
On-line Learning for Humanoid Robot Systems

Jörg Conradt CONRADT@CLMC.USC.EDU

Gaurav Tevatia TEVATIA @USC.EDU

Sethu Vijayakumar SETHU@USC.EDU

Stefan Schaal SSCHAAL@USC.EDU

Computational Learning and Motor Control Lab, University of Southern California, Los Angeles, CA 90089-2520 USA
Kawato Dynamic Brain Project (ERATO/JST), 2-2 Hikaridai, Seika-cho, Soraku-gun, 619-02, Kyoto JAPAN

Abstract

Humanoid robots are high-dimensional move-
ment systems for which analytical system identi-
fication and control methods are insufficient due
to unknown nonlinearities in the system struc-
ture. As a way out, supervised learning methods
can be employed to create model-based nonlin-
ear controllers which use functions in the control
loop that are estimated by learning algorithms.
However, internal models for humanoid systems
are rather high-dimensional such that conven-
tional learning algorithms would suffer from
slow learning speed, catastrophic interference,
and the curse of dimensionality. In this paper we
explore a new statistical learning algorithm, lo-
cally weighted projection regression (LWPR),
for learning internal models in real-time. LWPR
is a nonparametric spatially localized learning
system that employs the less familiar technique
of partial least squares regression to represent
functional relationships in a piecewise linear
fashion. The algorithm can work successfully in
very high dimensional spaces and detect irrele-
vant and redundant inputs while only requiring a
computational complexity that is linear in the
number of input dimensions. We demonstrate the
application of the algorithm in learning two clas-
sical internal models of robot control, the inverse
kinematics and the inverse dynamics of an actual
seven degree-of-freedom anthropomorphic robot
arm. For both examples, LWPR can achieve ex-
cellent real-time learning results from less than
one hour of actual training data.

1. Introduction

Motor control of complex movement systems requires
knowledge of a variety of continuous valued functions,
for instance coordinate transformations of the manipulator
kinematics and models of the forward or inverse dynam-

ics. Whenever analytical methods are not available to de-
rive these functions, e.g., as frequently the case in light-
weighted and complex (humanoid) dexterous robots (e.g.,
Figure 1), learning approaches need to be employed to
find approximate solutions. However, function approxi-
mation for high dimensional nonlinear motor systems re-
mains a nontrivial problem. An ideal algorithm for such
tasks needs to eliminate redundancy in the input data, de-
tect irrelevant input dimensions, keep the computational
complexity less than quadratic in the number of input di-
mensions, and, of course, achieve accurate function ap-
proximation and generalization.

Figure 1: Humanoid robot in our laboratory

In this paper, we suggest to accomplish these goals
with techniques of projection regression. The key idea of
projection regression is to cope with the complexities of

Sethu Vijayakumar
Proc. of Seventeenth International Conference on Machine Learning (ICML2000), Stanford, pp.191-198 (2000)

high dimensional function approximation by decompos-
ing the regression into a sequence of one-dimensional lo-
calized regressions along particular directions in input
space. The major difficulty of projection regression be-
comes how to select efficient projections, i.e., to achieve
the best fitting result with as few as possible one-
dimensional regressions.

Previous work in the learning literature has focussed
on finding good global projections for fitting nonlinear
one-dimensional functions. Among the best-known algo-
rithms is projection pursuit regression (Friedman &
Stützle, 1981), and its generalization in the form of Gen-
eralized Additive Models (Hastie & Tibshirani, 1990).
Sigmoidal neural networks can equally be conceived of as
a method of projection regression, in particular when new
projections are added sequentially, e.g., as in Cascade
Correlation (Fahlman, 1990). Here we suggest an alterna-
tive method of projection regression, focussing on finding
efficient local projections. Local projections can be used
to accomplish local function approximation in the neigh-
borhood of a query point. Such methods allow fitting lo-
cally simple functions, e.g., low order polynomials, along
the projection, which greatly simplifies the function ap-
proximation problem. Local projection regression can
thus borrow most of its statistical properties from the
well-established methods of locally weighted learning and
nonparametric regression (Hastie & Loader, 1993,
Atkeson, Moore, and Schaal, 1997). Counterintuitive to
the curse of dimensionality (Scott, 1992), local regression
methods can work successfully in high dimensional
spaces (Vijayakumar & Schaal, 1998), as we will empiri-
cally demonstrate below. The justification for this state-
ment comes from empirical investigations of movement
data generated by human subjects and humanoid robots
(Vijayakumar & Schaal, 2000a). This data demonstrated
that actual physical systems generate locally low dimen-
sional data distributions, despite that the data is high di-
mensional when viewed from a global perspective. Thus,
an algorithm capable of exploiting such locally low di-
mensional distributions is able to avoid the curse of di-
mensionality.

