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Behaviour generation in humanoids by learning potential-based policies from constrained motion
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Movement generation that is consistent with observed or demonstrated behaviour is an efficient way to seed movement
planning in complex, high-dimensional movement systems like humanoid robots. We present a method for learning potential-
based policies from constrained motion data. In contrast to previous approaches to direct policy learning, our method can
combine observations from a variety of contexts where different constraints are in force, to learn the underlying unconstrained
policy in form of its potential function. This allows us to generalise and predict behaviour where novel constraints apply.
We demonstrate our approach on systems of varying complexity, including kinematic data from the ASIMO humanoid robot
with 22 degrees of freedom.
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1. Introduction

A wide variety of everyday human skills can be framed in
terms of performing some task subject to constraints im-
posed by the physical environment (Ohta et al. 2004; Svinin
et al. 2005). Examples include opening a door, pulling out
a drawer or stirring soup in a saucepan.

In a more generic setting, constraints may take a much
wider variety of forms. For example, in climbing a ladder,
the constraint may be on the centre of mass or the tilt of
the torso of the climber to prevent overbalancing. Alter-
natively, in problems that involve control of contacts such
as manipulation or grasping of a solid object, the motion
of fingers is constrained during the grasp by the presence
of the object (Park and Khatib 2006; Sapio et al. 2006).
Also in systems designed to be highly competent and adap-
tive, such as humanoid robots (Figure 1), behaviour may
be subject to a wide variety of constraints (Gienger et al.
2005; Sentis and Khatib 2004; Sapio et al. 2005; Sentis and
Khatib 2005, 2006), usually non-linear in actuator space
and often discontinuous. Consider the task of running or
walking on uneven terrain: the cyclic movement of the legs
of the runner is constrained by the impact of the feet on the
ground in a dynamic, discontinuous and unpredictable way.
A promising approach to providing robots with such skills
as running and opening doors is to take examples of mo-
tion from existing demonstrators (e.g. from humans) and
attempt to learn a control policy that somehow captures the
desired behaviour (Alissandrakis et al. 2007; Billard et al.
2007; Calinon and Billard 2007; Chalodhorn et al. 2006;
Grimes et al. 2006, 2007; Inamura et al. 2004; Ijspeert et al.
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2003; Schaal et al. 2003; Takano et al. 2006). An impor-
tant component of this is the ability to deal with the effect
of constraints and the apparent variability in the observed
movement induced by these constraints. For example, one
wishes to learn a policy that allows one not only to open a
specific door of a particular size (e.g. constraining the hand
to a curve of a particular radius), but rather to open many
doors of varying sizes (or radii).

The focus in this paper is on modelling control policies
subject to a specific class of constraints on motion, with
the aim of finding policies that can generalise over different
constraints. We take a direct policy learning (DPL) ap-
proach (Atkeson and Schaal. 1997; Chalodhorn et al. 2006;
Guenter et al. 2007; Mussa-Ivaldi 1997; Nakanishi et al.
2004; Schaal et al. 2003) whereby we attempt to learn a
continuous model of the policy from motion data. While
DPL has been studied for a variety of control problems
in recent years1, crucially these problems involved poli-
cies that are either directly observable from motion data,
i.e. unconstrained policies, or policies subject to identical
constraints in every observation, in which case the con-
straints can be absorbed into the policy itself. The differ-
ence here is that we consider observations from policies
projected into the nullspace of a set of dynamic, non-
linear constraints, and that these constraints may change
between observations, or even during the course of a single
observation.

Our strategy for this is to attempt to consolidate move-
ment observations under different specific constraints to

1For a review on DPL , please see (Billard et al. 2007) and refer-
ences therein.
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find the underlying unconstrained policy common to all.
Learning the latter enables generalisation since we can ap-
ply new constraints to predict behaviour in novel scenarios.
In general, however, learning (unconstrained) policies from
constrained motion data is a formidable task. This is due to
(1) the non-convexity of observations under different con-
straints, and; (2) degeneracy in the set of possible policies
that could have produced the movement under the constraint
(Howard et al. 2008; Howard and Vijayakumar 2007). How-
ever, despite these hard analytical limits, we will show that
it is still possible to find a good approximation of the un-
constrained policy given observations under the right condi-
tions. We take advantage of recent work in local dimension-
ality reduction (Verbeek et al. 2004) to propose a method
that (1) given observations under a sufficiently rich set of
constraints reconstructs the fully unconstrained policy; (2)
given observations under an impoverished set of constraints
learns a policy that generalises well to constraints of a simi-
lar class, and; (3) given ‘pathological’ constraints will learn
a policy that at worst reproduces behaviour subject to the
same constraints. Our algorithm is fast, robust and scales
to complex high-dimensional movement systems. Further-
more it is able to deal with constraints that are both non-
linear and discontinuous in time and space.

2. Problem formulation

In this section, we characterise the problem of DPL when
constraints are applied to motion, and we describe the spe-
cial case of potential-based policies.

2.1. Direct policy learning

Following Schaal et al. (2003), we consider the learning of
autonomous kinematic policies

ẋ(t) = π(x(t)) , π : IRn �→ IRn, (1)

where x ∈ IRn is some appropriately2 chosen state-space
and ẋ ∈ IRn is the desired change in state. The goal of DPL is
to approximate the policy (1) as closely as possible (Schaal
et al. 2003). It is usually formulated as a supervised learning
problem where it is assumed that we have observations of

2It should be noted that, as with all DPL approaches, the choice
of state-space is problem specific (Schaal et al. 2003) and, when
used for imitation learning, depends on the correspondence be-
tween demonstrator and imitator. For example if we wish to learn
the policy a human demonstrator uses to wash a window, and
transfer that behaviour to an imitator robot, an appropriate choice
of x would be the Cartesian coordinates of the hand, which would
correspond to the end-effector coordinates of the robot. Transfer
of behaviour across non-isomorphic state spaces, for example if
the demonstrator and imitator have different embodiments, is also
possible by defining an appropriate state-action metric (Alissan-
drakis et al. 2007).

Figure 1. Kinematic model of the ASIMO humanoid robot
(Gienger et al. 2005). In our experiments 22 upper body DOF
were used (2 × 7 DOF arms, 2 DOF head, 6 DOF torso), with the
heel frame fixed.

ẋ(t), x(t) (often in the form of trajectories), and from these
we wish to learn the mapping π . In previous work this
has been done by fitting parametrised models in the form
of dynamical systems (Ijspeert et al. 2003, 2002), non-
parametric modelling (Calinon and Billard 2007; D’Souza
et al. 2001; Peters and Schaal. 2008), probabilistic Bayesian
approaches (Grimes et al. 2007, 2006) and hidden Markov
models (Takano et al. 2006; Inamura et al. 2004).

