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Abstract— Anthropomorphic robots that aim to approach
human performance agility and efficiency are typically highly
redundant not only in their kinematics but also in actuation.
Variable-impedance actuators, used to drive many of these de-
vices, are capable of modulating torque and passive impedance
(stiffness and/or damping) simultaneously and independently.
Here, we propose a framework for simultaneous optimisation
of torque and impedance (stiffness) profiles in order to opti-
mise task performance, tuned to the complex hardware and
incorporating real-world constraints. Simulation and hardware
experiments validate the viability of this approach to complex,
state dependent constraints and demonstrate task performare
benefits of optimal temporal impedance modulation.

Index Terms— Variable-stiffness actuation, physical con-
straints, optimal control.

I. INTRODUCTION

Modern anthropomorphic robots, designed to mimic hu-
man behaviour and performance, are highly redundant in
their kinematics and also actuation (e.g., DLR Hand-Arm
System) [1]. Variable impedance actuators (VIAs), used to 0
drive these complex devices, are capable of simultaneous
torque and passive impedance (stiffness and damping) mod-We begin by discussing the dynamics model for a compli-
ulation, as opposed to classic torque controlled design@ntly actuated robotic system capable of simultaneousiéorq
To perform impedance modulation [2], VIAs often employand passive stiffness modulation in a feed-forward faghion
mu|t|p|e motors per joint [3]_[8] in contrast to a Sing|ewe will SpeCiﬁca”y look at the formalisation of: 1) rlgld
one on a torque-controlled device. However, the benefit fody dynamics (i.e.link-side dynamics and the motor-
including more motor units does not come for free. Indeedide dynamics of the robot, 2) static torque and stiffness
VIAs are highly nonlinear and assert numerous constraintgharacteristics of the compliant mechanism that is inttil
range rate and effort limitations that are often neglected dhe actuators and 3) the physical constraints imposed by the
classical devices. Due to these reasons, in many cases B@ndwidth limitations of the motors and the range limitasio
benefit of variable-impedance control can only be showiiherent to many VSA designs.
if the control problem is algorithmically treated and if the . . . .
control redundancy is optimally resolved in a task specificA' Link-side and motor-side dynamics
manner [9]-[12]. Consider ann degree-of-freedom robotic system, the

In this paper we employ non-linear optimal control toconfiguration of which is uniquely specified by € R"
resolve the actuator redundancy, realisiragiable stiffness 9generalized coordinates (e.g., joint angles). Let thigesys
controltuned to the task and specificity of the system dynanf?€ equipped withn compliant actuators (e.g., SEAs and/or
ics. The proposed approach can be used to embed bandwi¥BAs). and leté € R™ denote the motor angles reflected
limitations of the actuators and deformation limits on théhrough gear reduction, see Fig. 2. In the following we
compliant elements into the formulation. This formulation
is tested on two conceptually different variable-stiffies | .. e CO - ANTACTUATOR LINK-SIDE
systems both realised in hardware. Its viability for preatti

Fig. 1. DLR Hand-Arm System.

. M ODELING COMPLIANTLY ACTUATED SYSTEMS

applications is demonstrated by a ball-throwing experimen ISR, 9 pleliEony
implemented on the DLR Hand-Arm System (Fig. 1). TK
TInstitute of Perception Action and Behaviour, UniversifyEslinburgh,
United Kingdom. ) ) ) . .
tGerman Aerospace Centre (DLR), Institute of Robotics andHdeon- Fig. 2. Schematic representation of a variable stiffnestesys
ics, 82234 Oberpfaffenhofen-Wessling, Germany.
§|nstitute of Informatics, Technische UniveiitMiinchen. 1This is unlikeactive stiffness contrdk.g., [13]) realised through position

*Adress correspondence to: DJB, E-mdiavi d. br aun@d. ac. uk. feedback on torque controllable devices.
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define the kinetic and the gravitational potential energy ofontrol,@ = 6(t), this passive elasticity, reflected on the joint

the rigid body dynamics 7 = T(q,q), Us = Us(q) defines theoutput stiffnessof the actuators. By definition,

and the elastic potential energy of the compliant actudtorshis stiffness relates the link-side torque response to the

