is not restricted
to) constraints that allow explicit computation of (15). This
turns out to be the case for the model of the DLR Hand-Arm
System used in Section IV.

C. State-space representation of the dynamics

Using (11), (13) and (15) we are now in position to ex-
plicitly embed state inequality constraints into the dynamics.
To do this, let us consider a state-space representation of the

9The control inputs are piecewise continuous functions (i.e., u ∈ PC)
in the present consideration.

10Please note that (11) and (13) would also provide the necessary
smoothness requirement onψ (i.e.,ψ ∈ C2).



link-side dynamics (1) and the canonical function generator
(13), given as

ẋ = f(x,u), (16)

where x = (xT
1 ,x

T
2 ,x

T
3 ,x

T
4 )

T = (qT
1 , q̇

T
1 , z

T , żT )T ∈
R

2(n+m) is a state vector, while

f =

[ x2

−M−1(x1)(C(x1,x2)x2 +G(x1)−T(x1,x3))
x4

−2αx4 −α2x3 +α2u

]

, (17)

is the corresponding vector field that includes the torque
function expressed through the new canonical state variables
defined by:T = T(x1,x3) = T(q, z) = τ (q,Ψ−1

θ (q, z)).
The parameter vectorα (containing one parameter for

every embedded constraint) in (17) is inherited from (13).
In mathematical terms, these parameter set the coupling
strength between the dynamics and the control actions. Given
the physical nature of the constraints, selection of these gains
becomes intuitive. Moreover, under certain conditions, these
gains can be used to directly embed the bandwidth limitations
of the actuators into the formulation. This is detailed in the
following.

1) Embedding range/bandwidth limitations on the motor-
side dynamics:Let us now assume that for a given actuator
there is no limitation on the elastic deformation of the
compliant elements, or more precisely, these limits (9) are
not expected to be violated during the motion11. In this
case, embedding all the constraints would mean that for
∀u ∈ U , θm � θ � θM , |θ̇| � θ̇M are not violated by
the motor trajectories planned by (16). We can enforceall
these constraintsby setting:

1) ψ = θ; to directly embed the range limits (8), given
by θm � θ � θM , into (17) and

2) anyαi ∈ (0, αiM ] whereαiM = eθ̇iM/(θiM − θim)
for ∀i ∈ {1, 2, ...,m}; to satisfy the rate constraints12

(8) given by|θ̇| � θ̇M .
The first condition enables one to calculate the motor posi-
tions from the canonical states:θ(t) = diag(x3(t))(θM −
θm) + θm (where x3 = z), while the second condition
ensures that these trajectories are smooth enough to be
precisely tracked by the real actuators (2).

2) Embedding deformation limits on the elastic elements:
Let us now consider another case when the length of the
springs in the actuators have to be constrained during the
motion. In this case, we set:ψ = φ(q,θ) to directly embed
the associated constraints (9) into (17). In physical terms
this implies that the canonical states (x3 = z) represent
the normalized spring lengths, while the associated dynamics
(third and fourth lines in (17)) defines the dynamics of the
spring motion. Note that in this formulation,α limits the
bandwidth of the entire system (i.e., link-side and motor-
side dynamics), and as such it cannot be used to embed the

11This is indeed the case on our MACCEPA implementation, see Section
IV.

12In practice, we often foundαiM conservative. This is mainly because
αiM is calculated assuming a maximal step response commandθiM −θim
although this may not be the usual command in applications. Due to this
reason we often choseαi > αiM as long as this does not jeopardize the
tracking accuracy.

bandwidth limitations on the actuators solely. As alternative
solution to this direct embedding,|θ̇| � θ̇M could be
treated as soft constraints and incorporated through penalty
terms in the objective function. In Section IV we illustrate
the viability of these formulations through simulation and
practical application.

D. Control task

In this article, we consider the control tasks to be rep-
resented using the following formulation: For a given finite
time interval t ∈ [0, T ], and for a given initial state of the
systemx(0) = x0, find the admissible open-loop control
inputs u = u(t) ∈ U that minimizes theoptimisation
criterion:

J = h(T,x(T )) +

∫ T

0

c(t,x(t),u(t,x(t)))dt, (18)

where J ∈ R is the cost functional,h(x(T )) ∈ R is the
terminal cost, while c(x,u) ∈ R is the running costused to
encode the control objectives into the formulation [17].

E. Solution methods

Finding the optimal control inputs for non-linear plant
dynamics (16) and non-quadratic costc(x,u) is known to
be non-trivial. Bellman’s dynamic programming [18] and
Pontryagins maximum principle (PMP) [19] provide general
approaches to solve such problems. The numerical com-
putation associated with direct application of these meth-
ods is however either computationally intractable for, high
dimensional non-linear problems, or require sophisticated
implementation to converge to the optimal solution [20].
Alternative methods that are computationally more tractable
are: Differential Dynamic Programming (DDP) [21] and
the Iterative Linear Quadratic Regulator/Gaussian (iLQR/G)
framework [22]; that is the method of choice here.