An implicit assumption found in DPL approaches to
date is that the data used for training comes from be-
havioural observations of some unconstrained or consis-
tently constrained policy (Calinon and Billard 2007). By
this it is meant that the policy is observed either under no
constraint (e.g. movements in free space such as gestures or
figure drawing), or under constraints consistent over obser-
vations (e.g. interacting with the same objects or obstacles
in each case). However, in many everyday behaviours, there
is variability in the constraints, such as when opening doors
of varying sizes or walking on uneven terrain. This variabil-
ity in the constraints cannot be accounted for by standard
DPL approaches.

2.1.1. Example: finger extension with contact constraints

As an example, consider the learning of a simple policy
to extend a jointed finger. In Figure 2(a) the finger is un-
constrained and the policy simply moves the joints towards
the zero (outstretched) position. On the other hand, in Fig-
ure 2(b), an obstacle lies in the path of the finger, so that the
finger movement is constrained — it is not able to penetrate
the obstacle, so moves along the surface. The vector field
representation of the two behaviours is shown in Figure 2(c).
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Figure 2. Illustration of two apparently different behaviours from the same policy: (a) Unconstrained movement (b) movement constrained
by an obstacle (black box) (c) vector field visualisation of the unconstrained (red) and constrained (black) policy for two of the finger
joints as a function of their angles.

Given the task of learning in this scenario, applying
traditional DPL approaches would result in one of two pos-
sibilities. The first is that if the observations are labelled
with respect to the constraint (here, the orientation, posi-
tion and shape of the obstacle) one could learn a separate
policy model for the behaviour in each of the settings. How-
ever this is clearly unsatisfactory, since each model would
only be valid for the specific setting, and we would need
increasing numbers of models as we observed the policy
under new constraints (for example different shaped ob-
stacles at different positions and orientations). The second
possibility is that the data is unlabelled with respect to the
constraint. In this case, one might try to perform regression
directly on the observations, that is observations from both
vector fields (cf. Figure 2(c), black and red vectors). How-
ever, this presents the problem that model averaging would
occur across observations under different constraints, re-
sulting in a poor representation of the movement in terms
of the magnitude and direction of the predictions (see Sub-
section 2.3).

We can avoid the need for multiple policy models if
we relax our assumptions on the form (1) of the observed
commands, and allow for an additional transformation of
π(x). We thus model both the red and black observations as
stemming from the same policy (‘extend the finger’), and
attribute its different appearance to the transformations as
induced by the constraints. With a restriction on the class
of possible transformations, as will be detailed in the next
section, we can model the unconstrained policy even if we
only observed constrained movements, and we can apply
new constraints to adapt the policy to novel scenarios.

2.2. Constraint model

In this paper we consider constraints which act as hard
restrictions on movements available to the policy. Specifi-
cally, we consider policies subject to a set of k-dimensional
(k ≤ n) Pfaffian constraints

A(x, t)ẋ = 0. (2)

Under these constraints, the policy is projected into the
nullspace of A(x, t):

ẋ(t) = N(x, t)π (x(t)) (3)

where N(x, t) ≡ (I − A†A) ∈ IRd×d is in general a non-
linear, time-varying projection operator3, A(x, t) ∈ IRk×d

is some matrix describing the constraint and I ∈ IRd×d is
the identity matrix. Constraints of the form (2) commonly
appear in scenarios where manipulators interact with solid
objects, for example when grasping a tool or turning a crank
or a pedal, that is, contact constraint scenarios (Park and
Khatib 2006; Murray et al. 1994; Mattikalli and Khosla
1992). Such constraints are also common in the control of
redundant degrees of freedom (DOF) in high-dimensional
manipulators (Liégeois 1977; Khatib 1987; Peters et al.
2008), where policies such as (3) are used, for example
to aid joint stabilisation (Peters et al. 2008), avoid joint
limits (Chaumette and Marchand 2001), kinematic singu-
larities (Yoshikawa 1985) or obstacles (Choi and Kim 2000;
Khatib 1985) under task constraints. As an example: Set-
ting A to the Jacobian that maps from joint-space to end-
effector position coordinates would allow any motion in
the joint space provided that the end-effector remained sta-
tionary. The formalism is generic and extends to a wide
variety of systems; for example Antonelli et al. (2005)
apply it to team coordination in mobile robots and Itiki
et al. (1996) use the formalism to model the dynamics of
jumping.

In general the effect of constraints (2) and (3) is to disal-
low motion in some sub-space of the system, specifically the
space orthogonal to the image of N(x, t). In essence these
components of motion are projected out of the observed
movement. For example as illustrated in Figure 3 (left), a
policy π is constrained in two different ways corresponding
to two different projections of the unconstrained movement.
In the first observation ẋ1, the constraint prevents movement

3A† denotes the (unweighted) Moore–Penrose pseudoinverse of
the matrix A
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198 M. Howard et al.

Figure 3. Illustration of the effect of constraints on the unconstrained policy, the averaging effect of standard DPL and the degeneracy
problem. Left: Two constraints applied to the policy π result in projected observations ẋ1, ẋ2. Centre: direct regression results in averaging
of the two movements 〈ẋ〉 in a way that cannot explain the observations. Right: Two policies π ,π ′ that both may be constrained in such a
way as to produce the observation ẋ2.

in the direction normal to the vertical plane4. For the second
observation ẋ2, the constraint only allows movement in the
horizontal plane.

2.3. Learning from constrained motion data

From the viewpoint of learning, constraints as described in
the previous section present problems for traditional DPL
approaches. Specifically there are two issues that must be
dealt with; that of non-convexity of observations and de-
generacy between policies (Howard et al. 2008).

The non-convexity problem comes from the fact that
between observations, or even during the course of a single
observation, constraints may change. For example consider
Figure 3 (centre). There the two policy observations under
the different constraints, ẋ1 and ẋ2, appear different de-
pending on the constraint. To the learner, this means that
the data from the two scenarios will appear non-convex, in
the sense that for any given point in the input (x) space
multiple outputs (ẋ) may exist. This causes problems for
supervised learning algorithms, for example directly train-
ing on these observations may result in model averaging.
Here, averaging of ẋ1, ẋ2 results in the prediction 〈ẋ〉 that
clearly does not match the unconstrained policy π , either
in direction or magnitude (ref. Figure 3, centre).

The degeneracy problem stems from the fact that for
any given set of projected (constrained) policy observa-
tions, there exist multiple candidate policies that could have
produced that movement. This is due to the projection elim-
inating components of the unconstrained policy that are or-
thogonal to the image of N(x, t) so that the component of
π in this direction is undetermined by the observation. For
example consider the constrained observation ẋ2 in Figure 3
(right). There motion in the y direction is restricted, mean-
ing that that component of π is not seen in this observation.
Given only ẋ2 we cannot determine if the policy π or an

4It should be noted that in general the orientation of the constraint
plane onto which the policy is projected may vary both with state
position and time.

alternative, such as π ′ (ref. Figure 3, right) produced the
observation. In effect we are not given sufficient informa-
tion about the unconstrained policy to guarantee that it is
fully reconstructed.