Ur =Ug(q, 0), to derive the link and motor-side equationsassociated position perturbation:

of motiorf through application of the Lagrangian formalism

5] o PP o K = ~0r(q.0)/da. ©®)

.. o\ B wherd K = K(q,0) € R"*". By setting a constant

M(q)§ + C(a, )4 + G(q) = 7(q,0), @ motor-side positions, (4) and (5) define thassive torque
JO0 +BO = T1E(q,0) + T, (2)  and stiffness characteristiasf the actuators. Using a time-

whereM = 927 /9¢2 € R"™ " is the symmetric and positive dependent motor positions, these passive characteréstits

definite mass matrixC¢q = (927 /9G9q)q — 9T /dq € R™ be S|multaneous!y and contlnuou_sl_y modulated, although

are the Coriolis and normal inertial force®, = i /0q € €Y may not be independerithe ability to changer(q, )

R™ represents the gravitational forces= —dlp /dq € R" and K(q,0) independently is however one of the main

are theelastic joint torquesdelivered by the VS actuators to attributes of a v_ariable-stiffnegs actuat(_jp this light, we
the link-side dynamicsJ € R™*™ is the rotational inertia now turn to define two analytical conditions that are both

of the motor-gearbox assemblg € R™*™ represents the N€cessary and sufficierior simultaneous and independent
intrinsic viscous dampirfy 75 = —dlp /90 € R™ is the torque and stiffness modulation: for all admissilXg ),

reaction torqueby the compliant elements while,; € R™ orl Tor1+
w([2][2]) 40 ©

is the motor torque (reflected through the gear reduction). 29| | 90
Control of 8 is realised with a PD control lafy

v = K (0 — 05) — B0, 3) rank ([gﬂ <I - [gﬂ : [gz] )) £ 0, ©)

whereK,; € R™*™ and B,, € R™>*™ contain theservo ) ) ) ) )
gainsand@, € R™ is the desired position. An ideal closed-Wherek = vec(K), I € R™*™ is an identity matrix while
loop motor response of (2) and (3) is critically damped anff*) " denotes the Moore-Penrose generalized inverse )of
infinitely fast. Practically this requires large stiffnegain  1he first condition (6) allowsll componentsf the actuators’
K, > 1 (with adequate damping) and would ensure that thrque to be affected through while the second condition
motors are position controllablé:~ 8. In general however, (7) ensures that motor positions that leave the joint taque
highly-geared actuation puts severe restriction on theomotunaffected can be useq for stlffness modul_atlon. Moreover,
velocities/accelerations Due to this reasomapidly chang- the number of element® the stifiness matrix that can be
ing desired trajecton, that does not respect the bandwidthModulated is defined by the rank in (7). In summary, (6) and
limitation of the closed loop motor dynamics will be poorly (7) make independent torque/stiffness modulation vfable

tracked. In Section Ill, we provide a simple formulation 0 physical constraints during variable-stiffness cohtro
compute desired optimal trajectories that avoids thiseissu . . . . .
Variable stiffness devices often possswte inequality

B. Static torque/stiffness characteristics of the acttgmto ~ constraintsdue to:

According to (1), using the motor side positiofsas 1) range limits on the motor positions and also bandwidth
inputs, limitation (represented by rate constraints) posed by
T =1(q,0), 4) the servo-controlled motor dynamics,
provides theelastic joint torquesas actuator outputs. The O < 0 < 0, [0] < Our, (8)

state dependence of thigatic torque characteristiés due  2) deformation limits of the compliant elements (i.e.,
to the passive elasticity (in-built in the actuators) and no springs in-built in the actuators)
due to position feedback. Under feed-forward motor side

2The kinetic and the potential energy calculated here shimadde the .
actuators asigid objectsattached to the robot. where 6,, < 9M_ and O < bum denote the constraint

SHere we assume that the actuator compliance is generated éar lin boundaries whil@,; and@,, defines the maximal velocities
and/or nonlinear springs with no restriction on generality that can be achieved by the motors.