In the next section, we will introduce our new learning
algorithm, Locally Weighted Projection Regression
(LWPR) that can efficiently deal with high-dimensional
learning problems. Afterwards, we will describe learning
results from applying LWPR to high dimensional learning
tasks of classical internal model learning problems in ro-
botics, the inverse kinematics and inverse dynamics
problem. LWPR will be shown to master these learning
tasks with excellent accuracy while achieving learning
speed and computational complexity that make it suitable
for real-time implementations on state of the art comput-
ing hardware.

2. Locally Weighted Projection Regression

In the following, we assume that the data generating
model for our regression problems has the standard form

y f= () +x ε , where x ∈ℜ n is a n -dimensional input
vector, the noise term has mean zero, E{ }ε = 0, and the
output is one-dimensional. The key concept of our regres-
sion network is to approximate nonlinear functions by
means of piecewise linear models. The region of validity,
called a receptive field, of each linear model is computed
from a Gaussian function:

wk k

T

k k= − −() −()

exp

1
2

x c D x c (1)

where ck is the center of the kth linear model, and Dk cor-
responds to a distance metric that determines the size and
shape of region of validity of the linear model. Given an
input vector x, each linear model calculates a prediction
yk. The total output of the network is the weighted mean
of all linear models:

ŷ
w y

w

k kk

K

kk

K= =

=

∑
∑

1

1

(2)

Previous work (Schaal & Atkeson, 1998) computed the
outputs of each linear model yk by traditional recursive
least squares regression over all the input variables.
Learning in such a system, however, required more than
O(n2) (where n is the number of input dimensions) com-
putations per learning iteration which became infeasible
for more than about 10 dimensional input spaces. Here we
suggest reducing the computational burden in each local
linear model by applying a sequence of one-dimensional
regressions along selected projections ur in input space
(Note that we will drop the index k from now on unless it
is necessary to distinguish explicitly between different
linear models):

Initialize:

For i = 1: r

y

s

y y s

s

i
T

i

i

= = −

=
= +
= −

β

β

0 0,z x x

u z

z z p

(3)

The projections ui, the univariate regression parameters
βi , the mean x0, and the number of projections r are de-
termined by the learning algorithm. Additionally, the
learning algorithm also finds a projection vector pi that
reduces the input space for the next univariate regression.
As explained below, this step allows finding more effic-
ient projections ui at subsequent univariate regressions.

In order to determine the open parameters in Equation
(3), the technique of partial least squares (PLS) regression
can be adapted from the statistics literature (Wold, 1975).
The important ingredient of PLS is to choose projections
according to the correlation of the input data with the out-
put data. The following algorithm, Locally Weighted
Projection Regression (LWPR), uses an incremental lo-
cally weighted version of PLS to determine the linear
model parameters:

Given

Update the means of inputs and output:

: x

x
x x

 A training point (

where

,)y

W w

W

W w y

W

W W w

n
n n

n

n
n n

n

n n

0
1 0

1

0
1 0

1

1

1

+
+

+
+

+

+

= +

= +

= +

λ

β λ β

λ

Update the local model:

Initialize:

For i = 1: r,

a)

b)

c)

d)

e)

f)

g)

z x

u u z

z u

z

p

= = −

= +

=

= +

= +

= +

=

+

+

+

+

+

+

+ + +

,res y

w res

s

SS SS w s

SR SR w s res

SZ SZ w s

SR SS

n

i
n

i
n

T
i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

β

λ

λ

λ

λ

β

0
1

1

1

1 2

1

1

1 1 1

++ + +

+

+

+

=

← −

← −

= +

1 1 1

1

1

1 2

SZ SS

s

r res s

MSE MSE w res

i
n

i
n

i
n

i
n

i
n

i
n

h)

i) es

j)

z z p

β

λ

(4)