Despite these restrictions, we wish to do the best we
can with the data available. We adopt a strategy whereby
we look for policies that are, as a minimum, consistent with
the constrained observations ẋ. For example, returning to
Figure 3, if we only observe ẋ2, (that is the policy under a
single, specific constraint) the simplest (and safest) strat-
egy would be to use that same vector as our prediction. In
this way we can at least accurately predict the policy under
that constraint (albeit only under that particular constraint).
If we are given further observations under new constraints
we can recover more information about the unconstrained
policy π . For instance, observing ẋ1 eliminates the possibil-
ity that π ′ underlies the movements since it cannot project
onto both ẋ1 and ẋ2. Applying this strategy for increasing
numbers of observations, our model will not only gener-
alise over the constraints seen, but also come closer to the
unconstrained policy π .

Finally, it should be noted that if in all observations
certain components of the policy are constrained, then we
can never hope to uncover those components. However, in
such cases it is reasonable to assume that, if these compo-
nents are always eliminated by the constraints, then they
are not relevant for the scenarios in which movements were
recorded.

Despite the problems of learning policies under the con-
straints outlined recent studies (Howard et al. 2006; Howard
and Vijayakumar 2007; Howard et al. 2008) have suggested
that for the important special class of potential-based poli-
cies it is possible to efficiently learn the unconstrained pol-
icy. We characterise this class of policies in the next section.

2.4. Potential-based policies

A potential-based policy is a policy defined through the
gradient of a scalar potential function φ(x)

π (x) = −∇xφ(x). (4)
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Figure 4. Potential function with three maxima (repellors) and two minima (attractors). Overlaid are the corresponding unconstrained
policy vectors (black) and a set of constrained policy vectors (red).

Such policies can be thought of as greedily optimising the
potential function at every time step (Nakamura 1991) and
thus encode attractor landscapes where the minima of the
potential correspond to stable attractor points. An example
is given in Figure 4 where a potential function with three
maxima (repellors) and two minima (attractors) is shown
and the corresponding policy is overlaid (black vectors).

A wide variety of behaviours may be represented as
potential based. For example, reaching behaviours may be
represented by a potential defined in hand space, with a
single minimum at the target. Furthermore decision-based
behaviours may be encoded as potentials (Chajewska et
al. 2001, 1998; Körding and Wolpert 2004; Körding et al.
2004). For example when reaching for an object, a poten-
tial may be defined with two minima, one corresponding
to reaching with the right hand, the other reaching with
the left. The decision of which hand to use for reaching
would thus be determined by the start state (e.g. reach with
the closest hand) and the relative offset of the two min-
ima (e.g. right handedness would imply a lower minimum
for that hand). Potential-based policies are also extensively
used as nullspace policies in control of redundant manip-
ulators (Chaumette and Marchand 2001; Choi and Kim
2000; English and Maciejewski 2000; Gienger et al. 2005;
Nakamura 1991; Yoshikawa 1985), and for navigation and
obstacle avoidance problems in mobile robotics (Conner
et al. 2003; Ren et al. 2006; Rimon and Koditschek 1992).
Furthermore, in reinforcement learning and optimal control
(Sutton and Barto 1998; Todorov 2006), policies that are
greedy with respect to the value function can be thought
of as potential-based, in the sense that the policy does a
gradient descent on the value function.

2.4.1. Learning from constrained potential-based policies

If the policy under observation is potential-based, an elegant
solution to solving the non-convexity and degeneracy prob-
lems is to model the policy’s potential function (Howard
and Vijayakumar 2007; Howard et al. 2008) rather than

modelling it directly. This is due to a special property of
constrained potential-based policies, namely that observa-
tions of the constrained movements give us information
about the shape of the underlying potential, up to a transla-
tion in φ corresponding to constants of integration for the
observations.

In Figure 4 this is shown for a potential function de-
fined over a two-dimensional (2-D) state-space (top and
three-dimensional (3-D) perspective views). The potential
function (colours) and unconstrained policy (black vectors)
is shown, along with the policy subject to a constraint (red
vectors). For the case of potential-based policies the policy
vectors are given by the gradient vector of the potential (as
expressed in (4)). This means that the (unconstrained) pol-
icy vectors point in the direction of steepest descent, with
the magnitude equal to the slope in that direction (Figure 4,
black vectors).

Now, if a constraint is applied, the direction and mag-
nitude of the vectors change. For example in Figure 4 the
constraint prevents movement in one dimension (x dimen-
sion in Figure 4, left) so that only motion corresponding
the the second dimension (y dimension in Figure 4, left) is
observed. The vectors now point in the direction of steepest
descent subject to the constraint, with magnitude equal to
the slope of the potential in that direction, as can be seen
from Figure 4, right. In other words the projected vectors
correspond to the directional derivatives of the potential,
in the direction parallel to the observations.

This lends us the opportunity of modelling the uncon-
strained policy, by piecing together information about the
slope of the potential in different directions. For each ob-
servation (e.g. ẋ1 in Figure 3) we get information about
the directional derivative in that direction (i.e. the direc-
tion parallel to ẋ1). This means we transform the problem
of combining these n-dimensional vector observations (ref.
Figure 3) to one of ‘piecing together’ local estimates of the
slope of the potential.

A convenient method for doing this is to use line integra-
tion to accurately estimate the form of the potential along

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
H
o
w
a
r
d
,
 
M
a
t
t
h
e
w
]
 
A
t
:
 
1
5
:
3
7
 
3
 
A
p
r
i
l
 
2
0
0
9



200 M. Howard et al.

trajectories (Howard and Vijayakumar 2007; Howard et al.
2008) and then use these local estimates to build a global
model of the potential. We outline a method for doing this
in the next section.

3. Learning nullspace policies through local model
alignment

In the following we propose a method for modelling the
potential from constrained motion data. Given observations
of constrained trajectories, we first model the potential on
a trajectory-wise basis using numerical line integration.
We then consolidate these trajectory-wise models using re-
sults from recent work in dimensionality reduction (Verbeek
et al. 2004; Verbeek 2006) to ensure consistency. Finally,
we use these consistent models to learn a global model of
the potential function, and thus the policy, for use in control.

3.1. Estimating the potential along single
trajectories

As has been described in Howard and Vijayakumar (2007)
and Howard et al. (2008), it is possible to model the potential
along sampled trajectories using a form of line integration.
Specifically, combining (3) and (4), the (continuous time)
state evolution of the system is given by

ẋ = N(x, t)π (x) = −N(x, t)∇xφ(x). (5)

Let x̄(t) be the solution of (5). If we line-integrate along
x̄(t) we have

∫
x̄
(∇xφ)T dx =

∫ tf

t0

(∇xφ)T ẋ dt

= −
∫ tf

t0

(∇xφ)T N(x, t)∇xφ(x) dt, (6)

where t0 and tf are the starting and finishing instants
of x̄(t). We assume that we have recorded trajectories
x(t), ẋ(t) of length T sampled at some sampling rate 1/δt

Hz so that for each trajectory we have a tuple of points
Xk = xk,1, . . . , xk,T δt . Now, assuming the sampling rate to
be sufficiently high, we can make a linear approximation to
(5)

xi+1 ≈ xi + δt Niπ i = xi − δt Ni∇xφ(xi) (7)

and (6) can be approximated using an appropriate numerical
integration scheme. An example of such a scheme is Euler
integration, which involves the first order approximation