4Note that the motor-side model (2) represents the dynamicslifthea . . . .
motorsm > n used in the VS actuators (including the motors for stiffness In the next section, we provide a simple form_UIatllon that
adjustment), see Fig.2. For elastic joint robots this modsiices to the one allows (8) and (9) to be enforced &srd constraints(i.e.,
proposed in [14] wheren = n andTg = —7.

5The damping term in (2) can be seen as an approximation of the rea "Off-diagonal elements in the stiffness matrix would appeawséf use
frictional effects. actuators where configuration change on one joint inducegi¢ochange

51t is important to note that usingiotor-side servo control does nlirit ~ on another joint (in a human arm model [16] this is achievedthobi-
the bandwidth of the link-side motion on compliantly actuatgstems. This articular muscles).
is because the intrinsic compliance in the actuator effelstidecouples the 8In practice, VSA may havsingular regionsfor some(q, 8) € R™ xR™
link-side and the motor-side dynamics. Such decoupling isafrthe main ~ where simultaneous torque and stiffness modulation cannathieved, but
reasons why exploitation of the link-side dynamics is notvenéed with  as long as these are isolated and are restricted to a smabrpait the
high-gain motor servo control. work-space, practical issues are not expected.



constraints that cannot be violated) during the optimatrmdn the motion whilev),, < 1y are the associated (possibly
planning. These constraints are particularly important fostate-dependent) lower and upper bounds. Now, by choosing:
realising physically viable plans. This may be especidily t ¢ = 8 we can represent (8) while by using= ¢(q, ), the
case for the deformation limits (9), since violation of thes constraints of (9) can be expressed. In this light, (10) ésfin
constraints would permanently damage the VS mechanism.general representationf state inequality constraints to be
enforced during the motion. Next we proceedexplicitly

[1l. OPTIMAL VARIABLE -STIFFNESS CONTROL . . . .
] . . ] ~embed (10) into the formulation using control constraints.
In this section, we develop a paradigm to realise optimator this purpose, we introduce:

variable-stiffness control that includes the model of the
system dynamics together with all the relevant constraints
required for physically realizable control planning. Usia U={uePC0,T],R™):0=<u=1}, (11)
non-linear optimal control framework, the proposed formu-

1) acanonical control sét

lation is then employed to devise the inputs for variable- 2) canonical state variables = (21, 2o, ..., zm )"
stiffness modulation that is best suited to the task consdie Wi — W

) ;= — 12
A. The role of constraints ? Vit — Vim (12)

1) Motivation: In Section II-C, we have outlined funda- 3) and generat& through a second-order Critica”y_
mental constraints that may be applicable during variable  gamped differential equation

stiffness control. Incorporating these constraints (ihduin

part) is necessary to make the resalpplicable to real-world 7+ 20z + o’z = a’u, (13)

problems There is however also another equally important 9 . 5 o 9

reason why the effect of these constraints must be considere where o® = diag([af, a3, ..., az,]) and a; > 0 for

once variable stiffness control is required. This is beeaus Vi€ {l,2,...m}.

variable stiffness control strategies maualitatively differ Note that as long as the control inputs are admissibée

depending on range/bandwidth limitations of the actuator&/, (11) and (13) would automatically enstfteompatibility

To illustrate this point by an example, let us consider tw®f ¥ with (10). This is to say that using (11)—(13) one can

dynamical systems performing a task where rapid stiffneggplace the original state inequality constraigitsc ¥ with

variation is beneficial (e.g., bang-bang control is optjmal the canonical control constraintsc U. The question which

Let us now assume that due to bandwidth limitations of theemains however is how to include the new state variables

actuators, one of the systems is not able to change itsestifn into the dynamics model (1). To this end we consider (12)

fast enough to realise a bang-bang strategy that would let@be a coordinate transformation that relazewith q and

to improved task performance. Under such condition, th@ through the following equality constraint

optimal strategy would be smoothed out to an averaged T(a.0.2) -0 14

impedance. This hypothetical example, evidenced through (9,0,2) =0, (14)

our_numerical investigations (exe.:mplified. in .Sec'gi(.)n V)where: ¥ (q,0,z) = P(q, 0) — diag(z) (s (0) — b (0)) +