1) iLQR: In the present paper we utilize the iLQR
framework to devise the control sequence for the non-linear
optimal control problem stated by (16) and (18). By means of
the basic idea, the user defined initial control sequence and
the corresponding state trajectories(x0,u0) are iteratively
improved using the solution of local LQR sub-problems.
The sub-problems are formed by linear approximation of the
system dynamics (16),

δẋ = Aδx+Bδu, (19)

A :=
∂f

∂x
=









0 In×n 0 0
∂f2

∂x1

∂f2

∂x2

∂f2

∂x3

0

0 0 Im×m 0

0 0 −α2 −2α









,B :=
∂f

∂u
=

[

0
0
0
α2

]

,

and quadratic approximation of the objective functional13

(18),

∆J = hT
x δx(T ) + δxT (T )hxxδx(T ) +

∫ T

0

(cTx δx+

cTu δu+ δxT cxxδx+ δxT cxuδu+ δuT cuuδu)dt. (20)

13In the linear approximation of the dynamics and the quadratic approxi-
mation of the objective functional, all quantities are evaluated at the current
state and control sequence:(x,u).



In every iteration, (19) and (20) is solved for(δx, δu)
via a modified Ricatti-like system, and the new (improved)
sequence is formed byx← x+ δx andu← u+ δu. When
the method converges (i.e.,∆J ≈ 0 achieved numerically),
it provides the optimal state and control trajectoriesx∗ =
(q∗T , q̇∗T , z∗T , ż∗T )T and u∗ ∈ U with respect to the
control problem (16) and (18).

2) The desired motor-side trajectories:In the present
formulation the control inputsu(t) are abstract functions
used for planning. Intermediate results of the planning are
the canonical statesz(t) = x3(t), while the final output is
the motor side positionsθ∗ = Ψ−1

θ (q∗(t), z∗(t)). If the
constraints on the rate of the actuators are incorporated
into the formulation, the computed positionsθ∗ will be
smooth enough to be precisely tracked by the real actuators
(2). This ensures that by using the computed solutions as
optimal desired motor trajectoriesθd = θ∗(t), the real motor
positionsθ will closely follow the corresponding optimal
motionθ∗. This argument holds independently of the specific
dynamics of the actuators (2), i.e., this is a generic feature.

IV. SIMULATIONS AND EXPERIMENT

In this section, we provide numerical simulation results
and an experimental demonstration addressing the viability
of the proposed optimal variable stiffness control formu-
lation. The simulations/experiments involve two nonlinear
variable stiffness systems: 1) the two-link variable stiffness
arm [11] equipped with MACCEPA actuators [7] and 2) the
integrated DLR Hand-Arm System (HASy) equipped with
floating spring joints (FSJ) [1].

The reported results address a highly dynamic ball-
throwing task. The objective function to be mimimized in
this task is defined by,

J = −d+ 1

2

∫ T

0

(w‖F‖2+‖u‖2ǫ )dt,

where T is the time permitted for task execution14, d =
d(q(T ), q̇(T )) is the distance thrown,F = F(q,θ) is the
spring force (‖ ∗ ‖ denotes the Euclidean norm), while
‖u‖2ǫ= uT ǫu is a small positive regularisation term (i.e.,
ǫ ≈ 0) that makes the objective explicitly control-dependent
(and the control problem non-singular). Here we consider
a dominantly distance maximization task by using a small
effort weight0 < w ≪ 1.

A. Optimal VS-control on a 2-link robot arm equipped with
MACCEPA actuators

Using the model of the two-link VS arm [11] (see Fig. 3),
here we demonstrate in simulation, the effect of the actuator
dynamics on the optimal solution. The purpose of this
demonstration is to illustrate that the stiffness modulation
strategy can significantly vary depending on the dynamics
(bandwidth) of the VS actuator used to generate the behavior.
It is obvious that having a limited stiffness range, the benefit

14While in the present paper the execution timeT is not optimised, this
can be done within the present framework, using the method proposed in
[23].

provided by variable-stiffness optimisation (θ3,4 = θ3,4(t))
compared to fixed-stiffness control (i.e.,θ3,4 = const.) could
be marginal. It is however also true that limitations on the
bandwidth of the actuators can significantly alter the stiffness
modulation strategy (and the overall performance).