φ(xi+1) ≈ φ(xi) + 1

δt
(xi+1 − xi)

T Ni∇xφ(xi). (8)

Since the effect of the time constant δt is simply to scale
the discretised policy vectors, we can neglect it by scaling
time units such that δt =1. This comes with the proviso that
for implementation on the imitator robot, the learned policy
may need to be scaled back to ensure that the correct time
correspondence is kept. For steps xi → xi+1 that follow the
projected policy (3) we can rearrange (7) with the scaled
time coordinates, and substitute into (8) to yield

φ(xi+1) ≈ φ(xi) − ‖xi+1 − xi‖2, (9)

where the negative sign reflects our assumption (as ex-
pressed in (4)) that attractors are minima of the potential.
We use this approximation to generate estimates φ̂(xi) of
the potential along any given trajectory x1, x2 . . . xN in the
following way: We set φ̂1 = φ̂(x1) to an arbitrary value and
then iteratively assign φ̂i+1 := φ̂i − ‖xi+1 − xi‖2 for the
remaining points in the trajectory.

Note that an arbitrary constant can be added to the
potential function without changing the policy. Therefore,
‘local’ potentials that we estimate along different trajecto-
ries need to be aligned in a way that their function value
matches in intersecting regions. We’ll turn to this problem
in the next section.

3.2. Constructing the global potential function

Let us assume we are given K trajectories Xk =
(xk1, xk2 . . . xkNk

) and corresponding point-wise estimates
�̂k = (φ̂k1, φ̂k2 . . . φ̂kNk

) of the potential, as provided from
the Euler integration just described. In a first step, we fit a
function model fk(x) of the potential to each tuple (Xk, �̂k),
such that fk(xi) ≈ φ̂ki . Although in principle any regression
method could be applied here, our options are somewhat
limited by the fact that these possibly non-linear models
have to be acquired from the few data points available in
each trajectory. To avoid unnecessary complications, we
choose a nearest-neighbour (NN) regression model, i.e.

fk(x) = �ki∗ , i∗ = arg min
i

‖x − xki‖2. (10)

Since we wish to combine the models to a global potential
function, we need to define some function for weighting the
outputs of the different models. For the NN algorithm, we
choose to use a Gaussian kernel

wk(x) = exp

[
− 1

2σ 2
min

i
‖x − xki‖2

]
. (11)

From these weights we can calculate responsibilities

qk(x) = wk(x)∑K
i=1 wi(x)

(12)
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and a (naive) global prediction f (x) = ∑K
k=1 qk(x)fk(x) of

the potential at x. However, as already stated, the potential
is only defined up to an additive constant, and most im-
portantly this constant can vary from one local model to
another. This means that we first have to shift the models
by adding some offset to their estimates of the potential,
such that all local models are in good agreement about the
global potential at any number of states x.

Fortunately, a similar problem has already been tackled
in the literature: In the field of non-linear dimensionality
reduction, Verbeek et al. (2004) have shown how to align
multiple local PCA models into a common low-dimensional
space. In particular, they endowed each local PCA model
with an additional affine mapping gk(z) = Akz + bk , which
transformed the coordinates zk of a data point within the
k-th PCA model into the desired global coordinate system.
Verbeek et al. (2004) retrieved the parameters of the optimal
mappings gk by minimising the objective function

E = 1

2

M∑
m=1

K∑
k=1

K∑
j=1

qkmqjm‖gkm − gjm‖2, (13)

where gkm denotes the coordinate of the m-th data vector,
as mapped through the k-th PCA model, and qkm is the
corresponding responsibility of that model. The objective
can easily be interpreted as the ‘disagreement’ between any
two models, summed up over all data points, and weighted
by the responsibilities of two models each. That is, the
disagreement for any combination of m, k and j only really
counts, if the responsibility of both the k-th and the j -th
model is sufficiently high for the particular query point.
Notably, E is convex and can be minimised by solving a
generalised eigenvalue problem of moderate dimensions,
that is, there are no local minima, and the solution can be
found efficiently.

In analogy to the PCA-alignment method (Verbeek
et al., 2004), we augment our local potential models fk(·)
by a scalar offset bk and define the corresponding objective
function as

E(b1 . . . bK ) = 1

2

M∑
m=1

K∑
k=1

K∑
j=1

qk(xm)qj (xm)

×((fk(xm) + bk) − (fj (xm) + bj ))2, (14)

or, in a slightly shorter form,

E(b) = 1

2

∑
m,k,j

qkmqjm(fkm + bk − fjm − bj )2. (15)

Here,
∑

m denotes a summation over the complete data set,
that is, over all points from all trajectories (M = ∑K

k=1 Nk).
Using the symmetry in j ↔ k and

∑
k qkn = 1, we split

(15) into terms that are constant, linear, or quadratic in bk ,
yielding

E(b) =
∑
m,k

qkmf 2
km −

∑
m,j,k

qkmqjmfkmfjm

+2
∑
m,k

qkmfkmbk − 2
∑
m,k

qkmqjmfjmbk

+
∑
m,k

qkmb2
k −

∑
m,k,j

qkmqjmbkbj

= E0 + 2aT b + bT Hb. (16)

Here, we introduced E0 as a shortcut for the terms
independent of b, the vector a ∈ IRK with elements
ak = ∑

m qkmfkm − ∑
m,j qkmqjmfjm, and the Hessian

matrix H ∈ IRK×K with elements hij = δij

∑
m qjm −∑

m qimqjm. The objective function is quadratic in b, so
we retrieve the optimal solution by setting the derivatives
to zero, which yields the equation Hb = −a.

However, note that a common shift of all offsets bk

does not change the objective (14), which corresponds to
the shift-invariance of the global potential. Therefore, the
vector (1, 1, . . . , 1)T spans the nullspace of H, and we need
to use the pseudo-inverse of H to calculate the optimal
offset vector

bopt = −H†a. (17)

Compared to aligning PCA models, the case we handle
here is simpler in the sense that we only need to optimise
for scalar offsets bk instead of affine mappings. On the
other hand, our local potential models are non-linear, have
to be estimated from relatively little data, and therefore do
not extrapolate well, as will be discussed in the following
section.

3.3. Smoothing parameter selection and outlier
detection

Since we restrict ourselves to using simple NN regression
for the local potential models in this paper, the only open
parameter of our algorithm is σ 2, i.e. the kernel parameter
used for calculating the responsibilities (11). A too large
choice of this parameter will over smooth the potential,
because the NN regression model basically predicts a lo-
cally constant potential, but at the same time trajectories
will have relatively high responsibilities for even far apart
points x in state space.

On the other hand, a too small value of σ 2 might lead
to weakly connected trajectories: If a particular trajectory
does not make any close approach to other trajectories in
the set, the quick drop off of its responsibility implies that
it will not contribute to the alignment error (based on pairs
of significant responsibility), which in turn implies that its
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own alignment—the value of its offset—does not matter
much.