motivates the treatment of constraints detailed in thiSsec ), (9). Under the assumption that¥ /06 € R™ ™ is a
2) Basic idea: While incorporating all the relevant con- f|l-rank matrix (i.e.,¥(q,z), det(0%/00) # 0), one can

straints into the optimisation is vital, efficient numetica ke the implicit function theorem to (at least locally)
treatment of them is non-trivial. Indeed, solving an oplimagegine the solution of (14) with respect €

control problem with control and state inequality consitsii

usually requires a computationally demanding non-linear 6:\11(;1(q,z), (15)
constrained optimisation algorithm. Moreover, excessipe . o )
plication of constraints often make the associated fortiaria Where ¥, " is the corresponding inverse mapping of (14).

more susceptible to local-minima issues. Finding an optimd "€ condition (i.e.V(q, z), det(0%/96) # 0) for (15) to
solution to such a formulation is difficult. Therefore, redu €XiSt depends on the constraints. In this light, applicaob

tion of the number/complexity of the constraints is preferr (1€ Proposed scheme may favor (although it is not restricted
In the next section we address this problem by replastate to) constraints that allow explicit computation of (15).iFh
inequality constraintsvith control constraintghat are easier tUrns out to be the case for the model of the DLR Hand-Arm

to enforce numerically. System used in Section IV.
B. Embedding state inequality constraints through controC. State-space representation of the dynamics

constraints Using (11), (13) and (15) we are now in position to ex-
Let us now formally define the admissible set of states gslicitly embed state inequality constraints into the dyian

U = {4 € CX([0, T],R™) : To do this, let us consider a state-space representatidreof t
¢m(0) = ¢(q7 0) =Yu (9)}7 (10) 9The control inputs are piecewise continuous functions, (uiec PC)
. . m in the present consideration.
where denotes the set of generalized quantities R 10pjease note that (11) and (13) would also provide the negessa

(e.g., motor position, spring length) to be constrainedraur smoothness requirement af (i.e., ¢ € C2).



link-side dynamics (1) and the canonical function generatdandwidth limitations on the actuators solely. As alteikeat
(13), given as solution to this direct embeddindd| =< 6,; could be
x = f(x,u), (16) treated as soft constraints and incorporated through penal
T IV T T terms in the objective function. In Section IV we illustrate

— T T T AT T
‘ﬁ{?ﬁfm’; i_ (),:1{ X\QI’thf ;’X\;thi| = (a4, 2.27)7 € e viability of these formulations through simulation and
S a state vector, € practical application.

X2

£ — | "MTI)(C(, x2)x2 + G(x1) — T(x1,%3)) (17) D- Control task
—2ax4 _),;42,(3 + alu In this article, we consider the control tasks to be rep-

is the corresponding vector field that includes the torquieSented using the following formulation: For a given finite
function expressed through the new canonical state vesablime intervalt < [0, 7], and for a given initial state of the
defined by:T = T(x;,x3) = T(q,2) = 7(q, ¥; ' (q, 2)). _systemx(o) = X, find the adml_ss!ble open—lqop cc_)ntrol
The parameter vectorr (containing one parameter for MPUS u = u(t) € U that minimizes theoptimisation
every embedded constraint) in (17) is inherited from (13)c"iteron: ,
In mathematical terms, these parameter set the coupling _
strength between the dynamics and the control actionsnGive J = h(Tx(T)) + /O oft, x(t), ult, x(t)))dt, (18)
the physic_al n_a_ture of the constraints, selgction o_f _thasimsg where J € R is the cost functionalh(x(T)) € R is the
becomes intuitive. Moreover, under certain conditionsséh erminal cost while ¢(x, u) € R is therunning costused to
gains can be used to directly embed the bandwidth limitation,cqde the control objectives into the formulation [17].
of the actuators into the formulation. This is detailed ie th
following. E. Solution methods
1) Embedding range/bandwidth limitations on the motor- Finding the optimal control inputs for non-linear plant
side dynamics:Let us now assume that for a given actuatodynamics (16) and non-quadratic cegk,u) is known to
there is no limitation on the elastic deformation of thebe non-trivial. Bellman's dynamic programming [18] and
compliant elements, or more precisely, these limits (9) arféontryagins maximum principle (PMP) [19] provide general
not expected to be violated during the mofibnin this approaches to solve such problems. The numerical com-
case, embedding all the constraints would mean that fputation associated with direct application of these meth-
Yvue U, 0, <6< OM,|6"\ < @y are not violated by ods is however either computationally intractable for,hhig
the motor trajectories planned by (16). We can enfalte dimensional non-linear problems, or require sophistitate