In the above equations, λ ∈ [,]0 1 is a forgetting factor that
determines how much older data in the regression pa-
rameters will be forgotten, similar as in recursive system
identification techniques (Ljung & Söderström, 1986).
The variables SS, SR, and SZ are memory terms that en-
able us to do the univariate regression in step f) in a recur-
sive least squares fashion, i.e., a fast Newton-like method.
Step g) regresses the projection pi from the current pro-
jected data s and the current input data z. This step guar-
antees that the next projection of the input data for the
next univariate regression will result in a ui+1 that is or-
thogonal to ui. Thus, for r=n, the entire input space would
be spanned by the projections ui and the regression results
would be identical to that of a traditional linear regres-
sion. Step j) will be discussed below. All recursive vari-
ables in (4) (i.e., those with a superscript n) are initialized
to zero before the algorithm is started.

There are several important properties in PLS. First, if
all the input variables are statistically independent, PLS
will find the optimal projection direction ui in a single it-
eration—the optimal projection direction corresponds to
the gradient of the assumed locally linear function to be
approximated. Second, choosing the projection direction
from correlating the input and the output data in Step a)
automatically excludes irrelevant input dimensions, i.e.,
inputs that do not contribute to the output. And third,
there is no danger of numerical problems in PLS due to
redundant input dimensions as the univariate regressions

will never be singular. Readers are referred to Vijaya-
kumar and Schaal (2000b) for a detailed description of the
PLS algorithm which we defer here due to space consid-
erations.

The above update rule can be embedded in an incre-
mental learning system that automatically allocates new
locally linear models as needed (Schaal & Atkeson,
1998):

Table 1. Pseudocode of the LWPR algorithm

Initialize the LWPR with no receptive field (RF);
For every new training sample (x,y):
 For k=1 to #RF:
 calculate the activation from (1)
 update according to (4)
 end;
 If no linear model was activated by more than wgen;

 create a new RF with r=2, c=x, D=Ddef

 end;
end;

In this pseudo-code algorithm, wgen is a threshold that de-
termines when to create a new receptive field, and Ddef is
the initial (usually diagonal) distance metric in (1). The
initial number of projections is set to r=2. The algorithm
has a simple mechanism of determining whether r should
be increased by recursively keeping track of the mean-
squared error (MSE) as a function of the number of pro-
jections included in a local model, i.e., step j) in (4). If the
MSE at the next projection does not decrease more than a
certain percentage of the previous MSE, i.e.,

MSE

MSE
i

i

+ > ∈ []1 0 1φ φ, , where (5)

the algorithm will stop adding new projections to the local
model.

It is even possible to learn the correct parameters for
the distance metric D in each local model. The algorithm
for this update was derived in (Schaal & Atkeson, 1998)
for normal locally linear regression based on an incre-
mental cross validation technique. This algorithm is di-
rectly applicable to LWPR, and it is strongly simplified
since updates are only needed in the context of univariate
regressions. A gradient descent update rule for D can be
calculated from minimizing the cost function in (6). Note
that gradient descent must be performed in the Cholesky-
decomposed distance metric, M in order to guarantee that
D remains positive definite.

Gradient descent update of :D

D M M M

M M
M

s W s

=

= − ∂
∂

= −() +

≈

−

+

+

−
= =

+

== =

∑ ∑

∑∑

T

n n

j i i i
i

p

ij
i j

n

i k i

i k i

k
T

k

k

r

i

p

ij
i j

J

J
W

w y y D

W

w res

w s
D

,

ˆ
,

,

,

, ,

where is upper triangular

1

2

1

2

1

1
2

2 2
11

2

1

1

1

1

α

γ

γ
nn

∑

(6)

The key statistical ingredient of (6) is the penalized leave-
one-out cross validation error, denoted by the “i,-i” sub-
script. The penalty term was motivated in Schaal and At-
keson (1998) and can be shown to lead to a local function
approximation technique that estimates the Hessian of the
function to be approximated in order to determine the re-
gion of validity of the linear model. Employing the
PRESS residual error (Myers, 1990), leave-one-out cross
validation for linear systems can be reformulated such
that eliminating data from the data set can be avoided; this
formulation also holds for locally linear models (Schaal &
Atkeson, 1994). Since the PRESS residual error does not
exist for PLS, equation (6) approximates it by the sum of
PRESS residual errors for every projection k using the re-
sidual error, resk i+1, from this stage and the projected data
point sk i, . The vector sk contains all sk i, , and the matrix
W is a diagonal matrix will all the weights wi of all p
data points. Although the cost in (6) looks like it requires
batch updates for learning, a stochastic incremental up-
date can be derived, too. Since the derivation of the in-
cremental update follows exactly the development in
Schaal and Atkeson (1998), we omit discussions and up-
date formulae due to space constraints.