The same reasoning applies to groups of trajectories
that are close to each other, but have little connection to
the rest of the set. For the remainder of the paper, we will
refer to such trajectories as ‘outliers’, since like in classical
statistics we need to remove these from the training set: If
their influence on the overall alignment is negligible, their
own alignment can be poor, and this becomes a problem
when using the output of the optimisation (17) to learn a
global model of the potential. To avoid interference, we
only include trajectories if we are sure that their offset is
consistent with the rest of the data5.

Fortunately, outliers in this sense can be detected au-
tomatically by looking for small eigenvalues of H: In the
same way as adding the same offset to all trajectories leads
to a zero eigenvalue, further very small eigenvalues and the
corresponding eigenvectors indicate indifference towards a
shift of some subset of trajectories versus the rest of the
set. In practice, we look for eigenvalues λ < 10−8, and use
a recursive bi-partitioning algorithm in a way that is very
similar to spectral clustering (Kannan et al. 2004). We then
discard all trajectories apart from those in the largest ‘con-
nected’ group. Please refer to Appendix A for details of this
step.

Finally, with these considerations in mind, we select
the smoothing parameter σ 2 to match the scale of typical
distances in the data sets. In all of the experiments pre-
sented in this paper we used the same heuristic selection.
In particular, we first calculated the distances between any
two trajectories k, j ∈ {1 . . . K} in the set as the distances
between their closest points

dkj = min
{‖xkn − xjm‖2 | n,m ∈ {1 . . . N}} , (18)

and also the distances to the closest trajectory

dmin
k = min

{
dkj | j �= k

}
. (19)

We then consider three choices for σ 2, which we refer to as
‘narrow’, ‘wide’ and ‘medium’:

σ 2
nar = median

{
dmin

k | k ∈ {1 . . . K}} (20)

σ 2
wid = median

{
djk | j, k ∈ {1 . . . K}, j �= k

}
(21)

σ 2
med =

√
σ 2

narσ
2
wid. (22)

5It should be noted that these trajectories are not outliers in the
sense of containing corrupt data and could in fact be used for
further training of the model. For example one could take a hierar-
chical approach, where groups of strongly connected trajectories
are aligned first to form models consisting of groups of trajectories
with good alignment. We can then recursively repeat the process,
aligning these larger (but more weakly connected) groups until all
of the data has been included.

In Section 4.1 we give a comparison of the learning per-
formance for each of these choices of σ 2 for policies of
varying complexity.

3.4. Learning the global model

After calculating optimal offsets bopt and cleaning the data
set from outliers, we can learn a global model f (x) of
the potential using any regression algorithm. Here, we
choose Locally Weighted Projection Regression (LWPR)
(Vijayakumar et al. 2005) because it has been demon-
strated to perform well in cases where the data lies on
low-dimensional manifolds in a high-dimensional space,
which matches our problem of learning the potential from
a set of trajectories. As the training data for LWPR, we use
all non-outlier trajectories and their estimated potentials as
given by the Euler integration plus their optimal offset, that
is, the input–output tuples

{(
xkn, φ̂kn + b

opt

k

) | k ∈ K, n ∈ {1 . . . Nk}
}

, (23)

where K denotes the set of indices of non-outlier trajecto-
ries. Once we have learnt the model f (x) of the potential,
we can take derivatives to estimate the unconstrained policy
π̂ (x) = −∇xf (x). For convenience, the complete procedure
is summarised in Algorithm 1.

Algorithm 1 PolicyAlign

1: Estimate Xk , �̂k, {k = 1 . . . K} using Euler integration.
Calculate σ 2.

2: Alignment:

� Calculate prediction and responsibility of each local
model fk on each data point xm, m = 1 . . . M:
fkm = fk(xm); qkm = wk(xm)/

∑
i wi(xm)

� Construct H, a with elements
hij = δij

∑
m qjm − ∑

m qimqjm;
ak = ∑

m qkmfkm − ∑
m,j qkmqjmfjm

� Find optimal offsets bopt = −H†a

3: Discard outliers (H eigenvalues, λ < 10−8).

4: Train global model on data tuples (xkn, φ̂kn + b
opt

k )

4. Experiments

To explore the performance of our algorithm, we per-
formed experiments on data from autonomous kinematic
control policies (Schaal et al. 2003) applied6 to different

6Since the goal of the experiments was to validate the proposed
approach, we used policies known in closed form as a ground truth.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
H
o
w
a
r
d
,
 
M
a
t
t
h
e
w
]
 
A
t
:
 
1
5
:
3
7
 
3
 
A
p
r
i
l
 
2
0
0
9



Applied Bionics and Biomechanics 203

plants, including the whole body motion controller (WBM)
of the humanoid robot ASIMO (Gienger et al. 2005). In
this section, we first discuss results from an artificial toy
problem controlled according to the same generic frame-
work to illustrate the key concepts. We then discuss an
example scenario in which the algorithm is used to en-
able ASIMO to learn a realistic bi-manual grasping task
from observations from a constrained demonstrator. We
then give a brief discussion on how our algorithm scales
to policies in very high-dimensional systems such as for
22 DOF of the ASIMO WBM controller (Gienger et al.
2005). Finally, we report the performance of the algorithm
when learning from data containing a set of pathological
constraints.

4.1. Toy example

The toy example consists of a 2D system with a policy
defined by a quadratic potential, subject to discontinuously
switching constraints. Specifically, the potential is given by

φ(x) = (x − xc)T W(x − xc), (24)

where W is some square weighting matrix which we set to
0.05I and xc is a vector defining the location of the attractor
point, here chosen to be xc = 0. Data were collected by
recording trajectories and generated by the policy from a
start state distribution X0. During the trajectories the policy
was subjected to random constraints

A(x, t) = (α1, α2) ≡ α (25)

where the α1,2 were drawn from a normal distribution, αi =
N (0, 1). The constraints mean that motion is constrained in
the direction orthogonal to the vector α in state space. To
increase the complexity of the problem, the constraints were
randomly switched during trajectories by re-sampling α

twice at regular intervals during the trajectory. This switches
the direction in which motion is constrained as can be seen
by sharp turns in the trajectories.

Figure 5 shows an example of our algorithm at work
for a set of K = 40 trajectories of length N = 40 for the
toy system. The raw data as a set of trajectories through
the 2D state space is shown in panel (a), whereas panel
(b) additionally depicts the local potential models as esti-
mated from the Euler integration prior to alignment. Each
local model has an arbitrary offset against the true poten-
tial so there are inconsistencies between the predictions
from each local model. Figure 5(c) shows the trajecto-
ries after alignment, already revealing the structure of the
parabola.

In the follow-up paper we apply our method to human motion
capture data.