these constraintby setting: implementation to converge to the optimal solution [20].
1) v = 6; to directly embed the range limits (8), givenAlternative methods that are computationally more traetab
by 0,, < 6 < 0,,, into (17) and are: Differential Dynamic Programming (DDP) [21] and

2) anya; € (0, ] Where o,y = eém/(ﬁuw —0,,) the lterative Linear Quadratic Regulator/Gaussian (ILQR/

for Vi € {1,2,...,m}; to satisfy the rate constrairts framework [22]; that is the method of choice here.
(8) given by|6| < 6,,. 1) iLQR: In the present paper we utilize the iLQR

The first condition enables one to calculate the motor posﬁ[amework to devise the control sequence for the non-linear
tions from the canonical state8{(t) = diag(xs(t))(ns — optimal control problem stated by (16) and (18). By means of
0,.) + 6., (wherex; = z), while the second condition the basic idea, the user defined initial control sequence and

ensures that these trajectories are smooth enough to .tgg corresponding state trajectories), uo) are iteratively

precisely tracked by the real actuators (2). improved using the solution of local LQR sub-problems.

2) Embedding deformation limits on the elastic elements: € Sub-problems are formed by linear approximation of the

Let us now consider another case when the length of tfRyStem dynamics (16),

springs in the actuators have to be constrained during the 0% = Aéx + Béu, 19)

motion. In this case, we set) = ¢(q, ) to directly embed

the associated constraints (9) into (17). In physical terms ob B ot ° 0

this |mpl|e§ that the canonical s_tatexg(: z). represent  , ._ of _ | ox; 0%z 0xs B.— of _1|o

the normalized spring lengths, while the associated dyecsmi ox g o tmxp (2) ’ du o\’
- —z0 167

(third and fourth lines in (17)) defines the dynamics of the
spring motion. Note that in this formulatiomy limits the . S S .

bandwidth of the entire system (i.e., link-side and motor?lng) quadratic approximation of the objective functidhal
side dynamics), and as such it cannot be used to embed éhe '

This is indeed the case on our MACCEPA implementation, sedd®ect

T
AJ =hIsx(T) + 6xT (T)h,,6x(T) + / (cTox +
v 0

12| practice, we often found; 5, conservative. This is mainly because 05511 + 5XTCm5X + 5XTCzu5U + 5uTCuu5U)dt- (20)
a; s is calculated assuming a maximal step response command- 6,
although this may not be the usual command in applications. Dubi$ 13In the linear approximation of the dynamics and the quadrajmaxi-

reason we often chose; > «;,,; as long as this does not jeopardize themation of the objective functional, all quantities are ewdédl at the current
tracking accuracy. state and control sequendex, u).



In every iteration, (19) and (20) is solved fdpx,du) provided by variable-stiffness optimisatiofis(, = 03 4(¢))
via a modified Ricatti-like system, and the new (improvedfompared to fixed-stiffness control (i.€s,4 = const.) could
sequence is formed y «+ x4+ 0x andu < u+ du. When be marginal. It is however also true that limitations on the
the method converges (i.e)J =~ 0 achieved numerically), bandwidth of the actuators can significantly alter the ratifls

it provides the optimal state and control trajectorigs=  modulation strategy (and the overall performance).
(T, g7,z 2*T)T and u* € U with respect to the

control problem (16) and (18).