3. Empirical Evaluations with an
Anthropomorphic Robot

In the following section we will demonstrate the applica-
bility of LWPR to two classical problems in robot learn-
ing, the learning of an inverse dynamics and an inverse
kinematics model. Data for these learning problems were
generated from a seven degree-of-freedom anthropomor-
phic robot arm, a Sarcos Dexterous Master Arm (Figure
2). This robot arm can serve as both an autonomous robot
and an exoskeleton for force reflecting teleoperation. The
robot is actuated by 3000psi hydraulic motors and resem-
bles human performance in its dexterity and movement
speed.

The benchmark evaluations for the proposed algo-
rithm and comparisons to other state-of-the-art techniques
have been carried out in Vijayakumar and Schaal (2000b)
Instead, here we look at performance indexes for actual
tracking robot implementations.

z

l0

l2
l3

l4

l5

 θ1

 θ2

 θ3

 θ4

 θ5

 θ6

 θ7

Figure 2: Sarcos Dexterous Master Robot Arm with explana-
tions of the names of the degrees of freedom in the inset on the
bottom right.

3.1 Inverse Dynamics Learning

Inverse dynamics models are a typical element of nonlin-
ear control (e.g., Slotine & Li, 1991). The inverse dy-
namics relates the vectors of position θ , velocity θ̇ , and
acceleration ˙̇θ of a robot to the torque vector τ that is
necessary to accomplish the acceleration in the given state
(i.e., position and velocity). Ideal mechanical system obey
inverse dynamics equations from rigid body dynamics of
the form

H C G˙̇ ˙,θ θ θ θ τ() + () + () = (7)

which are highly nonlinear equations that would extend
over 1500 lines of C-code for the Sarcos Master Arm.
Nevertheless, rigid body dynamic systems can still be
dealt with analytically with specialized recursive mathe-
matics packages, and the open parameters in (7) (not
shown), composed of the inertial and geometric quantities
of the robot, can be estimated from data (An, Atkeson, &
Hollerbach, 1988, Featherstone, 1987). Given that the
Sarcos Robot is hydraulically actuated, several unknown
strong nonlinearities are added to the complexity of (7),
stemming from fluid dynamics, nonlinear friction terms of
the hydraulic motors, and nonlinear saturation of the ac-
tuators. From previous work, we already experienced that

rigid body dynamics is an insufficient model for the Sar-
cos Robot.

The goal of the experimental evaluation was to ap-
proximate the inverse dynamics with LWPR and compare
it against parametric estimation techniques based on rigid
body dynamics (An et al., 1988). For this purpose, seven
LWPR networks were trained, one for each torque motor
of the robot. The input to each network was composed of
21 variables, i.e., seven joint positions, velocities, and ac-
celerations. 54,000 data vectors were generated from the
robot at 50Hz from randomized smooth rhythmic move-
ments. The robot has position sensors in all degrees-of-
freedom (DOF) which allow deriving velocities and ac-
celerations by numerical differentiation. Torque values
can be measured from load cells in each joint.

Parametric estimation was carried out using standard
estimation methods (An et al., 1988) on the entire data
set. This estimation resulted in an analytical rigid body
dynamics model with estimated inertial and geometric pa-
rameters—this model incorporates a large amount of prior
knowledge about the physics of robot systems.

0

2

4

6

8

10

12

14

16

18

20

0

50

100

150

200

250

300

350

1 10 10
0

10
00

10
00

0

10
00

00
12

50
00

M
S

E
 o

n
T

es
t S

et

#R
ec

ep
tiv

e
F

ie
ld

s

#Training Data Points

Parameter
Estimation

LWPR

Number of Receptive Fields

Figure 3: Learning curve of inverse dynamics learning for the
elbow joint of the robot.