At this point, the outlier detection scheme has identified
three trajectories as being weakly connected to the remain-
ing set. In Figure 5(a) we can see that the outliers are indeed
the only trajectories that do not have any intersection with
neighbouring trajectories. At the ‘narrow’ length scale de-
termined by the smoothing parameter (20), they are hard to
align properly, and need to be discarded before learning the
global model. Finally, Figure 5(d) shows the global model
f (x) of the potential that was trained on the aligned trajec-
tories, which is clearly a good approximation of the true
parabolic potential shown in Figure 5(e).

For a more thorough evaluation, we repeated this exper-
iment on 100 data sets and evaluated7

� the nMSE of the aligned potential, which measures the
difference between φ̂kn + bk and the true potential φ,

� the nMSE of the learnt potential, measuring the differ-
ence between f (·) and φ(·),

� the normalised unconstrained policy error (nUPE),
quantifying the difference between π̂ =∇f and π =∇φ,

� the normalised constrained policy error (nCPE), which
is the discrepancy between Nπ̂ and Nπ , and finally

� the percentage of trajectories discarded as outliers

on a subsample of the data held out for testing. We did so
for our three different choices of σ 2 given in (20)–(22). We
also repeated the experiment using a sinusoidal potential
function

φs(x) = 0.1 sin(x1) cos(x2) (26)

with the same amount of data, as well as while using K =
100 trajectories of length N = 100 for each data set.

Table 1 summarises the results. Firstly, we can see that
the ‘wide’ choice for σ 2 leads to large error values which
are due to over-smoothing. Using the narrow σ 2, we re-
trieve very small errors at the cost of discarding quite a lot
of trajectories8, and the medium choice seems to strike a
reasonable balance especially with respect to the nUPE and
nCPE statistics. Further to this, the left panel of Figure 6
depicts how the nUPE and nCPE evolve with increasing
size of the training set, showing a smooth decline (please
note the log scale).

Secondly, when comparing the results for the parabolic
and sinusoidal potentials, we can see that the latter, more
complex potential (with multiple sinks) requires much more
data. With only 40 trajectories and 40 points each, most
of the data sets are too disrupted to learn a reasonable
potential model. While at the narrow length scale (4th row),

7A detailed explanation of the error measures used can be found
in Appendix B.
8Please note that we also discard the outliers for evaluating the er-
ror statistics—we can hardly expect to observe good performance
in regions where the learnt model f (x) has seen no data.
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204 M. Howard et al.

Figure 5. Top: (a) Toy data (trajectories (2-D) and contour of true potential. Estimated potential along the trajectories before (b) and after
(c) alignment. Trajectories detected as difficult to align ‘outliers’ are shown by light crosses. Bottom: Learned (d) and true (e) potential
function after training on the aligned trajectories.

on average more than half of the data set is discarded,
even the medium length scale (5th row) over-smooths the
subtleties of the underlying potential.

Finally, the nCPE is always much lower than the nUPE,
which follows naturally when training on data containing
those very movement constraints. Still, with a reasonable
amount of data, even the unconstrained policy can be mod-
elled with remarkable accuracy.

As a final test, we also performed experiments to assess
the noise robustness of the proposed approach. For this we
again used data from the quadratic potential and this time
contaminated the observed states xn with Gaussian noise,
the scale of which we varied to match up to 20% of the
scale of the data. The resulting nUPE roughly follows the
noise level, as is plotted in Figure 6 (right).

4.2. Grasping a ball

The two goals of our second set of experiments were (1) to
characterise how well the algorithm scaled to more com-

plex, realistic constraints and policies and (2) to assess
how well the learnt policies generalised over different con-
straints. For this we set up a demo scenario in which a set
of trajectories demonstrating the task of reaching for a ball
on a table were given. Furthermore, it was assumed that
trajectories were recorded under different contexts where
different constraints applied. The goal was then to uncover
a policy that both accurately reproduced the demonstrated
behaviour and furthermore generalised to novel contexts
with unseen constraints.

For this, we set up an ‘expert’ demonstrator from which
observations were recorded. For ease of comparison with
the 2-D system, the expert’s policy was defined by the same
quadratic potential (24) this time with the target point xc

corresponding to a grasping position, with the two hands po-
sitioned on either side of the ball. The state-space of the pol-
icy was defined as the Cartesian position of the two hands,
corresponding to 6 DOFs9 (hereafter the ‘task space’). In

93 DOFs per hand × 2 hands.
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Figure 6. Learning performance on the quadratic potential (24) with varying data set sizes and noise levels. Left: Potential nMSE, nCPE
and nUPE versus data set size as a percentage of the full K =40 trajectories of length N =40. Right: Potential nMSE, nCPE and nUPE
for increasing noise levels in the observed xn.

order to realise the task space policy motion, joint-space
control was performed using the ASIMO WBM controller
(see Gienger et al. 2005 for details).

The policy was constrained by placing a barrier on the
table between the robot and the ball with a gap in it. The
constraints acted on each of the hands so that motion in
the direction normal to the barrier surface was prevented if
a hand came too close (cf. Sugiura et al. 2007). The con-
straints were such that the robot had to reach through the
gap in order to get the ball. Such state-dependent constraints
are both non-linear in the state space and have discontinu-
ously switched dimensionality when either one or both of
the hands approach or recede from the barrier.

Data were collected by recording K =100 trajectories
of length 2s at 50 Hz, (i.e. N =100 points per trajectory).
Start states were sampled from a Gaussian distribution over
joint configurations q∼N (q0, 0.1I) (where q0 corresponds
to the default standing position) and using forward kine-
matics to calculate the corresponding hand positions. The
joint vector q was clipped where necessary to avoid joint

limits and self collisions, and to ensure the start postures
looked natural.

The constraints were varied by randomly changing the
width of the gap for each trajectory. The gap widths were
sampled from a Gaussian distribution dgap ∼ N (µgap, σgap)
where µgap = 0.25 m, σgap = 0.1 m and the diameter of the
ball was 0.15 m. Figure 7 shows the experimental setup.

We used our algorithm to perform learning on 50 such
data sets using the ‘narrow’ choice of smoothing param-
eter σ 2. For comparison, we also repeated the experi-
ment on the same data, using a naive approach that learnt
π̃naive : x → ẋ ∈ IRn �→ IRn by training directly on the tu-
ples (xi , ẋi), i = 1, . . . K × N and used LWPR to learn the
global model. This is in contrast to the proposed alignment
scheme where we learn the one-dimensional potential func-
tion and use the gradient of the learnt function as the policy
prediction.

For this task, our algorithm achieved a very low align-
ment error of 6.95 ± 0.09 × 10−4, with 0.48 ± 0.84% of
the trajectories discarded, resulting in an nMSE in the

Table 1. Error and outlier statistics (mean ± std.dev. over 100 data sets) for the experiment on 2-D toy data. For brevity, we did not
include the figures for the alignment nMSE. These were only marginally different from the potential nMSE.