2) The desired motor-side trajectoriedn the present & d) Torque-stiffness curves
formulation the control inputai(t) are abstract functions | - : -
used for planning. Intermediate results of the planning ar(L) i
the canonical states(t) = x3(t), while the final output is
the motor side position®* = ¥, ' (q*(t),z*(t)). If the
constraints on the rate of the actuators are incorporate
into the formulation, the computed positiorts will be
smooth enough to be precisely tracked by the real actuato
(2). This ensures that by using the computed solutions a
optimal desired motor trajectorie®,; = 6*(¢), the real motor
positions @ will closely follow the corresponding optimal
motion@*. This argument holds independently of the specific
dynamics of the actuators (2), i.e., this is a generic featur -

IV. SIMULATIONS AND EXPERIMENT Fig. 3. a) Two-link variable-stiffness robot (with the témmall attached

In this section, we provide numerical simulation resultd° the holding magnet), b) control board, c) variable-stiffa actuator,
’ .d) torque-stiffness curves characterizing the joints. eNtat the three

and an experimental demonstration addressing the viabilifyrves correspond to the minimal, mid-range and maximal positibn
of the proposed optimal variable stiffness control formuthe stiffness-adjusterds 4 respectively. Each of these curves define the

lation. The simulations/experiments involve two rlor.mne(,ipassive torque stiffness characteristic of the joint urmberstant pretension
- . . . . . 03,4 = const. By changing the set-point commanés 2, but fixing the
variable stiffness systems: 1) the two-link variable 888s pretension commands 4 = const., one can move along these passive iso-

arm [11] equipped with MACCEPA actuators [7] and 2) thecurves in the torque-stiffness plane. However by chandirgoretensioning

; _ ; stncontinuously in timefs 4 = 63 4(t), one can also modify these curves
integrated DLR Hand-Arm System (HASy) equipped Wlthguring the movement. This ability to modify the passive joinaietteristics

floating spring joints (FSJ) [1]. allows simultaneous torque and stiffness variation arotiedjdints.
The reported results address a highly dynamic ball-

throwing task. The objective function to be mimimized in

this task is defined by, In Fig. 4 we show that using fast (high-bandwidth)

1 [T ) ) actuators,az 4 = [v/1000,1/1000] instead of slow (low-

J=—d+ 5/0 (w][F[*+[[ull?)dt, bandwidth) onesys, = [v/20,/20], not only affects the

) ] ) systems performance but it cagualitatively modify the
where T is the time permitted for task executidnd = siffness control strategy. Indeed, when the actuatorslave

d(q(T),q(T)) is the distance thrownF = F(q,0) is the  active modulation of the torque-stifiness characterstit
Spnng fo;ce ( * | denotes the Euclidean norm), whilehe joints appears to be not beneficial (see gray lines in
[ul[¢= u”eu is a small positive regularisation term (i.e.,Fig."4d), as opposed to the case when the same task is
e ~ 0) that makes the objective explicitly control-dependenteajised with actuators capable of fast stiffness adjustsne
(and the control problem non-singular). Here we considghjack lines in Fig. 4d). Moreover, there is an obvious dange
a dominantly distance maximization task by using a smafhat the actuator dynamics (when slow) filters out any task-
effort weight0 < w < 1. specific stiffness modulation, but also that some actuator-
A. Optimal VS-control on a 2-link robot arm equipped WithSpecnclc _stn‘fness contr_ol featu_re are (mlstakenly) _almld
as task induced. Clarity and insights into these issues can
MACCEPA actuators : : .
) ) . guide new VS actuator designs, but are also highly rele-
Using the model of the two-link VS arm [11] (see Fig. 3),yant when interpreting human stiffness (impedance) contro
here we demonstrate in simulation, the effect of the actualgyrategies that are subject to realistic biological (e.gscte
dynamics on the optimal solution. The purpose of thigendon) bandwidth-limitations [24]. In addition to the peat
demonstration is to illustrate that the stiffness modaRati simylation result, this two-link VS arm (Fig. 3) was used in
strategy can significantly vary depending on the dynamicg simulation study on variable stiffness brachiation [25] a
(bandwidth) of the VS actuator used to generate the behavigfe|| as a hardware realisation of a variable stiffness timgw
Itis obvious that having a limited stiffness range, the t#éne experiments [11]. The reader is referred to this latter work
. o . . a detailed comparison of performance benefits (measured by
14while in the present paper the execution tiffids not optimised, this