For LWPR learning, a random subset of 10% of the
collected data was excluded to serve as a test set. Each of
the seven network was then trained for 125,000 incre-
mental updates from data randomly drawn from the
training set—this corresponds to approximately 20 min-
utes of actual movement time of the robot. Typical learn-
ing results for one of the degrees-of-freedom, the “elbow-
flexion-extension” joint, are shown in Figure 3. This fig-
ure demonstrates that within a few hundred iterations,
LWPR outperformed the approximation quality of the pa-
rametric approximation technique and converged to a
mean squared error (MSE) that is about 5 times lower.
About 350 receptive fields were allocated during learning.
On average, only 2.6 dimensions are used in a receptive
field, demonstrating that partial least squares chose pro-
jection direction remarkably well in this example. A com-
parison of the MSE of the other joints against parametric

estimation is given in Table 2. Except for the shoulder
joints (SFE, SAA), LWPR learning was always superior
to rigid body parameter estimation. Training the network
for 125,000 iterations took about 45 minutes on a
500MHz personal computer, indicating that LWPR
achieved approximately real-time updating given that the
data was collected at 50Hz.

Table 2. Comparison of MSE between LWPR and Parameter
Estimation based on rigid body dynamics.

JOINT NAME PARAMETER

ESTIMATION

LWPR

SFE 10.12 10.70

SAA 17.89 13.21

HR 8.74 2.57

EB 11.30 2.22

WR 7.56 0.17

WFE 6.91 0.09

WAA 9.43 0.02

3.2 Inverse Kinematics problem

One of the core issues of robot control is movement plan-
ning. Most movement tasks are defined in coordinate
systems that are different from the actuator space of the
robot. Hence, a coordinate transformation from task to
actuator space must be performed before motor com-
mands can be computed. On a system with redundant de-
grees-of-freedom (DOFs), this transformation from exter-
nal plans to internal coordinates is often ill posed and is
known as the classic inverse kinematics problem. If we
define the intrinsic coordinates of a manipulator as the n-
dimensional vector of joint angles θθ ∈ℜ n , and the posi-
tion and orientation of the manipulator’s end effector as
the m-dimensional vector x ∈ℜ m , the forward kinematic
function can generally be written as:

x = ()f θθ

while what we need is the inverse relationship :

θθ = ()−f 1 x

For redundant manipulators, like our Sarcos robot,
solutions to the above equation are usually non-unique
and multiple solutions can exist. Traditional inverse
kinematics algorithms address how to determine a par-
ticular solution in face of multiple solutions by optimizing
additional optimization criterion. These approaches favor
local methods that compute an optimal change in θθ, ∆θθ,
for a small change in x , ∆x and then integrate ∆θθ to gen-
erate the entire joint space path. Resolved Motion Rate
Control (RMRC) is one such local methods which uses
the Jacobian J of the forward kinematics to describe a
change of the endeffector’s position as:

˙ ˙x J= ()θθ θθ (8)

This equation can be solved for θ̇θ by taking the inverse of
J if it is square i.e. m=n, and non-singular, or by using
pseudo-inverse computations.

3.2.1 MOTIVATION FOR LEARNING

Traditional pseudo-inverse methods suffer from the
problems of singular postures and the need for additional
optimization criterion to resolve the redundancy of the
system. At singular postures, i.e. when the Jacobian be-
comes rank deficient these methods cannot yield a solu-
tion and suffer from numerical explosions. Due to these
problems we suggest a learning scheme to learn this in-
verse mapping function: a learning system can only re-
produce solutions it was trained on, i.e., problems with
singularities of the Jacobian J cannot arise since it is im-
possible to encounter “singular training data.” However,
due to the redundancy of the robot arm, learning the in-
verse problems is usually not possible if the redundant
solutions θ̇θ for one ẋ form a non-convex set (Jordan &
Rumelhart, 1992). This problem can be avoided by a spe-
cific input representation to the learning network. Con-
sider two solutions for θ̇θ from the set of solution vectors
that produce the same endeffector velocity :

˙ ˙

˙ ˙

x J

x J

= ()
= ()

θθ θθ

θθ θθ
1

2

Since the Jacobian relates the x and θ̇θ in linear form,
even for a redundant system the average of the two solu-
tions will result in the desired ẋ , i.e.,:

˙ (˙ ˙) / ˙x J J= () + = ()θθ θθ θθ θθ θθ1 2 2 AVE (9)

Thus, if one considers only a small local region of the
θθ space, the set of solutions of joint velocity vectors for
one particular ẋ form a convex set. Averaging over this
local convex set—this is what neural network learning es-
sentially does—will lead to a valid solution to the inverse
kinematics problem as essentially proofed in (9). Thus we
propose to learn the inverse mapping function with a spa-
tially localized learning system, i.e., LWPR, based on the
input/output representation

˙ , ˙x θθ θθ() → ()
This approach will automatically resolve the redun-

dancy problem without resorting to any other optimiza-
tion approach; the inverse solution picked is simply the
local average over solutions that were experienced. The
algorithm will also perform well near singular posture
since, as mentioned before, it cannot generate joint
movement that it has never experienced.