Fig. 3. a) Two-link variable-stiffness robot (with the tennis ball attached
to the holding magnet), b) control board, c) variable-stiffness actuator,
d) torque-stiffness curves characterizing the joints. Note that the three
curves correspond to the minimal, mid-range and maximal positionof
the stiffness-adjustersθ3,4 respectively. Each of these curves define the
passive torque stiffness characteristic of the joint underconstant pretension
θ3,4 = const. By changing the set-point commandsθ1,2, but fixing the
pretension commandsθ3,4 = const., one can move along these passive iso-
curves in the torque-stiffness plane. However by changing the pretensioning
continuously in timeθ3,4 = θ3,4(t), one can also modify these curves
during the movement. This ability to modify the passive joint characteristics
allows simultaneous torque and stiffness variation around the joints.

In Fig. 4 we show that using fast (high-bandwidth)
actuators,α3,4 = [

√
1000,

√
1000] instead of slow (low-

bandwidth) onesα3,4 = [
√
20,
√
20], not only affects the

systems performance but it canqualitatively modify the
stiffness control strategy. Indeed, when the actuators areslow,
active modulation of the torque-stiffness characteristics of
the joints appears to be not beneficial (see gray lines in
Fig. 4d), as opposed to the case when the same task is
realised with actuators capable of fast stiffness adjustments
(black lines in Fig. 4d). Moreover, there is an obvious danger
that the actuator dynamics (when slow) filters out any task-
specific stiffness modulation, but also that some actuator-
specific stiffness control feature are (mistakenly) attributed
as task induced. Clarity and insights into these issues can
guide new VS actuator designs, but are also highly rele-
vant when interpreting human stiffness (impedance) control
strategies that are subject to realistic biological (e.g. muscle
tendon) bandwidth-limitations [24]. In addition to the present
simulation result, this two-link VS arm (Fig. 3) was used in
a simulation study on variable stiffness brachiation [25] as
well as a hardware realisation of a variable stiffness throwing
experiments [11]. The reader is referred to this latter workfor
a detailed comparison of performance benefits (measured by
distance thrown) provided by variable stiffness optimisation
(as opposed to an optimal but fixed stiffness control).



Fig. 4. Ball-throwing with high and low bandwidth actua-
tors. Stroboscopic view of the throwing motion: a) variable-stiffness
control using high-bandwidth (fast) stiffness adjustments: α =
diag([

√
50,

√
50,

√
1000,

√
1000]), results plotted in black and b) optimal

control for the same task while using low-bandwidth (slow) stiffness
adjustments:α = diag([

√
50,

√
50,

√
20,

√
20]), results plotted in gray.

c) Optimal set-point command positionsθ1,2, d) optimal stiffness adjuster
positionsθ3,4. The arm is initialised from a vertical resting configuration.
Limits on the motor positions (depicted with dashed red lines)are set to:
θ1,2 ∈ [−π/3, π/3]rad andθ3,4 ∈ [−π/2, π/2]rad.

B. Optimal VS-control with the DLR HASy arm

The DLR integrated Hand-Arm System (HASy), depicted
in Fig. 1, is a state-of-the-art variable stiffness robot resem-
bling the complexity of a human upper limb. Mechanically,
this device has 26 kinematic DOFs and 52 actuators. All
the joints of the robot are actuated through complex variable
stiffness mechanisms. The presented simulations/experiments
are executed in the sagittal plane, namely the shoulder and
elbow rotation joint. By design, these are Floating Spring
Joints (FSJs) depicted in Fig. 5, see [6]. In these FSJs, the
VS mechanism involves two main motors that modulate the
set-point of the virtual springs (i.e.,θ1,2) and two small
motors that adjust the joint stiffness (i.e.,θ3,4 = σ1,2) see

Fig. 5b,d. Using servo control (see Section II-A (3)) for these
four motor positionsθ = [θ1, θ2, σ1, σ2]

T , one can perform
simultaneous torque and stiffness modulation.

Fig. 5. The DLR floating spring joint. For more details on design the
reader is refered to [1].

1) Specification of the constraints:The state/rate con-
straints associated with the limitations on the position and
velocities of the stiffness adjuster motorsσ and the defor-
mation limits on the floating springs are given as:

0 � σ � σM , |σ̇| � σ̇M , (21)

φm(σ) � φ � φM (σ), (22)

where the maximal limits are defined by:σM =
0.178[1, 1]T rad, σ̇M = 0.541[1, 1]T rad/s andφm(σ) and
φM (σ) are the state dependent constraint boundaries de-
picted in Fig. 6 (dashed red lines). The present formulation
encodes these as hard constraints.

Additional limits to be considered are the range/rate limits
associated with the main motors (i.e., that modulate the set-
point of the virtual joint springsθ1,2, see Fig. 5d) These
constraints:θ1,2m ≤ θ1,2 ≤ θ1,2M , |θ̇1,2| ≤ θ̇1,2M , where
θ1,2m = [−1.05,−0.44]T rad, θ1,2M = [3.05, 2.27]T rad and
θ̇1,2M = 8[1, 1]T rad/s define the maximal ranges, are treated
as soft-constraints and embedded through penalty terms in
the cost function (experimental results verified that these
constraints were indeed satisfied consistently).