can be done within the present framework, using the methodogeapin ~ distance thrown) provi(_jed by Variable _Stiffness optimcsat
[23]. (as opposed to an optimal but fixed stiffness control).
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a) Throwing with high-bandwith Fig. 5b,d. Using servo control (see Section II-A (3)) fordbe
041 - stifness modulation' —— four motor positions) = [6;, 0, 01,02]T, one can perform
ozl simultaneous torque and stiffness modulation.
E 5 a) DLR - Floating spring joint  c) Internal cam-disc mechanism
> Stiffness adjuster subsystem (c) = =
axis of rotation
-0.2 | ? /ﬂoating spring
04 | distance thrown: 5.1m | = :‘ )
-0.5 0 0.5 1 15 2
0.6 — T T T T
b) Throwing with low-bandwith stifness modulation — E ey
04} _— cam rollers
Link side (q)
02t b) Torque-stiffness curves d) Schematic representation
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E o oo = N
> 40 -
0.2 b —20f o,
2o
04 | distance thrown: 3.4m | :_20
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x [m] -80
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C) First joint Second joint k [Nm/rad]
1 e T T T T 1 — A T T T
05 05 Fig. 5. The DLR floating spring joint. For more details on desipe
3 o g o reader is refered to [1].
o =
-0.5 -0.5

1) Specification of the constraintsThe state/rate con-
straints associated with the limitations on the positiod an
velocities of the stiffness adjuster motassand the defor-
mation limits on the floating springs are given as:

% 0=0=Xo0oun,|6] oM, (21)
Om(o) 2 =X du(o), (22)
0 Ty 2 3 0 " 2 3 where the maximal limits are defined bysr,, =
0.178[1,1]%rad, &y = 0.541[1,1]%rad/s and ¢,,(o) and

Fig. 4. Ball-throwing with high and low bandwidth actua- ¢ps(o’) are the state dependent constraint boundaries de-

tors. Stroboscopic view of the throwing motion: a) variabléiness  picted in Fig. 6 (dashed red lines). The present formulation
control using high-bandwidth (fast) stiffness adjustmenia =

diag([v/50, v/50, +/1000, /1000]), results plotted in black and b) optimal €Nc0des these as hard constraints. o
control for the same task while using low-bandwidth (slowiffretss Additional limits to be considered are the range/rate Bmit

adjustmentsic = diag([v/50, V50, v20, v/20]), results plotted in gray. associated with the main motors (i.e., that modulate the set
c) Optimal set-point command positiofs 2, d) optimal stiffness adjuster . f th . | ioi inag) Fig. 5d) Th
positionsés 4. The arm is initialised from a vertical resting configuratio point of the virtual joint spring 1,2, S€e Flg. ) ese

Limits on the motor positions (depicted with dashed red lirr) set to: ~ constraints:f o, < 012 < 61 2a1, |61,2] < 61,20, Where
01,2 € [-m/3,m/3]rad and 03,4 € [-m/2, m/2rad. 01.9m = [~1.05,—0.44]Trad, 61 2pr = [3.05,2.27]Trad and
01201 = 81, 1] rad /s define the maximal ranges, are treated
, , as soft-constraints and embedded through penalty terms in
B. Optimal VS-control with the DLR HASy arm the cost function (experimental results verified that these
The DLR integrated Hand-Arm System (HASYy), depictedtonstraints were indeed satisfied consistently).
in Fig. 1, is a state-of-the-art variable stiffness robatera- 2) Simulation result: In Fig. 6 simulation results are
bling the complexity of a human upper limb. Mechanicallypresented demonstrating the treatment of the complex state
this device has 26 kinematic DOFs and 52 actuators. Alhequality constraints given by (22). For this purpose, e r
the joints of the robot are actuated through complex vagiabport a typical result obtained using optimal variable stffs
stiffness mechanisms. The presented simulations/expatém controlo = o(t) and optimal fixed stiffness control — in the
are executed in the sagittal plane, namely the shoulder aptesent setup, the minimum stiffnesé) = 0 was computed
elbow rotation joint. By design, these are Floating Springs the optimal fixed value; this is intuitive since it pro\dde
Joints (FSJs) depicted in Fig. 5, see [6]. In these FSJs, thiee highest torque range on the DLR FSJ (see Fig. 5b). In
VS mechanism involves two main motors that modulate thEigs. 6¢,d we show that the developed formulation enforces
set-point of the virtual springs (i.ef; ) and two small the state inequality constraints regardless of whethed fixe
motors that adjust the joint stiffness (.63 4 = o1,2) See or variable stiffness control is considered. Fig. 6e shows
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Fig. 6. Treatment of constraints: a) optimal VS control, b)iropt fixed stiffness control. The simulations are performecdhwdifferent ball masses:
m € {1,3,5}kg and fixed execution timel’ = 1s. The limits on¢ are depicted with dashed red lines in Fig. 6¢-f while the tairgs ondz 4 = 01,2 €
[0,0.178]rad are shown in Fig. 6g,h. In addition, we sét: € [—1.05, 3.05]rad, 02 € [2.27,0.44]rad, 01 2 € [—8, 8]rad/s anda = 25diag([1, 1,1, 1])