3.2.2 LEARNING THE INVERSE KINEMATICS MODEL

In order to apply LWPR to inverse kinematics learning,
we learn a separate model for each of the joint angles,
such that each of the models is a 7+3 to 1 mapping:

˙ , ˙ ,x θθ() → ()θL L = 1....7

Since it is almost impossible to explore the complete
10-dimensional space by random movements, we created
a small default joint velocity for the arm that was used in
areas where no receptive fields had been generated yet:

˙ () ˙ ˙θ α θ θD R= − ′x x

where θR denotes a “rest-angle” for each joint, usually

chosen to be the mid-point of the possible range of mo-
tion. The advantage of this approach is that it avoids the
need to separate a training and an execution phase since
the exploratory movement from this default movement
automatically generates sufficient training data to improve
performance. Additionally, the default movement biases
the exploration towards generating reasonable distribu-
tions that will help to resolve the robot’s redundancy in a
“natural” way (i.e., by avoiding extreme postures).

In applying LWPR, the coefficients of the distance
metric in (1) that corresponded to the direction of the x
input were set to rather small values, incorporating our
prior knowledge that spatial localization was only neces-
sary in θθ (cf. Equation (9)). Additionally, in order to en-
sure fast learning, we re-scaled the ẋ input dimensions
with a large multiplier such that PLS would prefer pro-
jections in the subspace spanned by the ẋ data. This
modification expressed our domain knowledge that the θθ
inputs are only needed for spatial localization, but not for
the regression (cf. Equation (9)).

3.2.3 EXPERIMENTAL RESULTS

The robot arm was required to track a ball, created from
simulated visual input, that moved in a pseudo-random
smooth pattern in Cartesian space, generated by superim-
posing sinusoids of various amplitudes and frequencies.
Among the presented training patterns was also the figure
eight, drawn in the x-z plane in Figure 4. At the beginning
of learning, when almost no data had been experienced,
the tracking is inaccurate. As shown in the right part of
Figure 4, the robot improves very quickly if the same
pattern is presented for some time. After about half an
hour of learning, trajectories of arbitrary complexity can
be traced with excellent accuracy in various parts of the
workspace. The resolution of redundancy, entirely domi-
nated by the distributions of training data, resulted in a
natural looking, human-like arm posture during the
tracking. We are not aware of any previous work in ma-
chine learning that accomplished the learning of inverse
kinematics functions for redundant manipulators in a
comparable way.

a)
0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

R_HAND_des_x (m)

R
_H

A
N

D
_d

es
_z

 (
m

)

b)

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

R_HAND_des_x (m)

R
_H

A
N

D
_d

es
_z

 (
m

)

Figure 4: Tracking a figure eight with learned inverse kinemat-
ics. a): performance during the first 20 seconds of learning, b)
Performance after one minute of training.

4. Conclusions

This paper presented a new learning algorithm, Locally
Weighted Projection Regression (LWPR), a nonlinear
function approximation network that is particularly suited
for problems of on-line incremental motor learning. The
essence of LWPR is to achieve function approximation
with piecewise linear models by finding efficient local
projections to reduce the dimensionality of the input
space. High-dimensional learning problems can thus be
dealt with efficiently: updating one projection direction
has linear computational cost in the number of inputs, and
since the algorithm accomplishes good approximation re-
sults with only 2-4 projections irrespective of the number
of input dimensions, the overall computational complex-
ity remains linear in the inputs. Moreover, the mecha-
nisms of LWPR to select low dimensional projections are
capable of excluding irrelevant and redundant dimensions
from the input data. As an example, we demonstrated how
LWPR leads to excellent function approximation results
on classical problems of robot learning, the inverse dy-
namics and inverse kinematics problem. For inverse dy-
namics learning, LWPR outperformed traditional model
identification methods by a large margin. This result by
itself is not surprising since it was known in advance that
our robot data did not conform to the traditional rigid

body assumption. What was remarkable, however, was
that LWPR achieved good learning results from data that
represented less than 20 minutes of actual robot move-
ment, and that only 2-3 local projections were needed on
average. Thus, the 21-dimensional input space of the
learning task was drastically reduced.