Setup σ 2 Potential nMSE nUPE nCPE Disc. (%)

Parabola Narrow 0.0052 ± 0.0024 0.0486 ± 0.0211 0.0235 ± 0.0092 17.55 ± 15.96
K = 40 Medium 0.0195 ± 0.0203 0.0859 ± 0.0486 0.0224 ± 0.0074 0.48 ± 1.11
N = 40 Wide 0.3143 ± 0.1045 0.5758 ± 0.2726 0.1135 ± 0.0371 0 ± 0

Sinusoidal Narrow 0.0026 ± 0.0019 0.1275 ± 0.1125 0.0535 ± 0.0353 50.18 ± 14.37
K = 40 Medium 0.0522 ± 0.0645 0.1399 ± 0.0422 0.0376 ± 0.0097 1.03 ± 3.99
N = 40 Wide 0.5670 ± 0.1363 0.8373 ± 0.2188 0.2464 ± 0.0638 0 ± 0

Sinusoidal Narrow 0.0014 ± 0.0004 0.0657 ± 0.0142 0.0308 ± 0.0065 25.46 ± 11.42
K = 100 Medium 0.0019 ± 0.0017 0.0628 ± 0.0089 0.0284 ± 0.0044 1.25 ± 3.33
N = 100 Wide 0.2137 ± 0.1000 0.4262 ± 0.1367 0.1554 ± 0.0483 0 ± 0
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Figure 7. Example constrained reaching movement demonstrated by the expert policy. Starting with hands at the sides, the teacher robot
reaches between the barriers to grasp the ball.

learnt potential of 7.85 ± 0.56 × 10−4 (mean ±SD over
50 data sets). In Table 2 we give the errors in predict-
ing the policy subject to (1) the training data constraints
(nCPE), (2) no constraints (nUPE), and (3) a novel con-
straint, unseen in the training data. For the latter, a barrier
was placed centrally between the robot and the ball, so
that the robot had to reach around the barrier to grasp the
ball.

The remarkably low alignment error can be attributed
to the fact that in most of the observations the grasping task
was achieved successfully despite the constraints forcing
the hands to take alternative routes to the ball. This meant
many of the trajectories closely approached the minimum
of the potential, making the alignment easier around this
point. This is further indicated by the low percentage of
trajectories discarded.

The key result, however, can be seen by examining the
policy errors (see. Table 2). Comparing the two approaches,
both achieve a similar nCPE, with the naive approach in fact
performing slightly better. This indicates that the two meth-
ods do equally well in modelling the constrained movement
observations to approximately the same level of accuracy.

However, when comparing the errors for the uncon-
strained policy, and the policy subject to the unseen con-
straint, a different picture emerges. Using the model learned

Table 2. Constrained policy nMSE for unseen constraints on the
ball-grasping task. Values are mean±s.d. over 50 data sets.

Constraint Naive PolicyAlign

Training 0.1298 ± 0.0113 0.1691 ± 0.0289
Unseen Barrier 0.5108 ± 0.0327 0.2104 ± 0.0357
Unconstrained 0.8766 ± 0.0589 0.2277 ± 0.0386

by the alignment approach, the unconstrained policy pre-
dictions, and the predictions under the unseen constraint,
maintain a similar level of error to that of the constrained
policy. However, in stark contrast to this, the naive approach
fares very poorly, with a large jump in error when predict-
ing the policy under the new barrier constraint and when
predicting the unconstrained behaviour.

The difference in the two approaches is highlighted if
we compare trajectories generated by the two policies. In
Figure 8 we show example trajectories for the unconstrained
reaching movement produced by the expert (black), and the
policies learnt by (1) the naive approach (green) and (2) the
alignment approach (red). In the former the hands take a
curved path to the ball, reproducing the average behaviour
of the demonstrated (constrained) trajectories—the naive
method is unable to extract the underlying task (policy) from
the observed paths around the obstacles. Consequently, it
cannot generalise and find its way around the unseen barrier.
In contrast, the policy learnt with the alignment approach
better predicts the unconstrained policy, enabling it to take
a direct route to the ball that closely matches with that of
the expert.

4.3. Learning from high-dimensional ASIMO
data

In our next set of experiments we tested the scalability of
our approach for learning in very high dimensions. For
this we again used the quadratic potential (24) where now
the state vector x corresponded to the 22-dimensional joint
configuration of the upper body of the ASIMO humanoid
robot (see. Figure 1). In this experiment, the policy was
constrained such that in each trajectory one of the hands of
the robot was constrained to lie in a plane of random ori-
entation. Such constraints occur in a variety of behaviours
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Figure 8. Unconstrained reaching movement for the expert policy (black), the policy learnt with the naive approach (green) and that
learnt with the policy alignment algorithm (red).

where contact must be maintained with a surface, for exam-
ple when writing on a whiteboard or when wiping a window
(Park and Khatib 2006).

We ran the experiment on 50 data sets of K =100 trajec-
tories of length N =100, with start states selected using the
same process as described in the preceding section. Using
the narrow setting of the smoothing parameter the algorithm
achieved an alignment error of 1.6 ± 0.3 × 10−3 with just
0.02 ± 0.14% of the trajectories discarded. Learning on
this data with LWPR, we achieved an nMSE in the learnt
potential of 1.5 ± 0.4 × 10−3, nCPE of 0.065 ± 0.014 and
nUPE of 0.157 ± 0.047. We consider this to be remark-
ably good performance given the high dimensionality of
the input space and the relatively small size of the data set.

4.4. Pathological constraints

In our final set of experiments we briefly characterise the
performance of the algorithm subject to pathological con-
straints in the data. As an illustrative example, we simulated
a constrained planar three-link arm, with revolute joints and
unit link lengths.

The experimental setup was as follows. Data were col-
lected from the arm moving according to the quadratic
potential (24) (with xc = 0 and W = 0.05I) from a random
distribution of start states. The movement of the arm was
restricted by constraining the end-effector to move along a
line. Mathematically the constraint matrix was

A(x, t) = n̂T Jhand(x) (27)

where n̂ is a unit vector normal to the hand-space plane
and Jhand(x) is the hand Jacobian. The constraint was var-
ied by altering the orientation of the plane by drawing n̂
from a uniform random distribution Un̂ at the start of each
trajectory.

We ran experiments on 50 such data sets each contain-
ing K =100 trajectories of length N =100. For this learning
problem, the algorithm achieved nUPE of 0.3524 ± 0.1626
and nCPE of 0.0455 ± 0.0276. The nMSE in the learnt
potential was 0.1739 ± 0.1424 with 10.28 ± 8.25% tra-

jectories discarded. In comparison the naive approach to
learning achieved nUPE of 0.8008 ± 0.0274 and nCPE of
0.0105 ± 0.0023.

The reason for the comparatively high nUPE here be-
comes clear if we analyse the effect of the constraints on
the movement of the arm (see Figure 9). In Figure 9(a) the
training data trajectories are plotted over the three joints of
the arm. It can be seen that the trajectories do not reach
the point attractor at x = 0, but rather move to a line in
joint space (shown in black). This ‘line attractor’ represents
the minimum of the potential that can be reached without
breaking the constraints. No trajectories travel in the direc-
tion parallel to this line. Furthermore, away from this line
there are few points where trajectories come close to one
another or intersect. The effect of this is that the algorithm
gets little or no information about how the potential changes
in the direction parallel to the line.