2) Simulation result: In Fig. 6 simulation results are
presented demonstrating the treatment of the complex state
inequality constraints given by (22). For this purpose, we re-
port a typical result obtained using optimal variable stiffness
controlσ = σ(t) and optimal fixed stiffness control – in the
present setup, the minimum stiffnessσ(t) = 0 was computed
as the optimal fixed value; this is intuitive since it provides
the highest torque range on the DLR FSJ (see Fig. 5b). In
Figs. 6c,d we show that the developed formulation enforces
the state inequality constraints regardless of whether fixed
or variable stiffness control is considered. Fig. 6e shows



Fig. 6. Treatment of constraints: a) optimal VS control, b) optimal fixed stiffness control. The simulations are performed with different ball masses:
m ∈ {1, 3, 5}kg and fixed execution time:T = 1s. The limits onφ are depicted with dashed red lines in Fig. 6c-f while the constraints onθ3,4 = σ1,2 ∈
[0, 0.178]rad are shown in Fig. 6g,h. In addition, we set:θ1 ∈ [−1.05, 3.05]rad, θ2 ∈ [2.27, 0.44]rad, θ̇1,2 ∈ [−8, 8]rad/s andα = 25diag([1, 1, 1, 1])
in these simulations. In all cases, the throwing motion is started from a vertical hanging configuration with minimum stiffness. Note that in Figs. 6c-f each
solution (black lines) strictly satisfies its own corresponding constraint (red dashed lines).

that this is nontrivial since the boundaries of the constraints
depend on stiffness modulation (e.g., higherσ in Fig. 6g
result in stronger restriction onφ in Fig. 6e) and as such they
change through time. In Figs. 6e,f one can recognize a bang-
bang like strategy (especially on the first joint) that is smooth
(due to the bandwidth limitations of the actuators) and is
planned under changing constraint boundaries (Fig. 6e).

3) Hardware Experiment:In Fig. 7 we present a ball
throwing experiment using our variable stiffness optimisa-
tion and control methodology on the DLR HASy. For the
experimental video, the reader is referred to the multimedia
material (http://goo.gl/aQ5MP). Fig. 7a shows a character-
istic counter movement action that is a general feature of
ball throwing for humans. An excellent match between the
simulated and the real link-side motionq(t) can be see in
Fig. 7b. This is partly because of an accurate system model,
but also because the proposed optimisation algorithm plans
motor trajectories that respects all physical constraintsand
as such could be precisely tracked on this complex system
(seeθ(t) in Figs. 7b,c). Fig. 7c shows a similar stiffness
variation strategy seen in the simulations (Fig. 6g) – the
decrease and subsequent rapid increase of the stiffness just
before the ball release (t = 1s). The effect of this strategy is a
rapid acceleration of the arm at the end of the movement that

contributes to improved task performance (distance thrown).
In Fig. 7d, we see a characteristic sequential velocity peak,
first on the proximal linkq̇1 ≈ 6rad/s and then on the distal
link q̇1 ≈ 5.2rad/s. Note that these velocity peaks could have
not been achieved with rigid actuators (whereq̇ = [θ̇1, θ̇2]

T )
under the velocity limitθ̇1,2 ≤ 3rad/s used here. In terms
of task performance, using kinematic calculations, we found
that while a rigid robot in the same setup could ideally throw
a balld = 3.6m, the VS joints allowed the DLR arm to throw
a ball d ≈ 5m (verified by experiments).

V. CONCLUSION

In this paper, we provide an optimal-control formulation
for state constrained variable stiffness control. Insteadof
using complex numerical algorithms for the treatment of the
constraints, this formulation allows one to explicitly embed
state inequality constraints into the dynamics using control
limits. In practice, this formulation can be used to embed
actuator bandwidth limitations and/or deformation limitson
the elastic elements inherent to arbitrary VSA designs. Here,
we show the viability of the proposed formulation on two
conceptually different variable-stiffness systems performing
a ball-throwing task, first in simulations and then, in an
experiment realised with the DLR Hand-Arm System.



Fig. 7. Ball-throwing using optimal variable stiffness control: a) motion sequence of the experiment, b) motor and link-side trajectories, c) stiffness
adjustment, d) motor and link-side velocities. The experimentis performed with a ball weightingm = 0.06kg and fixed execution time:T = 1s. The
limits are set to:θ1 ∈ [−1.05, 3.05]rad, θ2 ∈ [2.27, 0.44]rad, θ̇1,2 ∈ [−3, 3]rad/s, θ3,4 = σ1,2 ∈ 0.8[0, 0.178]rad andα = diag([25, 25, 15, 15]).
The throwing motion is started from a vertical hanging configuration with no initial velocity and minimum stiffness.
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