The second evaluation concerned learning the inverse
kinematics for a redundant robot arm. We demonstrated
how a change in input representation allows learning a
normally ill-posed learning problem, and how LWPR
could be biased to accommodate the domain knowledge
of this task. Learning of LWPR could be applied on-line
and lead to very rapid convergence of the robot perform-
ance to accurate redundancy resolution.

We are currently working on creating a complete real-
time implementation of these two robot learning tasks in a
multi-processor environment. All our benchmark tests in-
dicated that it will be unproblematic to apply LWPR in
real-time. To our knowledge, no other research groups
have accomplished similar fast and accurate learning re-
sults in such high-dimensional learning problems.

Acknowledgments

This work was made possible by Award #9710312 of the
National Science Foundation, the ERATO Kawato Dy-
namic Brain Project funded by the Japanese Science and
Technology Cooperation, and the ATR Human Informa-
tion Processing Research Laboratories.

References

An, C.H., Atkeson, C.G., & Hollerbach, J.M. (1988).
Model-based control of a robot manipulator. Cam-
bridge, MA: MIT Press.

Atkeson, C.G., Moore, A.W., & Schaal, S. (1997). Lo-
cally weighted learning. Artificial Intelligence Review
11:11-73.

Fahlman, S.E.L.C. (1990). The cascade-correlation
learning architecture. In D. S. Touretzky (Ed.), Ad-
vances in Neural Information Processing Systems II.
San Mateo, CA: Morgan Kaufmann, pp 524-532.

Featherstone, R. (1987). Robot dynamics algorithms.
Kluwer Academic Publishers.

Friedman, J.H., & Stützle, W. (1981). Projection pursuit
regression. Journal of the American Statistical Asso-
ciation, Theory and Models 76:817-823.

Hastie, T., & Loader, C. (1993). Local regression: Auto-
matic kernel carpentry. Statistical Science 8:120-143.

Hastie, T.J., & Tibshirani, R.J. (1990). Generalized addi-
tive models. London: Chapman and Hall.

Jordan, I.M., & Rumelhart (1992). Supervised learning
with a distal teacher. Cognitive Science, pp 307-354.

Ljung, L., & Söderström, T. (1986). Theory and practice
of recursive identification. Cambridge, MA: MIT Press.

Myers, R.H. (1990). Classical and modern regression
with applications. Boston, MA: Pws-Kent.

Schaal, S., & Atkeson, C.G. (1994). Assessing the quality
of learned local models. In J. Cowan, G. Tesauro, & J.
Alspector (Eds.), Advances in Neural Information
Processing Systems 6. San Mateo, CA: Morgan Kauf-
mann, pp. 160-167.

Schaal, S., & Atkeson, C.G. (1998). Constructive incre-
mental learning from only local information. Neural
Computation 10:2047-2084.

Scott, D.W. (1992). Multivariate Density Estimation.
New York, NY: Wiley.

Slotine, J.J.E., & Li, W. (1991). Applied nonlinear con-
trol. Englewood Cliffs. NJ: Prentice Hall.

Vijayakumar, & S., Schaal, S. (1998). Local adaptive
subspace regression. Neural Processing Letters 7:139-
149.

Vijayakumar, S., & Schaal, S. (2000 a). Fast and efficient
incremental learning for high-dimensional movement
systems. International Conference on Robotics and
Automation (ICRA2000). San Francisco, April 2000.

Vijayakumar, S., & Schaal, S. (2000 b). Locally Weighted
Projection Regression: An O(n) Algorithm for Incre-
mental Learning in High Dimensional Space. Pro-
ceedings of the Seventeenth International Conference
on Machine Learning (in press). San Francisco (2000).

Wold, H. (1975). Soft modeling by latent variables: the
nonlinear iterative partial least squares approach. In J.
Gani (Ed.), Perspectives in Probability and Statistics,
Papers in Honour of M. S. Bartlett. London: Academic
Press, pp 520-540.