This is confirmed by comparing how the nUPE and
nCPE change as we move along the line attractor, and ra-
dially outward from it. In Figure 9 we show the potential
nMSE, nUPE and nCPE on data contained within different
regions of the state space.

Firstly, we evaluated the error on data points contained
between two planes normal to the line attractor at distance
d from the point attractor x = 0 (Figure 9b, dashed lines),
and plotted it with increasing d (Figure 9d). We can see that
close to x = 0, the potential nMSE and nUPE start low but
increase rapidly for large d. On the other hand the nCPE
stays approximately constant over the entire set.

Secondly, we looked at how the errors change as we
move radially outward. For this we evaluated errors on data
contained within a cylinder of radius r centred on the line
attractor (Figure 9c, dashed lines). Figure 9(e) shows the
change in error with increasing radius r . Again the nCPE
remains constant. This time, however, the potential nMSE
and nUPE are high even at small r . This indicates that the
points at the two ends of the line are contributing most of
the error.

Clearly in this example, the adverse constraints in
the training data prevent our algorithm from fully recon-
structing the unconstrained policy. The constraints prevent
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Figure 9. (a) Trajectories in state-space for the three link arm subject to random planar constraints on the hand. (b) and (c) show
projections onto the first two joints of the arm, and also indicate the line attractor (solid black line). We sampled the nMSE at increasing
distances along the line (b) and radially outward from it (c). Plots (d) and (e) depict the cumulative nMSE of the potential φ, policy π , and
constrained policy (Nπ ) as a function of the distance measures from (b) and (c), respectively.

motion parallel to the line attractor so we cannot recover
the form of the potential along that direction. However,
the good performance in terms of the nCPE indicates that,
at the very least, the algorithm is able to reconstruct the
policy under the same constraints despite these adverse
conditions.

5. Conclusion

We have proposed a novel approach to direct learning of
potential-based policies from constrained motion data. Our
method is fast and data efficient, and it scales to com-
plex constraints in high-dimensional movement systems.
The core ingredient is an algorithm for aligning local mod-
els of the potential, which leads to a convex optimisation
problem.

Under the analytical limitations of what can be learnt
in this setting, our method performs remarkably well: ulti-
mately, the ability to learn the nullspace potential depends
on the constraints. Given a pathological set of constraints,
one can never hope to recover the potential. However, using
our method, motion data under different constraints can be
combined to learn a potential that is consistent with the
observations. With a reasonably rich set of constraints, we
can recover the unconstrained policy with high accuracy,
and we can generalise to predict behaviour under different
constraints.

For future research, we plan to work on a more princi-
pled selection of the smoothing parameter σ 2, which prob-
ably will include varying that parameter across the state
space. Another possibility is to align the trajectories by hi-
erarchical grouping, fitting more complex models to the
growing groups.
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Appendix

A. Recursive Bi-partitioning for Outlier Detection
In the following, we describe our mechanism for detecting tra-
jectories (or groups thereof) that we need to discard from the
training set before learning a global model of the potential. To this
end, similarly to spectral clustering, we look at the eigenvectors
belonging to all small eigenvalues of the Hessian H (16). Let

V = (v1v2 . . . vn)T where λivi = Hvi , λi < 10−8. (A1)

That is, if H was calculated from 100 trajectories and has n = 7
small eigenvalues, V would be a 7 × 100 matrix. We then cluster

the columns of V into two centres c1, c2 ∈ IRn. Since each column
of V represents a trajectory, we effectively partition the training
data into two groups whose relative potential offset has negligi-
ble influence on the alignment objective function (16). For both
groups, we repeat the process using corresponding sub-matrices
of H. That is, we recursively split up our trajectories into groups
until there is only one zero eigenvalue left in each group (cor-
responding to v = 1, the constant shift of all trajectories in that
group). The process is visualised in Figure A1.

B. Error Measures
In order to measure the performance of our algorithm we define
the following two metrics. Firstly, the normalised unconstrained
policy error (nUPE) is

Eupe[π̃] = 1

Nσ 2
π

N∑
n=1

||π(xn) − π̃(xn)||2 (B1)

where N is the number of data points, π(xn) and π̃(xn) are the (un-
constrained) true and learnt policy predictions at the points xn and
σ 2

π is the variance in the true policy over those points. The nUPE
measures the difference between samples of the (unconstrained)
true and learnt policies, normalised by the variance. Since the pri-
mary goal of our algorithm is to find a good approximation of the
unconstrained policy, a low nUPE indicates good performance.
Also note that the nUPE also gives an indication of how well
the learnt policy will generalise over different constraints, since
if the learnt policy closely matches the true unconstrained policy,
then it will also closely match the true policy under any arbitrary
projection (constraint).

The second measure we define is the normalised constrained
policy error (nCPE)

Ecpe[π̃ ] = 1

Nσ 2
π

N∑
n=1

||Nn (π (xn) − π̃(xn)) ||2 (B2)

where Nn denotes the constraint (projection) matrix for the n-
th point. The nCPE measures the difference between the true
and learnt policies under the projections Nn. The significance
of the nCPE is that it allows one to measure the accuracy of
the learnt policy under a specific set of constraints (i.e. those
encoded by the projections Nn). For example, if we chose Nn as
the set of projections corresponding to the constraints in force
in the training data, then we can assess how well our model will

Figure A1. Illustration of our recursive outlier detection scheme. At any stage, we look for non-trivial small eigenvalues of the alignment
Hessian, and if those exist, we split the trajectories into 2 independent groups (red and blue). From left to right: 1) top-level partitioning 2)
splitting up the red group from step 1, 3) splitting the red group from step 2, 4) splitting the red group from step 3. The largest connected
group consists of the blue trajectories from step 3, which we use for training the global model.
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perform under those same constraints. Alternatively, if we chose
Nn corresponding to a set of novel, unseen constraints we can
directly measure how well the policy generalises to predict under
those new constraints.

While not directly of interest in terms of controller perfor-
mance, the normalised error in the learnt potential can provide
information about the algorithm as a whole. It is given by

Epot[f ] = 1

Nσ 2
φ

N∑
n=1

(
f (xn) − φ(xn) − µ

)2
,

µ = 1

N

N∑
n=1

(
f (xn) − φ(xn)

)
, (B3)

where σ 2
φ denotes the variance of the true potential. Please note

that we subtract the mean difference µ between the two quantities

to remove the irrelevant global offset of the potentials. While the
potential error also depends on the accuracy of the regression
method LWPR, it is mostly determined by which offsets bk we
pick for the training trajectories. We can measure this part by the
normalised alignment error

Ealign[b] = 1

Nσ 2
φ

N∑
n=1

(φ̂(xn) − φ(xn) − ν)2 ,

ν = 1

N

N∑
n=1

(
φ̂(xn) − φ(xn)

)
, (B4)

where the notation φ̂(xn) is understood to already include the
proper offset, that is, φ̂(xn) = φ̂kn′ + bk if the test point xn was
held out from the k-th trajectory we trained the model on.
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