in these simulations. In all cases, the throwing motion igetiafrom a vertical hanging configuration with minimum stiféise Note that in Figs. 6c-f each
solution (black lines) strictly satisfies its own corresgimig constraint (red dashed lines).

that this is nontrivial since the boundaries of the constgai contributes to improved task performance (distance thyown
depend on stiffness modulation (e.g., higlerin Fig. 6g In Fig. 7d, we see a characteristic sequential velocity peak
result in stronger restriction o in Fig. 6e) and as such they first on the proximal linkj; = 6rad/s and then on the distal
change through time. In Figs. 6e,f one can recognize a bangik ¢, ~ 5.2rad/s. Note that these velocity peaks could have
bang like strategy (especially on the first joint) that is stho not been achieved with rigid actuators (whére- [0, 65]7)
(due to the bandwidth limitations of the actuators) and isinder the velocity IimitéLg < 3rad/s used here. In terms
planned under changing constraint boundaries (Fig. 6e). of task performance, using kinematic calculations, we ¢bun
3) Hardware ExperimentIn Fig. 7 we present a ball that while a rigid robot in the same setup could ideally throw

throwing experiment using our variable stiffness optimisaa balld = 3.6m, tthS joints allqwed the DLR arm to throw
tion and control methodology on the DLR HASy. For the? balld ~ 5m (verified by experiments).

experimental video, the reader is referred to the multimedi
material (http://goo.gl/aQ5MP). Fig. 7a shows a character
istic counter movement action that is a general feature of In this paper, we provide an optimal-control formulation
ball throwing for humans. An excellent match between théor state constrained variable stiffness control. Inste&d
simulated and the real link-side motia(¢t) can be see in using complex numerical algorithms for the treatment of the
Fig. 7b. This is partly because of an accurate system modebnstraints, this formulation allows one to explicitly esab
but also because the proposed optimisation algorithm plastate inequality constraints into the dynamics using @bntr
motor trajectories that respects all physical constraamg limits. In practice, this formulation can be used to embed
as such could be precisely tracked on this complex systeactuator bandwidth limitations and/or deformation limits
(seef(t) in Figs. 7b,c). Fig. 7c shows a similar stiffnessthe elastic elements inherent to arbitrary VSA designseHer
variation strategy seen in the simulations (Fig. 6g) — theve show the viability of the proposed formulation on two
decrease and subsequent rapid increase of the stiffndss gmnceptually different variable-stiffness systems penfag
before the ball release & 1s). The effect of this strategy is a a ball-throwing task, first in simulations and then, in an
rapid acceleration of the arm at the end of the movement thaxperiment realised with the DLR Hand-Arm System.

V. CONCLUSION
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Ball-throwing using optimal variable stiffness cafit a) motion sequence of the experiment, b) motor and link-$idjectories, c) stiffness

adjustment, d) motor and link-side velocities. The experiniemnierformed with a ball weightingn = 0.06kg and fixed execution timel’ = 1s. The
limits are set tof; € [—1.05,3.05]rad, 02 € [2.27,0.44]rad, 01 2 € [—3,3|rad/s, 03,4 = 01,2 € 0.8[0,0.178]rad and a = diag([25, 25, 15, 15]).
The throwing motion is started from a vertical hanging confidion with no initial velocity and minimum stiffness.
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